实验二 MATLAB数值计算:二阶电路的时域分析
- 格式:pdf
- 大小:597.85 KB
- 文档页数:6
实验二利用MATLAB进行时域分析本实验内容包含以下三个部分:基于MATLAB得线性系统稳定性分析、基于MATLAB得线性系统动态性能分析、与MATALB进行控制系统时域分析得一些其它实例。
一、基于MATLAB得线性系统稳定性分析线性系统稳定得充要条件就是系统得特征根均位于S平面得左半部分。
系统得零极点模型可以直接被用来判断系统得稳定性。
另外,MATLAB语言中提供了有关多项式得操作函数,也可以用于系统得分析与计算。
(1)直接求特征多项式得根设p为特征多项式得系数向量,则MATLAB函数roots()可以直接求出方程p=0在复数范围内得解v,该函数得调用格式为:v=roots(p) 例3、1 已知系统得特征多项式为:特征方程得解可由下面得MATLAB命令得出。
>> p=[1,0,3,2,1,1];v=roots(p)结果显示:v =0、3202 + 1、7042i0、3202 - 1、7042i-0、72090、0402 + 0、6780i0、0402 - 0、6780i利用多项式求根函数roots(),可以很方便得求出系统得零点与极点,然后根据零极点分析系统稳定性与其它性能。
(2)由根创建多项式如果已知多项式得因式分解式或特征根,可由MATLAB函数poly()直接得出特征多项式系数向量,其调用格式为:p=poly(v) 如上例中:v=[0、3202+1、7042i;0、3202-1、7042i;-0、7209;0、0402+0、6780i; 0、0402-0、6780i];>> p=poly(v)结果显示p =1、0000 0、0001 3、00002、0001 0、9998 0、9999由此可见,函数roots()与函数poly()就是互为逆运算得。
(3)多项式求值在MATLAB 中通过函数polyval()可以求得多项式在给定点得值,该函数得调用格式为: polyval(p,v)对于上例中得p值,求取多项式在x点得值,可输入如下命令:>> p=[1,0,3,2,1,1];x=1polyval(p,x)结果显示x =1ans =8(4)部分分式展开考虑下列传递函数:式中,但就是与中某些量可能为零。
实验一一阶系统及二阶系统时域特性MatLab仿真实验(2学时)一、概述:系统时域特性常用的Matlab仿真函数1、传递函数两种形式传递函数通常表达为s的有理分式形式及零极点增益形式。
A、有理分式形式分别将分子、分母中、多项式的系数按降幂排列成行矢量,缺项的系数用0补齐。
上述函可表示为num1=[2 1](注意:方括号,同一行的各元素间留空格或逗号)。
den1=[1 2 2 1]syss1=tf(num1,den1)运行后,返回传递函数G1(s)的形式。
这种形式不能直接进行符号运算!B.零极点增益形式[Z,P,K]=tf2zp(num1,den1)sys2=zpk(Z,P,K)返回零、极点、增益表达式,其Z,P分别将零点和极点表示成列向量,若无零点或极点用[ ](空矩阵)代替。
运行得到G(s)的零点Z=-0.5,极点P=-1,-0.5±j0.866,增益K=2。
指令zp2tf(Z,P,K)将零极点增益变换成有理分式形式,见程序:传递函数的有理分式及零极,点增益模型num1=[2 1]%传递函数的分子系数向量den1=[1 2 2 1]%传递函数的分母系数向量sys1=tf(num1,den1)%传递函数的有理分式模型[Z,P,K]=tf2zp(num1,den1)%有理分式模型转换成零极点增益模型 [num2,den2]=zp2tf(Z,P,K)%零极点增益模型转换成有理分式模型 sys2=zpk(Z ,P ,K)%传递函数的零极点增益模型[A1,B1,C1,D1]=tf2ss(num1,den1)%有理分式模型转换成状态空间模型 [A2,B2,C2,D2]=zp2ss(Z,P,K)%零极点及增益模型转换成状态空间模型 [num1,den1]=ss2tf(A1,B1,C1,D1)%状态空间模型转换成有理分式模型 [Z,P,K]=ss2zp(A2,B2,C2,D2)%状态空间模型转换成零极点增益模型程序中,命令tf2ss ,zp2ss 及ss2tf ,ss2zp 是状态空间模型与有理分式及零、极点、增益模型之间的相互转换。
