浙江省温州市2016届高三上学期返校联考理数试题解析(解析版)
- 格式:doc
- 大小:1.09 MB
- 文档页数:15
一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{|1U x x =≤-或}0x ≥,{}|02A x x =≤≤,{}2|1B x x =>,则集合()U A C B 等于( ) A.{}|01x x x ><-或 B.{}|12x x <≤ C.{}|01x x ≤≤ D.{}|02x x ≤≤ 【答案】C . 【解析】试题分析:由题意知,{}2|1{|1B x x x x =>=>或1}x <-,所以{11}U C B x x =-≤≤,所以集合(){x 01}U A C B x =≤≤I ,故应选C .考点:1、集合间的相互关系;2.一个几何体的正视图和侧视图都是面积为1的正方形,则这个几何体的俯视图一定不是( )A B C D【答案】B . 【解析】考点:1、三视图;3.设实数列{}n a 和{}n b 分别是等差数列与等比数列,且114a b ==,441a b ==,则以下结论正确的是( ) A.22a b > B.33a b < C.55a b > D.66a b > 【答案】A . 【解析】试题分析:设等差数列{}n a 和等比数列{}n b 的公差、公比分别为,d q ,则由114a b ==,441a b ==得,31131a d b q +==即1,d q =-=,所以213a a d =+=,232144b b q ===,所以()3227a =,()32332416b ⎛⎫== ⎪⎝⎭,所以22a b >,故选项A 正确;3122a a d =+=,21233144b b q ==⨯=,所以33a b >,所以选项B 不正确;5140a a d =+=,41435144b b q -==⨯=,所以55a b <,所以选项C不正确;6151a a d =+=-,52536144b b q -==⨯=,所以66a b <,所以选项D 不正确;故应选A .考点:1、等差数列;2、等比数列;4.“直线y x b =+与圆221x y +=相交”是“01b <<”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件 【答案】B . 【解析】试题分析:若“直线y x b =+与圆221x y +=相交”,则圆心到直线的距离为1d不能退出01b <<;反过来,若01b <<,则圆心到直线的距离为1d <,所以直线y x b =+与圆221x y +=相交,故应选B .考点:1、直线与圆的位置关系;2、充分必要条件;5.已知点(0,2)A ,抛物线2:2(0)C y px p =>的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若||||FM MN =,则p 的值等于( ) A.18 B.14C.2 D.4 【答案】C . 【解析】试题分析:设点M 到抛物线的准线的距离为'MM ,抛物线的准线与x 轴的交点记为点B ,则由抛物线的定义知,'MM MF =,又因为||||FM MN =,所以'||||MM MN =,即''||cos ||MM NMM MN ∠==,所以'cos cos OFA NMM ∠=∠=,而cos OF OFA AF ∠===之得2p =,故应选C .考点:1、抛物线的简单几何性质;6.设集合{}1,2,3,,n S n = ,若Z 是n S 的子集,把Z 中的所有数的和称为Z 的“容量”(规定空集的容量为0).若Z 的容量为奇(偶)数,则称Z 为n S 的奇(偶)子集. 命题①:n S 的奇子集与偶子集个数相等;命题②:当3n ≥时,n S 的所有奇子集的容量之和与所有偶子集的容量之和相等 则下列说法正确的是( )A.命题①和命题②都成立 B.命题①和命题②都不成立 C.命题①成立,命题②不成立 D.命题①不成立,命题②成立 【答案】A . 【解析】试题分析:设S 为n S 的奇子集,令1,1{1,1S S T S S ⋃∉⎧=⎨∈⎩,则T 是偶子集,A T →是奇子集的集到偶子集的一一对应,而且每个偶子集T ,均恰有一个奇子集,1,1{1,1T TS T T ⋃∉⎧=⎨∈⎩与之对应,故n S 的奇子集与偶子集个数相等,所以①正确;对任一(1)i i n ≤≤,含i 的子集共有12n -个,用上面的对应方法可知,在1i ≠时,这12n -个子集中有一半是奇子集,在1i =时,由于3n ≥,将上边的1换成3,同样可得其中有一半是奇子集,于是在计算奇子集容量之和是2312(1)2nn n i i n n --==+∑,根据上面所说,这也是偶子集的容量之和,两者相等,所以当3n ≥时,n S 的所有奇子集的容量之和与所有偶子集的容量之和相等,即命题②正确,故应选A . 考点:1、集合的综合运用;2、分段函数的表示;7.定义区间12[,]x x 的长度为21x x - 21()x x >,函数22()1()(,0)a a x f x a R a a x+-=∈≠的定义域与值域都是[,]()m n n m >,则区间[,]m n 取最大长度时实数a 的值为( )B.-3 C.1 D.3 【答案】D . 【解析】考点:1、函数的定义域;2、函数的值域;8.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将△ADE 沿AE 翻折成△S AE ,使得平面SAE ⊥平面ABCE ,则下列三个说法中正确的个数是( )①存在点E 使得直线SA ⊥平面SBC ②平面SBC 内存在直线与SA 平行 ③平面ABCE 内存在直线与平面SAE 平行 A.0 B.1 C.2 D.3 【答案】B . 【解析】试题分析:对于命题①,若直线SA ⊥平面SBC ,则直线SA 与平面SBC 均垂直,则SA ⊥BC ,又由AD ∥BC ,则SA ⊥AD ,这与SAD ∠为锐角矛盾,所以命题①不正确;对于命题②,因为平面SBC ⋂直线SA S =,故平面SBC 内的直线与SA 相交或异面,所以命题②不正确;对于命题③,取AB 的中点F ,则CF ∥AE ,由线面平行的判定定理可得CF ∥平面SAE ,所以命题③正确,故应选B . 考点: 1、线面垂直的判定定理;2、线面平行的判定 ;第Ⅱ卷(共110分)(非选择题共110分)二、填空题(每题5分,满分36分,将答案填在答题纸上)9.已知 ,255lg =x 则x= ;已知函数x x f lg )(=,若1)(=ab f ,则=+)()(22b f a f . 【答案】100,2. 【解析】试题分析:因为lg 525x =,所以5lg log 252x ==,所以210100x ==;又因为1)(=ab f ,所以lg()1ab =,即10ab =,所以222222()()lg lg lg()2lg()2f a f b a b a b ab +=+===,故应填100,2. 考点:1、对数函数;2、对数运算;10.设函数31,1,()2, 1.x x x f x x -<⎧=⎨≥⎩则2(())3f f = ;若(())1f f a =,则a 的值为 .【答案】2,. 【解析】试题分析:因为22()31133f =⨯-=,所以12(())(1)223f f f ===;若(())1f f a =,则(1)当1a <时,()31f a a =-,(1)当311a -<,即23a <时,()1f a <,所以2(())(31)3(31)19a 41f f a f a a =-=--=-=,所以25a 9=,即a =a =不合题意应舍去,所以a =311a -≥,即23a ≥时,()1f a ≥,所以31(())(31)21a f f a f a -=-==,即13a =,应舍去;(2)当1a ≥时,()21af a =≥,所以2(())21af f a ==,所以20a =,不合题意,应舍去,故应填2,. 考点:1、分段函数;11.若函数2()cos 222x x xf x =,则函数()f x 的最小正周期为 ;函数()f x 在区间[,0]π-上的最小值是 .【答案】2π,1-.【解析】试题分析:因为21cos ()cos 2222x x x x f x x -==cos )x x =+sin()4x π=+221T ππ==;因为x [,0]π∈-,所以3x [,]444πππ+∈-,再结合三角函数的图像及其性质可得: min ()1f x =-,故应填2π,1-. 