实验一 利用MATLAB 进行时域分析一 实验目的1 掌握利用MA TLAB 绘制控制系统时域响应方法。
2 研究二阶系统的两个重要参数阻尼比ζ和无阻尼自然频率ωn 对系统动态性能的影响。
3 掌握利用绘制的图形进行线性系统时域分析的方法二 实验内容1 初步掌握MA TLAB 时域分析中的基本命令;2 绘制系统响应曲线图并根据图形进行性能分析;三 实验步骤1 初步掌握MA TLAB 时域分析中的基本命令;A 熟悉MA TLAB 运行环境;B 控制系统模型的描述如考虑函数432543232546()34276s s s s G s s s s s s ++++=+++++ 传递函数模型描述sys=tf(num,den)执行如下程序:num=[3 2 5 4 6]; den=[1 3 4 2 7 2];sys=tf(num,den)执行结果如下:Transfer function:3 s^4 + 2 s^3 +5 s^2 + 4 s + 6------------------------------------- s^5 + 3 s^4 + 4 s^3 + 2 s^2 + 7 s + 2C 绘制系统的响应曲线考虑如下传递函数225()425G s s s =++ 绘制系统的单位阶跃响应曲线。
执行如下程序:num=[0 0 25];den=[1 4 25];impulse (num, den );step(num,den);grid或者num=[0 0 25];den=[1 4 25];sys2=tf(num,den);impulse(sys2, t); (或者可缺省t,即impulse(sys2) ;)step(sys2,t);grid执行结果如下D 绘制多条响应曲线求典型二阶系统222()2nn nss sωζωωΦ=++,当ωn=10时,ζ分别为0,0.25,0.5,0.7,1,2时的单位阶跃响应。
实验二利用matlab进行时域分析在本实验中,我们将使用MATLAB来进行时域分析。
时域分析是指对信号的时间范围内的波形进行分析。
总的来说,它是一种非常实用的分析方法,因为它允许我们对信号进行详细的观察和研究。
在此之前,建议你先了解一些MATLAB的基础知识,比如如何在MATLAB中载入数据、如何绘制图形等等。
我们假设你已经掌握了这些基础知识,并已经准备好开始这个实验。
在MATLAB中,有许多内置函数可用于分析时间域信号。
下面仅介绍几个常用的函数。
1. plot函数使用plot函数可以绘制信号波形。
在MATLAB中,我们可以载入所需的数据,然后使用“plot”函数将数据绘制成波形。
例如,以下代码绘制了一个简单的余弦波:```t = 0:0.01:pi;y = cos(t);plot(t,y);```在这个例子中,我们使用“t”来表示时间,它的范围是从0到π,步长为0.01。
我们还设置了一个“y”向量,它是根据时间向量计算得出的余弦函数值。
最后,我们使用“plot”函数将时间和信号值绘制成波形。
2. fft函数使用FFT函数可以将时域信号转换为频域信号。
MATLAB中的fft函数可以帮助我们计算信号的傅里叶变换,进而分析信号的频谱。
以下是示例代码:```Fs = 1000;t = 0:1/Fs:1-1/Fs;x = sin(2*pi*100*t) + sin(2*pi*200*t);N = length(x);X = fft(x)/N;f = Fs*(0:N/2-1)/N;plot(f,2*abs(X(1:N/2)));```在这个例子中,我们首先定义采样率“Fs”,取样时间“t”,并定义一个包含100和200Hz正弦波的信号“x”。
然后,我们使用“fft”函数计算信号“x”的傅里叶变换。
“N”是“x”的长度,而“X”是计算出的FFT系数。
最后,我们使用“plot”函数将傅里叶变换的振幅绘制成图形。
实验报告册学年学期课程名称:学院:专业:班级:学号:学生姓名:河南工学院实验报告实验项目二阶系统的时域分析实验日期班级姓名指导教师综合成绩一、预习内容1)实验目的和要求1.验证二阶系统的特征参数阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响2.定量分析ζ和ωn与最大超调量σ%和调节时间ts之间的关系。
3.学习用MATLAB仿真软件对实验内容中的电路进行仿真。
2)实验内容和原理3)实验所用主要仪器设备(或实验环境)计算机MATLAB7.0二、实验数据(现象)记录及结果处理三、实验结果分析与讨论(对实验结果进行具体分析,并对实验中出现的问题或错误原因分析,以及改进的办法与建议)1. 阻尼比越小,超调量越大,上升时间越短。
2. Ωn 越大,响应速度越快。
3. 在过阻尼的状态下,由图像可知其阶跃响应实际上是两个一阶系统响应的叠加。
随着ζ的不断增加,一一个极点不断靠近原点,另一个不断远离。
4. 当两个极点相距较近时,对阶跃响应产生的影响都不能忽略。
ζ的增大使不断远离原点的极点所产生的影响越来越小,最后趋近于零。
教师评阅意见(1)实验预习 (30分)成绩:□预习认真、熟练掌握方法与步骤(30~28) □有预习、基本掌握方法与步骤(27~22)□有预习、但未能掌握方法与步骤(21~18) □没有预习,不能完成实验(17~0)(2)操作过程 (40分)成绩:□遵规守纪、操作熟练、团结协作 (40~37) □遵规守纪、操作正确、有协作 (36~29) □遵规守纪、操作基本正确、无协作 (28~24) □不能遵规守纪、操作不正确、无协作(17~0)(3)结果分析 (30分)成绩:□结果详实、结论清晰、讨论合理(30~28) □结果正确、讨论适当(27~22)□结果正确、没有分析讨论(21~18) □结果不正确、没有分析讨论(17~0)其它意见:教师签名:年月日。
一阶电路和二阶电路的时域分析一、一阶电路的时域分析:一阶电路指的是由一个电感或电容与线性电阻串联或并联而成的电路。
对于串联的一阶电路,其特征方程为:L di(t)/dt + Ri(t) = V(t) ---------- (1)其中,L是电感的感值,R是电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
通过对上述方程进行求解可以得到电路中电流与时间的关系。
对于并联的一阶电路,其特征方程为:1/R C dq(t)/dt + q(t) = V(t) ---------- (2)其中,C是电容的电容值,q(t)是电路中电荷的变化,V(t)是电路中的输入电压。
同样,通过对上述方程进行求解可以得到电路中电荷与时间的关系。
一阶电路的响应可以分为自由响应和强迫响应两部分。
自由响应指的是由于电路中初始条件的存在,电流或电荷在没有外部输入电压的情况下的变化。
强迫响应指的是由于外部输入电压作用而产生的电流或电荷的变化。
对于一个初始处于稳定状态的电路,在有外部输入电压作用时,电路中电流或电荷会从初始值开始发生变化,最终趋于一个新的稳定状态。
这一过程可以由电流或电荷的指数递减或递增的形式表示。
在分析一阶电路的时域特性时,可以利用巴塞尔函数法或拉普拉斯变换法。
巴塞尔函数法主要是通过巴塞尔函数的表达式计算电压或电流的变化情况;拉普拉斯变换法则通过将时域的微分方程转化为复频域的代数方程,然后求解代数方程,最后再对求得的结果进行逆变换获得电流或电压的表达式。
二、二阶电路的时域分析:二阶电路是指由两个电感或电容与线性电阻串联或并联而成的电路。
对于串联的二阶电路,其特征方程为:L₁L₂ d²i(t)/dt² + (L₁R₁+L₂R₂+L₁R₂+L₂R₁) di(t)/dt + R₁R₂i(t) = V(t) ---------- (3)其中,L₁和L₂分别是两个电感的感值,R₁和R₂分别是两个电阻的电阻值,i(t)是电路中的电流,V(t)是电路中的输入电压。
实验一 一阶系统及二阶系统时域特性MatLab 仿真实验(2学时)一、实验目的1、使学生通过实验中的系统设计及理论分析方法,帮助学生进一步理解自动控制系统的设计与分析方法。
2、熟悉仿真分析软件。
3、利用Matlab 对一、二阶系统进行时域分析。
4、掌握一阶系统的时域特性,理解常数T 对系统性能的影响。
5、掌握二阶系统的时域特性,理解二阶系统重要参数对系统性能的影响。
二、实验设备计算机和Matlab 仿真软件。
三、实验内容1、一阶系统时域特性 一阶系统11)(+=Ts s G ,影响系统特性的参数是其时间常数T ,T 越大,系统的惯性越大,系统响应越慢。
Matlab 编程仿真T=0.4,1.2,2.0,2.8,3.6,4.4系统单位阶跃响应。