考点:1、三角函数的恒等变换;2、三角函数的图像及其性质;12.如图,12,F F 是双曲线的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点B 、A 两点,若2ABF ∆为等边三角形,则该双曲线的离心率为 .. 【解析】试题分析:由双曲线的定义知,21122,2,BF BF a AF AF a -=-=,又因为2ABF ∆为等边三角形,所以11AB AF BF ==,所以224BF AF a AB -==,所以124,6BF a BF a ==. 在12F BF ∆中,由余弦定理可得:22201212122cos 60F F BF BF BF BF =+-,即2220(2)(4)(6)246cos 60c a a a a =+-⨯⨯,即ce a==. 考点:1、双曲线的概念;2、双曲线的简单几何性质;13.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为 .【答案】25. 【解析】试题分析:根据已知条件,AB ,AD ,AQ 三直线两两垂直,分别以这三直线为,,x y z 轴,建立如图所示空间直角坐标系,设2AB =,则(0,0,0),(1,0,0),(2,1,0)A E F ,M 在线段PQ 上,设(0,,2)(02)M y y ≤≤,所以(1,,2)EM y →=-,(2,1,0)AF →=,所以cos cos ,EM θ→→=<()25g y y =--是一次函数,且为减函数,(0)20550g =-⨯-=-<,所以()f y 在[0,2]上单调递减,所以当0y =时,()f y 取得最大值25,故应填25.考点:1、空间向量在立体几何中的应用;14.若直线4ax by +=与不等式组2580240240x y x y x y -+≥⎧⎪+-≤⎨⎪++≥⎩表示的平面区域无公共点,则a b +的取值范围是 .【答案】(3,3)-. 【解析】试题分析:由已知不等式组可画出其所表示的平面区域图下图所示,并分别联立直线方程组2580240x y x y -+≥⎧⎨+-≤⎩,2580240x y x y -+≥⎧⎨++≥⎩,240240x y x y +-≤⎧⎨++≥⎩并计算得到点,,A B C 的坐标为(1,2),(4,0),(4,4)--要使直线直线4ax by +=与不等式组2580240240x y x y x y -+≥⎧⎪+-≤⎨⎪++≥⎩表示的平面区域无公共点,则24044010a b a a b +->⎧⎪-->⎨⎪-->⎩或24044010a b a a b +-<⎧⎪--<⎨⎪--<⎩,点(,)a b 所在平面区域如图所示:同理可解得点M(1,2),N(2,1)--.令直线t a b =+,即b a t =-+,当直线b a t =-+过点M 时,t 有最小值为-3;当直线t a b =+过点N 时,t 有最小值为3,所以t a b =+的取值范围是(3,3)-.故应填(3,3)-. 考点:1、一元二次不等式组所表示的平面区域;2、简单的线性规划;15.已知ABC ∆中,2,1AB AC ==,当2(0)x y t t +=>时,||xAB y AC +≥ 恒成立,则ABC ∆的面积为 ,在前述条件下,对于ABC ∆内一点P ,()PA PB PC ⋅+的最小值是 .【答案】51,8-. 【解析】试题分析:因为||xAB y AC +==uu u r uuu r ,当cos 0A =时,||)xAB y AC x y+=≥+uu u r uuu r满足题意,所以此时112ABCS AB AC∆=⨯⨯=;在直角三角形ABC中,取BC的中点D,连接PD,则2PB PC PD→→→+=,即()2PA PB PC PA PD→→→→→⋅+=⋅,当,,A P D 三点共线时,0PA PD→→⋅<,又此时12AD BC==2522228PA PDPA PD PA PD→→→→→→⎛⎫+⎪⎪⋅=-≥-⨯=-⎪⎪⎝⎭,即有最小值为58-,故应填51,8-.考点:1、平面向量的数量积的应用;2、基本不等式的应用;三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分14分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且sin sin cos,,sin sin cosB C BA A A成等差数列(1)求角A的值;(2)若5a b c=+=,求ABC∆的面积.【答案】(1)060A=;(2.【解析】试题分析:(1)根据已知可得等式sin sin cos2sin sin cosC B BA A A⨯=+,然后结合sin()sinA B C+=可求出cos A的值,进而可得其角的大小;(2)应用余弦定理即可计算出bc的值,然后结合三角形的面积公式1sin2ABCS bc A∆=即可求出其大小.试题解析:(Ⅰ)由已知sin sin cos2sin sin cosC B BA A A⨯=+,2sin sin cos cos sin sin()2sinsin sin cos sin cos2sin cosC B A B A A B CA A A A A A A++===,1cos2A=,060A=.(Ⅱ)22222102cos()353a b c bc A b c bc bc==+-=+-=-,所以5bc=,所以1sin2ABCS bc A∆==考点:1、三角函数的恒等变换;2、余弦定理;3、正弦定理;17.(本小题满分15分)如图(1)所示,直角梯形ABCD 中,90BCD ∠= ,//AD BC ,6AD =,3DC BC ==.过B 作BE AD ⊥于E ,P 是线段DE 上的一个动点.将ABE ∆沿BE 向上折起,使平面AEB ⊥平面BCDE .连结PA ,PC ,AC (如图(2)).(Ⅰ)取线段AC 的中点Q ,问:是否存在点P ,使得//PQ 平面AEB ?若存在,求出PD 的长;不存在,说明理由; (Ⅱ)当23EP ED =时,求平面AEB 和平面APC 所成的锐二面角的余弦值.【答案】(Ⅰ)当P 为DE 的中点时,满足//PQ 平面AEB ;(Ⅱ)面AEB 和平面APC 所成的锐二面角的余 【解析】试题分析:(Ⅰ)首先作出辅助线——取AB 的中点M ,连结EM ,QM .在三角形ABC 中,由Q 、M 为AC 、 AB 的中点,于是可得//MQ BC ,且12MQ BC =,再由//PE BC ,且12PE BC =,可得四边形PEMQ 为平行 四边形,进而得出//ME PQ ,即可说明//PQ 平面AEB ;(Ⅱ)建立适当的空间直角坐标系如下图所示,根 据已知分别写出各点的坐标,然后分别求出平面AEB 和平面APC 的法向量1n 和2n ,再由公式 121212cos ,⋅=⋅n n n n n n 即可计算出其二面角的余弦值.试题解析:(Ⅰ)存在.当P 为DE 的中点时,满足//PQ 平面AEB .取AB 的中点M ,连结EM ,QM . 由Q 为AC 的中点,得//MQ BC ,且12MQ BC =,又//PE BC , 且12PE BC =,所以//PE MQ ,=PE MQ , 所以四边形PEMQ 为平行四边形,故//ME PQ .又PQ ⊄平面AEB ,ME ⊂平面AEB ,所以//PQ 平面AEB .ADCE PMQA BE CDADCBEP QP•从而存在点P ,使得//PQ 平面AEB ,此时3=2PD . (Ⅱ)由平面AEB ⊥平面BCDE ,交线为BE ,且AE BE ⊥,所以AE ⊥平面BCDE ,又BE DE ⊥,以E 为原点,分别以,,EB ED EA 为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),则(0,0,0)E ,(3,0,0)B ,(0,0,3)A ,(0,2,0)P ,(3,3,0)C .(3,1,0)PC = ,(0,2,3)PA =- .平面AEB 的一个法向量为1(0,1,0)=n ,设平面APC 的法向量为2(,,)x y z =n ,由220,0,PC PA ⎧⋅=⎪⎨⋅=⎪⎩ n n 得30,230.x y y z +=⎧⎨-+=⎩ 取3y =,得2(1,3,2)=-n,所以12cos ,==n n ,即面AEB 和平面APC考点:1、直线与平面平行的判定定理;2、空间向量法解空间立体几何问题;18.(本小题满分15分)已知二次函数2()(,,)f x ax bx c a b c R =++∈满足条件:①当x R ∈时,(4)(2)f x f x -=-,且()f x x ≥; ②当(0,2)x ∈时,21()2x f x +⎛⎫≤ ⎪⎝⎭; ③()f x 在R 上的最小值为0(1)求()f x 的解析式;(2)求最大的m(m>1),使得存在t R ∈,只要[1,]x m ∈,就有()f x t x +≤.【答案】(1)21()(1)4f x x =+;(2)m 的最大值为9. 【解析】试题分析:(1)根据已知条件①可得其对称轴为1x =-,根据已知条件③知其开口向上,即0a >,于是可设函数2()(1)f x a x =+,再由①结合②知(1)1f ≥、211(1)12f +⎛⎫≤= ⎪⎝⎭可得(1)1f =,进而求出a 的值, 即可得出所求结果;(2)将问题“存在t R ∈,只要[1,]x m ∈,就有()f x t x +≤”转化为“在区间[1,]m 上 函数()y f x t =+的图像在直线y x =的下方,且m 最大”,进而可得1和m 是关于x 的方程 21(1)4x t x ++=,于是可求出参数t 的值,进而求出参数m 的值即可. 试题解析:(1)由(4)(2)f x f x -=-知,对称轴为1x =-,由③知开口向上,即0a >,故设2()(1)f x a x =+,由①知(1)1f ≥;由②知211(1)12f +⎛⎫≤= ⎪⎝⎭,故(1)1f =,代入得,14a =,所以21()(1)4f x x =+. (2)由题意,在区间[1,]m 上函数()y f x t =+的图像在直线y x =的下方,且m 最大,故1和m 是关于x 的方程21(1)4x t x ++= ……①的两个根,令x=1代入①,得t=0或t=-4,当t=0时,方程①的解为121x x ==(这与m>1矛盾).当t=-4时,方程①的解为121,9x x ==,所以m=9. 又当t=-4时,对任意[1,9]x ∈,恒有21(1)(9)0(41)4x x x x --≤⇔-+=,即(4)f x x -≤,所以m 的最大值为9. 考点:1、二次函数的解析式;2、函数与方程;19.(本小题满分15分)已知,A B 是椭圆2222:1(0)x y C a b a b+=>>的左、右顶点,(2,0)B ,过椭圆C 的右焦点F 的直线交椭圆于点,M N ,交直线4x =于点P ,且直线,,PA PF PB 的斜率成等差数列,R 和Q 是椭圆上的两动点,R 和Q 的横坐标之和为2,RQ (不垂直x 轴)的中垂线交x 轴与于T 点.(1)求椭圆C 的方程;(2)求MNT ∆的面积的最大值【答案】(1)22143x y +=;(2)max 98S =. 【解析】试题分析:(1)设出点P 的坐标为(4,)t ,然后根据已知直线,,PA PF PB 的斜率成等差数列可列方程,进 而求出参数c 的值,从而求出椭圆的方程即可;(2)首先设出直线MN 的方程为1x my =+,然后联立直线与椭圆的方程并消去x 整理得到关于y 的一元二次方程,再求出判别式以及12||y y -的值,于是由点差法 可得出点T 的坐标,再由MNT ∆的面积计算公式可得MNT S ∆的表达式,进而求出其最大值即可得出结果. 试题解析:(1)设(4,)P t ,直线,,PA PF PB 的斜率成等差数列⇔2462t t t c =+-1c ⇒=, 所以椭圆方程22143x y +=. (2)设直线MN 方程为1x my =+,联立22143x y +=得22(34)690m y my ++-=,2144(1)0m ∆=+>,12||y y -=,由点差法可知RQ 中垂线与x 轴相交于点1T 04⎛⎫ ⎪⎝⎭,,1219||||22MNT S TF y y ∆=⋅-=,当0m =时,max 98S =. 考点:1、椭圆的标准方程;2、直线与椭圆的相交问题;20.(本小题满分15分)在数列{}n a 中,12(0),3t a t t a =>≤,n S 为{}n a 的前n 项和,且21143(2)n n n n S S S S n -+=++≥ (1)比较2014a 与20153a 大小;(2)令211n n n n b a a a ++=-+,数列{}n b 的前n 项和为n T ,求证:24n t T <. 【答案】(1)201420153a a >;(2)112,33a t a t a =≤= ,且由(1)知2130n n n a a S +-=≥ 113n n a a +∴≤∴12111113n n n n n n a a a a a t a a a ---⎛⎫=⋅⋅⋅⋅≤ ⎪⎝⎭ ,211n n n n b a a a ++=-+是关于1n a +的二次函数,当12n n a a +=时取到最大值,但13n n a a +≤,222339n nn n n a a a b a ⎛⎫⎛⎫∴≤-+= ⎪ ⎪⎝⎭⎝⎭ 2221212222999n n n a a a T b b b ∴=+++≤+++ 22212111199994n t t -⎛⎫≤++++= ⎪⎝⎭ . 【解析】试题分析:(1)根据1(2)n n n a S S n -=-≥及21143(2)n n n n S S S S n -+=++≥可得到等式213n n n a a S +-=, 并令2014n =,即可得出等式22014201520143a a S -=,进而可得20142015,3a a 的大小关系;(2)由(1)知不等式2130n n n a a S +-=≥,即113n n a a +≤,进而可得不等式12111113n n n n n n a a a a a t a a a ---⎛⎫=⋅⋅⋅⋅≤ ⎪⎝⎭,再结合已知211n n n n b a a a ++=-+是关于1n a +的二次函数,根据二次函数的图像可得出其最大值为 233n n n n a a b a ⎛⎫⎛⎫≤-+ ⎪ ⎪⎝⎭⎝⎭,进而由数列的前n 项和可得所证结论即可. 试题解析:(1)由21143(2)n n n n S S S S n -+=++≥得213n n n a a S +-=,当2014n =时,有220142015201430a a S -=≥,所以201420153a a >.(2)112,33a t a t a =≤= ,且由(1)知2130n n n a a S +-=≥ 113n n a a +∴≤∴12111113n n n n n n a a a a a t a a a ---⎛⎫=⋅⋅⋅⋅≤ ⎪⎝⎭211n n n n b a a a ++=-+是关于1n a +的二次函数,当12n n a a +=时取到最大值 但13n n a a +≤,222339n nn n n a a a b a ⎛⎫⎛⎫∴≤-+= ⎪ ⎪⎝⎭⎝⎭ 2221212222999n n n a a a T b b b ∴=+++≤+++ 22212111199994n t t -⎛⎫≤++++= ⎪⎝⎭ . 考点:1、数列的前n 项和;2、放缩法;。
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年高考浙江卷数学(理)试题一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞ 【答案】B【解析】根据补集的运算得.故选B .2. 已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则 A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C3. 在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │= A .22B .4C .32D .6 【答案】C【解析】如图∆PQR 为线性区域,区域内的点在直线20x y +-=上的投影构成了线段''R Q ,即AB ,而''=R Q PQ ,由3400-+=⎧⎨+=⎩x y x y 得(1,1)-Q ,由20=⎧⎨+=⎩x x y 得(2,2)-R ,22(12)(12)32==--++=AB QR .故选C .4. 命题“*x n ∀∈∃∈,R N ,使得2n x >”的定义形式是A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 5. 