2、二阶系统时域特性a 、二阶线性系统 16416)(2++=s s s G 单位脉冲响应、单位阶跃响应、单位正弦输入响应的 Matlab 仿真。
b 、下图为具有一微分负反馈的位置随动系统框图,求出系统的闭环传递函数,根据系统瞬态性能指标的定义利用Matlab 分别计算微分反馈时间常数τ为0,0.0125,0.025时系统的上升时间、峰值时间、最大超调量和调整时间。
C 、二阶线性系统3612362++s s ξ,当ξ为0.1,0.2,0.5,0.7,1.0,2.0时,完成单位阶跃响应的Matlab 仿真,分析ξ值对系统响应性能指标的影响。
四、实验要求1、进入机房,学生要严格遵守实验室规定。
2、学生独立完成上述实验,出现问题,教师引导学生独立分析和解决问题。
3、完成相关实验内容,记录程序,观察记录响应曲线,响应曲线及性能指标进行比较,进行实验分析4、分析系统的动态特性。
5、并撰写实验报告,按时提交实验报告。
五、Matlab 编程仿真并进行实验分析一、一阶系统时域特性:clearclcnum=1for del=0.4:0.8:4.4den=[del 1];step(tf(num,den))hold onendlegend('T=0.4','T=1.2','T=2.0','T=2.8','T=3.6','T=4.4')如图为T=0.4,1.2,2.0,2.8,3.6,4.4系统单位阶跃响应。
实验一、二阶系统时域响应特性的实验研究一、实验目的:1. 学习并掌握利用MATLAB编程平台进行控制系统时域仿真的方法。
2. 通过仿真实验研究并总结二阶系统参数对时域响应特性影响的规律。
3. 通过仿真实验研究并总结二阶系统附加一个极点和一个零点对时域响应特性影响的规律。
二、实验任务及要求:(一)实验任务:自行选择二阶系统模型及参数,设计实验程序及步骤仿真研究二阶系统参数(,)对系统时域响应特性的影响;研究二阶系统分别附加一个极点、一个零点后对系统时域响应特性的影响;根据实验结果,总结各自的响应规律。
(二)实验要求:1. 分别选择不少于六个的和取值,仿真其阶跃(或脉冲)响应。
通过绘图展示参数,对时域响应的影响。
不同和变化分别绘制于两幅图中。
2. 通过图解法获得各时域响应指标,并进行比较,总结出二阶系统参数变化对时域系统响应特性影响的规律。
3. 分别选择不少于六个取值的附加零点、极点,仿真其阶跃(或脉冲)响应,将响应曲线分别绘制于两幅图中,并与无零、极点响应比较。
4. 通过图解法获得各响应的时域指标并进行比较分析系统附加零点、极点对二阶系统时域响应特性影响的规律。
以上仿真及图形绘制全部采用MATLAB平台编程完成1-1:wn=1;zeta=[0.1,0.2,0.4,0.7,1.0,2.0];t=[0:0.1:12];num=[wn^2];hold onfor i=1:length(zetaden=[1,2*zeta(i*wn,wn^2]sys=tf(num,den;step(sys,tendhold offgrid ongtext('zeta=0.1';gtext('zeta=0.2';gtext('zeta=0.4';gtext('zeta=0.7';gtext('zeta=1.0';gtext('zeta=2.0';1-2:wn=[0.95,1.0,1.05,1.1,1.15,1.2,];zeta=0.65;t=[0:0.01:10];hold onfor i=1:length(wndnum=[wn(i^2];den=[1,2*zeta*wn(i,wn(i^2];sys=tf(num,den;step(sys,thold offgrid ongtext('wn=0.95';gtext('wn=1.0';gtext('wn=1.05';gtext('wn=1.1';gtext('wn=1.15';gtext('wn=1.25';2:分析得:当恒定时,二阶系统的响应随ζ的增大响应变快。
自动控制原理与系统课程实验报告实验题目:利用MATLAB进行时域分析班级:机电1131班姓名:刘润学号:38号一、实验目的及内容时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
在此实验中,主要介绍时域法进行系统分析,包括一阶系统、二阶系统以及高阶系统,以及系统的性能指标。
通过实验,能够快速掌握、并利用MATLAB及控制系统箱对各种复杂控制系统进行时域分析。
二、实验设备三、实验原理典型的二阶系统在不同的阻尼比的情况下,它们的阶跃响应输出特性的差异是很大的。
若阻尼比过小,则系统的振荡加剧,超调量大幅度增加;若阻尼比过大,则系统的响应过慢,又大大增加了调整时间,下面通过此实验课题分析输出响应变化规律:已知二阶振荡环节的传递函数为:G(s)=ωn*ωn/(s*s+2*ζ*ωn*s+ωn*ωn),其中ωn=0.4,ζ从0变化到2,求此系统的单位阶跃响应曲线,并分析当ζ发生变化时,二阶系统的响应有什么样的变化规律。
四、实验步骤编出程序如下图:五、实验结果画出图表如下图:六、结果分析(1)当ξ=0(无阻尼)(零阻尼)时:无阻尼时的阶跃响应为等幅振荡曲线。
如图ξ=0曲线。
(2)当0<ξ<1(欠阻尼)时:对应不同的ξ,可画出一系列阻尼振荡曲线,且ξ越小,振荡的最大振幅愈大。
如图ξ=0.4曲线。
(3)当ξ=1(临界阻尼)时:临界阻尼时的阶跃响应为单调上升曲线。
如图ξ=1曲线。
(4)当ξ>1(过阻尼)时:过阻尼时的阶跃响应也为单调上升曲线。
不过其上升的斜率较临界阻尼更慢。
如图ξ=1.6曲线七、教师评语。
实验二 二阶系统时域分析一、 实验目的1. 学习瞬态性能指标的测试技能2. 了解参数变化对系统瞬态性能及稳定性的影响二、 实验要求观测不同参数下二阶系统的阶跃响应曲线并测出性能指标:超调量σ、峰值时间p t 、调节时间s t 。
三、 实验仪器1. GSMT2014型直流伺服系统控制平台;2. PC 、MA TLAB 平台。
四、 实验原理采用转速为输出的直流伺服电机为被控对象,设控制器为ss K s G c )1052.0()(+=,K 为开环增益,构成新的单位负反馈闭环系统。
已知被控对象的数学模型为:112.011052.01)()()(0+⨯+==s s s n s n s G u c 开环传递函数为:)112.0(112.011052.01)1052.0()()()(0+=+⨯+⨯+=⨯=s s Ks s s s K s G s G s G c 设典型二阶系统的结构图如图2.1所示。
图2.1 典型二阶系统结构图其中,当01T =、12.01=T 、21K =时,开环传递函数为:)112.0()1()(1021+=+=s s Ks T s T K K s G 其中,开环增益为1021K T K K K ==。
闭环传递函数为其中,1T K n =ω 11121T K =ξ (2.1) (1)当10<<ξ,即欠阻尼情况时,二阶系统的阶跃响应为衰减振荡,如图2.2中曲线1所示。
()1)(0)n T d C t t t ξωωθ=-+≥ (2.2)式中 21ξωω-=n d1tgθ-=峰值时间可由式(2.2)对时间求导,并令它为零,得:p d t πω== (2.3)超调量()()()p p C t C t C t σ∞∞-=,求得p eσ= (2.4)调节时间s t ,采用2%允许误差范围时,近似地等于系统时间常数1()n ξω⨯的四倍,即:n s t ξω4=(2.5)(2)当1=ξ,临界阻尼时,系统的阶跃响应为单调的指数曲线,如图2.2中曲线2所示)0()1(1)(≥+-=-t t e t C n t n ωω令输出为98.0可求得s t 。
MatIab技术时域分析方法时域分析是信号处理中的一个重要领域,它主要研究信号在时间域内的变化规律。
MatEb作为最常用的科学计算软件之一,提供了丰富的时域分析工具和函数,便于工程师和科研人员对信号进行分析和处理。
本文将介绍一些常用的MaUab技术时域分析方法,以及它们在实际应用中的一些案例。
一、时域分析的基本概念时域分析是将信号视为时间的函数,对信号在时间域内进行描述和分析。
通过时域分析,我们可以获得信号的幅值、相位、周期性等特性,从而更好地理解和处理信号。
在MatIab中,使用波形图和信号处理工具箱中的函数可以方便地进行时域分析。
二、波形图分析波形图是时域分析的基本工具之一,通过绘制信号在时间轴上的变化来直观地观察信号的特征。
在MaUab中,我们可以使用p1ot函数来画出信号的波形图。