设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关【答案】B6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N , 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列 D .2{}nd 是等差数列 【答案】A【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .7. 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A【解析】由题意知2211-=+m n ,即222=+m n ,2221222221111()(1)(1)-+=⋅=-+m n e e m n m n,代入222=+m n ,得212,()1>>m n e e .故选A .8. 已知实数a ,b ,cA .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100 【答案】D二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【解析】1109M M x x +=⇒=10. 已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________. 【答案】2 1【解析】22cos sin 22sin(2)14x x x π+=++,所以2, 1.A b == 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 12. 已知a >b >1.若log a b +log b a =52,a b =b a ,则a = ,b = . 【答案】4 2【解析】设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= . 【答案】1 12114. 如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD的体积的最大值是 .【答案】12【解析】ABC ∆中,因为2,120AB BC ABC ==∠=o , 所以30BAD BCA ∠==o .由余弦定理可得2222cos AC AB BC AB BC B =+-⋅ 2222222cos12012=+-⨯⨯=o , 所以23AC =设AD x =,则023t <<23DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅o 234x x =-+.故2234BD x x =-+在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得2222222(234)3cos 2PD PB BD x x x BPD PD PB +-+--+∠===⋅,所以30BPD ∠=o .EDCBA P过P 作直线BD 的垂线,垂足为O .设PO d =则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠, 2112342sin 3022x x d x -+=⋅o ,解得2234d x x =-+.而BCD ∆的面积111sin (23)2sin 30(23)222S CD BC BCD x x =⋅∠=-⋅=-o . 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.故四面体PBCD 的体积211111sin (23)33332234BcD BcD BcD V S h S d S d x x x θ∆∆∆=⨯=≤⋅=⨯-⋅-+ 21(23)6234x x x x -=-+.设22234(3)1t x x x =-+=-+,因为023x ≤≤,所以12t ≤≤.则2|3|1x t -=-.(2323x <≤2|331x x t ==- 故231x t -此时,221(31)[23(31)]t t V +--+-=21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=.综上,四面体PBCD 的体积的最大值为12. 15. 已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤6 ,则a ·b 的最大值是 . 【答案】12【解析】221|(a b)||a ||b |6|a b |6|a ||b |2a b 6a b 2e e e +⋅≤⋅+⋅≤⇒+≤⇒++⋅≤⇒⋅≤r r r r r r r r r r r r r r r ,即最大值为12三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16. (本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B. (I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【试题分析】(I )由正弦定理及两角和的正弦公式可得()sin sin B =A-B ,再判断A-B 的取值范围,进而可证2A =B ;(II )先由三角形的面积公式及二倍角公式可得sinC cos =B ,再利用三角形的内角和可得角A 的大小.(II )由24a S =得21sin C 24a ab =,故有1sin sin C sin 2sin cos 2B =B =B B ,因sin 0B ≠,得sinC cos =B .又B ,()C 0,π∈,所以C 2π=±B .当C 2πB +=时,2πA =; 当C 2π-B =时,4πA =.综上,2πA =或4πA =.17. (本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠o ,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF ⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.【试题分析】(I )先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(II )方法一:先找二面角D F B-A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B-A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B-A -的平面角的余弦值.(II )方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B-A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得313FQ =.在Rt QF ∆B 中,313FQ =,F 3B =,得3cos QF ∠B =. 所以,二面角D F B-A -的平面角的余弦值为34.18. (本小题15分)已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax +4a −2},其中min{p ,q }=,>p p q q p q.≤⎧⎨⎩,,(I )求使得等式F (x )=x 2−2ax +4a −2成立的x 的取值范围; (II )(i )求F (x )的最小值m (a ); (ii )求F (x )在区间[0,6]上的最大值M (a ).【试题分析】(I )分别对1x ≤和1x >两种情况讨论()F x ,进而可得使得等式()2F 242x x ax a =-+-成立的x 的取值范围;(II )(i )先求函数()21f x x =-,()2242g x x ax a =-+-的最小值,再根据()F x 的定义可得()F x 的最小值()m a ;(ii )分别对02x ≤≤和26x ≤≤两种情况讨论()F x 的最大值,进而可得()F x 在区间[]0,6上的最大值()a M .(II )(i )设函数()21f x x =-,()2242g x x ax a =-+-,则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,32242,22a m a a a a ⎧≤≤+⎪=⎨-+->⎪⎩(ii )当02x ≤≤时,()()()(){}()F max 0,22F 2x f x f f ≤≤==,当26x ≤≤时,()()()(){}{}()(){}F max 2,6max 2,348max F 2,F 6x g x g g a ≤≤=-=.所以,()348,342,4a a a a -≤<⎧M =⎨≥⎩.19. (本题满分15分)如图,设椭圆2221xya+=(a>1).(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【试题解析】(I)设直线1y kx=+被椭圆截得的线段为AP,由22211y kxxya=+⎧⎪⎨+=⎪⎩得()2222120a k x a kx++=,故1x=,222221a kxa k=-+.因此22212222111a kk x ka kAP=+-=++(II)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足QAP=A.记直线AP,QA的斜率分别为1k,2k,且1k,2k>,12k k≠.20.(本题满分15分)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ; (II )若32n n a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N . 【试题分析】(I )先利用三角形不等式得1112n n a a +-≤,变形为111222n n n n n a a ++-≤,再用累加法可得1122n n a a -<,进而可证()1122n n a a -≥-;(II )由(I )可得11222n m n m n a a --<,进而可得3224mn n a ⎛⎫<+⋅ ⎪⎝⎭,再利用m 的任意性可证2n a ≤.(II )任取n *∈N ,由(I )知,对于任意m n >, 1121112122222222n m n n n n m m n m n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故 11222m n n n m a a -⎛⎫<+⋅ ⎪⎝⎭11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn ⎛⎫=+⋅ ⎪⎝⎭. 从而对于任意m n >,均有。
2016届浙江省温州中学高三上学期第三次月考数学试题(理科)一、选择题(本大题共8题,每小题5分,共40分)1、设集合{}{}212,log 2A x x B x x =-≤=<,则A B ⋃=( ) A. []1,3-B. [)1,4-C. (]0,3D. (),4-∞2、设{}n a 是等差数列,m n s t N *∈、、、,则“m n s t +=+”是“t s n m a a a a +=+”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、为了得到函数x x y 3cos -3sin =的图象,可将函数x y 3sin 2=的图象( )A.左平移4π个单位 B. 向右平移4π个单位 C. 向左平移12π个单位 D. 向右平移12π个单位4、已知t a 2=,t b ln =,t c sin =,则使得c b a >>成立的t 可能取值为( ) A 、0.5 B 、1 C 、2πD 、35、已知两条异面直线,以及空间给定一点,则( ) A. 必存在经过该点的平面与两异面直线都垂直B. 必存在经过该点的平面与两异面直线都平行C. 必存在经过该点的直线与两异面直线都垂直D. 必存在经过该点的直线与两异面直线都相交6、某公司招收男职员x 名,女职员y 名,x y 和须满足约束条件247,239,211.x y x y x -≥-⎧⎪+≥⎨⎪≤⎩则1010z x y =+的最大值是 ( )A.80B.85C.90D.1007、定义域为[-2,1]的函数)(x f 满足)(2)1(x f x f =+,且当]1,0[∈x 时,x x x f -=2)(。
若方程m x f =)(有4个根,则m 的取值范围为( ) A.]81,41[--B.),(81-41- C.]161,81[-- D.),(161-81- 8、已知椭圆C :12222=+by a x ,21F F ,是椭圆的两个焦点,A 为椭圆的右顶点,B 为椭圆的上顶点。
2016年温州市高三第一次适应性测试数学(理科)试题参考答案 2016.1一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.二、填空题:本大题共7小题,前4题每题6分,后3题每题4分,共36分.9.14;1. 10.43π;5. 11.12;36. 12.21;6463. 13.),4[+∞. 14.43-. 15.),2(+∞.三、解答题 16.(本题15分)解:(Ⅰ)由已知得ααcos 3sin 22=,则02cos 3cos 22=-+αα…………3分所以21cos =α或2cos -=α(舍)……………………………………5分 又因为πα<<0 所以3πα= ……………………………7分(Ⅱ)由(Ⅰ)得)3cos(cos 4)(π-=x x x f)sin 23cos 21(cos 4x x x +=……………………………9分x x x cos sin 32cos 22+= x x 2sin 32cos 1++=)62sin(21π++=x ……………………………………11分由40π≤≤x 得32626πππ≤+≤x …………………………………………12分所以 当0=x 时,)(x f 取得最小值2)0(=f当6π=x 时,)(x f 取得最大值3)6(=πf ……………………………14分所以函数)(x f 在]4,0[π上的值域为]3,2[…………………………………15分17.(本题15分)(Ⅰ)如图,由题意知⊥DE 平面ABC 所以 DE AB ⊥,又DF AB ⊥所以 ⊥AB 平面DEF ,………………3分又⊂AB 平面ABD 所以平面⊥ABD 平面DEF…………………6分 (Ⅱ)解法一:由DC DB DA ==知EC EB EA == 所以 E 是ABC ∆的外心又BC AB ⊥ 所以E 为AC 的中点 …………………………………9分 过E 作DF EH ⊥于H ,则由(Ⅰ)知⊥EH 平面DAB所以EBH ∠即为BE 与平面DAB 所成的角…………………………………12分由4=AC ,60=∠BAC 得2=DE ,3=EF所以 7=DF ,732=EH 所以721sin ==∠BE EH EBH …………………………………15分 解法二:如图建系,则)0,2,0(-A ,)2,0,0(D ,)0,1,3(-B所以)2,2,0(--=,)2,1,3(--= ……………………………………9分 设平面DAB 的法向量为),,(z y x =由⎪⎩⎪⎨⎧=⋅=⋅00得⎩⎨⎧=--=--023022z y x z y ,取)1,1,33(-= ………………12分 设与的夹角为θ 所以7213722||||cos ==⋅=n EB θ 所以BE 与平面DAB 所成的角的正弦值为721………………………………15分18.(本题15分)解:(Ⅰ)解:(1)⎪⎩⎪⎨⎧<+-≥-=0,0,)(22x tx x x tx x x f , ……………………………………1分当0>t 时,)(x f 的单调增区间为)0,(),,2[-∞+∞t,单调减区间为]2,0[t ……3分 当0=t 时,)(x f 的单调增区间为),(+∞-∞ ……………………………………4分当0<t 时,)(x f 的单调增区间为),0[+∞,]2,(t -∞,单调减区间为)0,2[t ……6分 (Ⅱ)由(Ⅰ)知0>t 时)(x f 在)0,(-∞上递增,在)2,0(t 上递减,在),2(+∞t上递增从而 当22≥t即4≥t 时,0)0()(==f t M ,………………………7分}24,1min{)}2(),1(min{)(t t f f t m ---=-=………………………8分所以,当54≤≤t 时,t t m --=1)(,故51)()(≥+=-t t m t M ………9分 当5>t 时,t t m 24)(-=,故642)()(>-=-t t m t M ………………10分 当t t≤<22即42<≤t 时,0)0()(==f t M t t t t f f t m --=---=-=1}4,1min{)}2(),1(min{)(2……………11分所以,31)()(≥+=-t t m t M ………………………………………12分当20<<t 时,t f t M 24)2()(-==………………………………………13分t t t t f f t m --=---=-=1}4,1min{)}2(),1(min{)(2所以,35)()(>-=-t t m t M ………………………………………………14分综上所述,当2=t 时,)()(t m t M -取得最小值为3.