例如,以下代码可以绘制一个简单的正弦信号的波形图:ZmatIabt=0:0.01:1;%时间范围为0到1,采样频率为IooHZf=1;%正弦信号频率为IHZA=I;%正弦信号幅值为1x=A*sin(2*pi*f*t);%生成正弦信号p1ot(t,X);%绘制波形图波形图可以直观地显示信号的频率、幅值、周期等特性,对于初步了解信号非常有帮助。
三、傅里叶变换傅里叶变换是时域分析的重要方法之一,它可以将信号从时域转换到频域。
频域分析可以更好地揭示信号的频率成分和频谱特征,对于滤波、谱估计等应用具有重要意义。
在MaHab中,我们可以使用fft函数进行傅里叶变换。
傅里叶变换的输出是一个复数数组,其中包含信号的频谱信息。
为了更好地显示信号的频谱,我们通常会进行幅度谱和相位谱的分析。
以下是一个简单的例子:'''ma11abFs=1000;%采样频率为IOOOHzt=0:1/Fs:1;%采样点数为1000f=10;%正弦信号频率为IOHzX=sin(2*pi*f*t);%生成正弦信号N=Iength(X);%信号长度X=fft(x);%进行傅里叶变换frequencies=Fs*(0:(N/2))/N;%计算频率轴amp1itude=abs(X(kN∕2+1));%计算幅度谱phase=ang1e(X(kN∕2+1));%计算相位谱subp1ot(2,1,1);p1ot(frequencies,amp1itude);%绘制幅度谱X1abe1CFrequency(Hz)');y1abe1('Amp1itude,);subp1ot(2,1,2);p1ot(frequencies,phase);%绘制相位谱X1abeICFrequency(Hz)');y1abe1('Phase');四、自相关函数和互相关函数自相关函数和互相关函数是时域分析中用于测量信号相似性和信号之间的关系的重要方法。
实验二 MATLAB 数值计算:二阶电路的时域分析一、实验目的在物理学和工程技术上,很多问题都可以用一个或一组常微分方程来描述,因此要解决相应的实际问题往往需要首先求解对应的微分方程(组)。
在大多数情况下这些微分方程(组)通常是非线性的或者是超越方程(比如范德堡方程,波导本征值方程等),很难解析地求解(精确解),因此往往需要使用计算机数值求解(近似解)。
MATLAB 作为一种强大的科学计算语言,其在数值计算和数据的可视化方面具有无以伦比的优势。
在解决常微分方程(组)问题上,MATLAB 就提供了多种可适用于不同场合(如刚性和非刚性问题)下的求解器(Solver),例如ode45,ode15s ,ode23,ode23s 等等。
本次实验将以二阶线性电路-RLC 电路和二阶非线性电路-范德堡电路的时域计算为例,了解和学习使用MATLAB 作为计算工具来解算复杂的微分方程,以期达到如下几个目的:1. 熟练使用dsolve 函数解析求解常微分方程;2. 熟练运用ode45求解器数值求解常微分方程;3. 了解状态方程的概念,能使用MATLAB 对二阶电路进行计算和分析;二、实验预备知识1.微分方程的概念未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。
如果未知函数是一元函数,称为常微分方程(Ordinary differential equations ,简称odes )。
n 阶常微分方程的一般形式(隐式)为:0),,",',,()(=n y y y y t F (1)其中t 为自变量。
若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,否则就是非线性微分方程,例如方程2''(1)'0 y y y y μ--+=就是非线性的。
2.常微分方程的解及MATLAB 指令一阶常微分方程与高阶微分方程可以互化,已知一个n 阶常微分方程(显式):),,",',()1()(-=n n y y y t f y (2)若令(1)123,','',....,n n y y y y y y y y -====,可将上式化为n 个一阶常微分方程组:'1112'2212'12(,,,...)(,,,...) (,,,...)n n n n n y f t y y y y f t y y y y f t y y y ⎧=⎪=⎪⎨⎪⎪=⎩(3)式称为状态方程,y 1, y 2, …,y n (即y , y ', y '', …, y (n-1) )称为状态变量,其中y 1(即y )就是常微分方程(2)式的解。