………………………………15分19.(本题15分)解:(Ⅰ)由题意得: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+====+222222221)26(1c b a a c e b a ,解得:⎪⎩⎪⎨⎧==2422b a 故椭圆C 的方程为:12422=+y x ……………………………………5分(Ⅱ)解法一:如图所示,设直线OM ,ON 的方程为OM y k x =,ON y k x =联立方程组22142OM y k xx y =⎧⎪⎨+=⎪⎩,解得M ,同理可得(N ,……………………………………7分作'MM x ⊥轴, 'NN x ⊥轴,','M N 是垂足,OMN S ∆=''''OMM ONN MM N N S S S ∆∆--梯形1[()()]2M N M N M M N N y y x x x y x y =+--+ 1()2M N N M x y x y =-12=+=……………………………………9分已知OMN S ∆2=,化简可得21-=ON OM k k .……………………………………11分设(,)P P P x y ,则2242P P x y -=,又已知AP OM k k =,所以要证BP ON k k =,只要证明12AP BP k k =-……………………13分而2212242P P P AP BP P P P y y y k k x x x ===-+--所以可得ON BP //…………………………………………………………………………15分 (,M N 在y 轴同侧同理可得)解法二:设直线AP 的方程为)2(+=x k y OM ,代入4222=+y x得0488)12(2222=-+++OM OM OM k x k x k ,它的两个根为2-和P x可得124222+-=OM OMp k k x 1242+=OM OM P k k y ……………………………………7分 从而OM OM OMOM OMBPk k k k k k 2121242124222-=-+-+=所以只需证ON OM k k =-21 即21-=ON OM k k …………………………………9分 设),(11y x M ,),(22y x N ,若直线MN 的斜率不存在,易得221±==x x 从而可得21-=ONOM k k …………………………………10分若直线MN 的斜率存在,设直线MN 的方程为m kx y +=, 代入12422=+y x 得0424)12(222=-+++m kmx x k则124221+-=+k km x x ,12422221+-=k m x x ,0)24(822>-+=∆m k ………11分 212)24(8||21||||2122221=+-+⋅=-⋅=∆k m k m x x m S OMN化得0)12()24(22224=+++-k m k m ,得1222+=k m ………………………13分214)12(2412424)(222222************-=-+-+=--=+++==⋅k k k m k m x x m x x km x x k x x y y k k ONOM ………………………………………………15分20.(本题14分) 解:(Ⅰ)由已知,)12,(+n n n n a a a P ,从而有)12,(1++n nn n a a a Q 因为n Q 在xy 31=上,所以有13112+=+n n n a a a 解得 nn n a a a 611+=+ ………………………………2分 由01>a 及n n n a a a 611+=+,知0>n a , 下证:n n a a 21221<<- 解法一:因为n n n a a a 6)21(2211--=-+,所以211-+n a 与21-n a 异号注意到0211<-a ,知02112<--n a ,0212>-n a 即n n a a 21221<<- …………………………………7分 解法二:由n n n a a a 611+=+ 可得 nn n a a a 6)21(2211--=-+ , n n n a a a 6)31(3311+=++ 所以有312132312111+-⋅-=+-++n n n n a a a a ,即⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+-3121n n a a 是以32-为公比的等比数列; 设312111+-=a a t , 则1)32(3121--⋅=+-n n n t a a 解得11)32(1)32(321---⋅--⋅+=n n n t t a , …………………………………5分 从而有tt t t a n n n n --=-⋅--⋅+=----111)23(65)32(1)32(32121由2101<<a 可得023<<-t所以0)49(6521112<-=---tt a n n , 221516032()2n n ta t --=>--所以n n a a 21221<<- …………………………………7分(Ⅱ)因为)1(617616161611212121212122212++=+++=+=------+n n n n n n nn n a a a a a a a a a所以 )1(6)13)(21(2)1(6171212121212121212++--=-++=--------+n n n n n n n n a a a a a a a a 因为21102n a -<<,所以1212-+>n n a a 所以有13212221a a a a n n n >>>>>-- 从而可知1a a n ≥ …………………………………9分 故 1||6||6161||1111112+-=-=+-+=-+++++++n n n n n n n n n n n n n a a a a a a a a a a a a a 1||11+-≤+a a a n n||431n n a a -=+ …………………………………11分 所以112121211)43(31||)43(||)43(||43||-----+⋅=-≤≤-≤-≤-n n n n n n n n a a a a a a a a…………………………………12分 所以 ||||||||1342312n n a a a a a a a a -++-+-+-+])43()43(431[3112-++++≤n 431)43(131--⨯=n ])43(1[34n-=34< …………………………………14分命题教师:胡浩鑫 戴海林 叶思迁 叶建华 林世明 叶事一。
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( ) A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞ 【答案】B考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.2. 已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C 【解析】试题分析:由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.3. 在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │=( ) A .B .4C .D .6 【答案】C 【解析】考点:线性规划.【思路点睛】先根据不等式组画出可行域,再根据题目中的定义确定AB 的值.画不等式组所表示的平面区域时要注意通过特殊点验证,防止出现错误.4. 命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D 【解析】试题分析:∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 考点:全称命题与特称命题的否定.【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.5. 设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B考点:1、降幂公式;2、三角函数的最小正周期.【思路点睛】先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列【答案】A 【解析】试题分析:n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .考点:等差数列的定义.【思路点睛】先求出1n n n +∆A B B 的高,再求出1n n n +∆A B B 和112n n n +++∆A B B 的面积n S 和1n S +,进而根据等差数列的定义可得1n n S S +-为定值,即可得{}n S 是等差数列.7. 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A考点:1、椭圆的简单几何性质;2、双曲线的简单几何性质.【易错点睛】计算椭圆1C 的焦点时,要注意222c a b =-;计算双曲线2C 的焦点时,要注意222c a b =+.否则很容易出现错误.8. 已知实数a ,b ,c ( )A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100 【答案】D 【解析】试题分析:举反例排除法:A.令10,110===-a b c ,排除此选项,B.令10,100,0==-=a b c ,排除此选项,C.令100,100,0==-=a b c ,排除此选项,故选D . 考点:不等式的性质.【方法点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时能够对四个选项逐个利用赋值的方式进行排除,确认成立的不等式.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9 【解析】试题分析:1109M M x x +=⇒= 考点:抛物线的定义.【思路点睛】当题目中出现抛物线上的点到焦点的距离时,一般会想到转化为抛物线上的点到准线的距离.解答本题时转化为抛物线上的点到准线的距离,进而可得点到y 轴的距离.10. 已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________.1考点:1、降幂公式;2、辅助角公式.【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos 2sin 21x x ++,进而对照()sin x b ωϕA ++可得A 和b .11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32 【解析】试题分析:几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=考点:1、三视图;2、空间几何体的表面积与体积.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.12. 已知a >b >1.若log a b +log b a =52,a b =b a ,则a = ,b = . 【答案】4 2考点:1、指数运算;2、对数运算. 【易错点睛】在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误.13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= . 【答案】1 121 【解析】试题分析:1221124,211,3a a a a a a +==+⇒==,再由111121,21(2)23(2)n n n n n n n n n a S a S n a a a a a n +-++=+=+≥⇒-=⇒=≥,又213a a =,所以515133(1),S 121.13n n a a n +-=≥==- 考点:1、等比数列的定义;2、等比数列的前n 项和.【易错点睛】由121n n a S +=+转化为13n n a a +=的过程中,一定要检验当1n =时是否满足13n n a a +=,否则很容易出现错误.14. 如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅, 所以30BPD ∠=.EDCBAP过P 作直线BD 的垂线,垂足为O .设PO d = 则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠,12sin 302d x =⋅,解得d .而BCD ∆的面积111sin )2sin 30)222S CD BC BCD x x =⋅∠=⋅=.(2x ≤|x x ==故x =此时,16V t=21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=. 综上,四面体PBCD 的体积的最大值为12. 考点:1、空间几何体的体积;2、用导数研究函数的最值.【思路点睛】先根据已知条件求出四面体的体积,再对x 的取值范围讨论,用导数研究函数的单调性,进而可得四面体的体积的最大值.15. 已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤,则a ·b 的最大值是 . 【答案】12考点:平面向量的数量积.【易错点睛】在6a b +≤两边同时平方,转化为2226a b a b ++⋅≤的过程中,很容易三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16. (本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B.(I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【答案】(I )证明见解析;(II )2π或4π. 试题分析:(I )先由正弦定理可得sin sin C 2sin cos B +=A B ,进而由两角和的正弦公式可得()sin sin B =A-B ,再判断A -B 的取值范围,进而可证2A =B ;(II )先由三角形的面积公式可得21sin C 24a ab =,进而由二倍角公式可得sin C cos =B ,再利用三角形的内角和可得角A 的大小.试题解析:(I )由正弦定理得sin sin C 2sin cos B +=A B ,故()2sin cos sin sin sin sin cos cos sin A B =B+A+B =B+A B+A B , 于是()sin sin B =A-B .又A ,()0,πB∈,故0π<A -B <,所以()πB =-A-B 或B =A -B ,因此πA =(舍去)或2A =B ,所以,2A =B .考点:1、正弦定理;2、两角和的正弦公式;3、三角形的面积公式;4、二倍角的正弦公式. 【思路点睛】(I )用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A ,B 的式子,根据角的范围可证2A =B ;(II )先由三角形的面积公式及二倍角公式可得含有B ,C 的式子,再利用三角形的内角和可得角A 的大小.17. (本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF ⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.【答案】(I )证明见解析;(II 【解析】试题分析:(I )先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(II )方法一:先找二面角D F B -A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B -A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B -A -的平面角的余弦值.(II )方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B -A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得FQ 13=.在Rt QF ∆B 中,FQ =,F B =cos QF ∠B =.所以,二面角D F B -A - 方法二:如图,延长D A ,BE ,CF 相交于一点K ,则C ∆B K 为等边三角形.取C B 的中点O ,则C KO ⊥B ,又平面CF B E ⊥平面C AB ,所以,KO ⊥平面C AB . 以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向,建立空间直角坐标系xyz O .由题意得()1,0,0B ,()C 1,0,0-,(K ,()1,3,0A --,12⎛E ⎝⎭,1F 2⎛- ⎝⎭. 因此, ()C 0,3,0A =,(AK =,()2,3,0AB =.考点:1、线面垂直;2、二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.18. (本小题15分)已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax +4a −2},其中min{p ,q }=,>p p q q p q.≤⎧⎨⎩,, (I )求使得等式F (x )=x 2−2ax +4a −2成立的x 的取值范围;(II )(i )求F (x )的最小值m (a );(ii )求F (x )在区间[0,6]上的最大值M (a ).【答案】(I )[]2,2a ;(II )(i )()20,3242,2a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩(ii )()348,342,4a a a a -≤<⎧M =⎨≥⎩.(II )(i )设函数()21f x x =-,()2242g x x ax a =-+-,则 ()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即 ()20,3242,2a m a a a a ⎧≤≤⎪=⎨-+->+⎪⎩ (ii )当02x ≤≤时,()()()(){}()F max 0,22F 2x f x f f ≤≤==,当26x ≤≤时,()()()(){}{}()(){}F max 2,6max 2,348max F 2,F 6x g x g g a ≤≤=-=.所以,()348,342,4a a a a -≤<⎧M =⎨≥⎩.考点:1、函数的单调性与最值;2、分段函数;3、不等式.【思路点睛】(I )根据x 的取值范围化简()F x ,即可得使得等式()2F 242x x ax a =-+-成立的x 的取值范围;(II )(i )先求函数()f x 和()g x 的最小值,再根据()F x 的定义可得()m a ;(ii )根据x 的取值范围求出()F x 的最大值,进而可得()a M .19. (本题满分15分)如图,设椭圆2221x y a+=(a >1). (I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【答案】(I )22221a k a k +(II )02e <≤.(II )假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足Q AP =A .记直线AP ,Q A 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠.由(I )知,1AP =,2Q A =, 故12=, 所以()()22222222121212120k k k k a a k k ⎡⎤-+++-=⎣⎦. 由于12k k ≠,1k ,20k >得()2222221212120k k a a k k +++-=,因此()222212111112a a k k ⎛⎫⎛⎫++=+- ⎪⎪⎝⎭⎝⎭, ①因为①式关于1k ,2k 的方程有解的充要条件是()22121a a +->,所以a >因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为12a <≤,由c e a a==得,所求离心率的取值范围为02e <≤. 考点:1、弦长;2、圆与椭圆的位置关系;3、椭圆的离心率.【思路点睛】(I )先联立1y kx =+和2221x y a+=,可得交点的横坐标,再利用弦长公式可得直线1y kx =+被椭圆截得的线段长;(II )利用对称性及已知条件可得任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点时,a 的取值范围,进而可得椭圆离心率的取值范围.20.(本题满分15分)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ; (II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N . 【答案】(I )证明见解析;(II )证明见解析.(II )任取n *∈N ,由(I )知,对于任意m n >, 1121112122222222nm n n n n m m nm n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m n n n m a a -⎛⎫<+⋅ ⎪⎝⎭ 11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 3224m n ⎛⎫=+⋅ ⎪⎝⎭. 从而对于任意m n >,均有3224mn n a ⎛⎫<+⋅ ⎪⎝⎭.考点:1、数列;2、累加法;3、证明不等式.【思路点睛】(I )先利用三角形不等式及变形得111222n n n n n a a ++-≤,再用累加法可得1122n n a a -<,进而可证()1122n n a a -≥-;(II )由(I )的结论及已知条件可得3224mn n a ⎛⎫<+⋅ ⎪⎝⎭,再利用m 的任意性可证2n a ≤.。
数学试卷 第1页(共18页)数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别书写在试卷和答题纸规定的位置上.2. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上书写作答,在本试卷上作答,一律无效.选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{13}P x x =∈R ≤≤,2{4}Q x x =∈R ≥,则()P Q =R ð( )A . []2,3B . (]2,3-C . [)1,2D . (][),21,-∞-+∞2.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m α∥,n β⊥,则 ( ) A . m l ∥ B . m n ∥ C . n l ⊥D . m n ⊥2.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域20,0,340,x x y x y -⎧⎪+⎨⎪-+⎩≤≥≥中的点在直线20x y +-=上的投影构成的线段记为AB ,则||AB =( )A .B . 4C .D . 6 4.命题“*x n ∀∈∃∈R N ,,使得2n x >”的定义形式是( )A . *x n ∀∈∃∈R N ,,使得2n x <B . *x n ∀∈∀∈R N ,,使得2n x <C . *x n ∃∈∃∈R N ,,使得2n x <D . *x n ∃∈∀∈R N ,,使得2n x <5.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A . 与b 有关,且与c 有关B . 与b 有关,但与c 无关C . 与b 无关,且与c 无关D . 与b 无关,但与c 有关6.如图,点列{},{}n n A B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,2n n A A +≠,*n ∈N ,112||||n n n n B B B B +++=,2n n B B +≠,*n ∈N (P Q ≠表示点P 与Q 不重合),若||n n n d A B =,n S 为1n n n A B B +△的面积,则( )A . {}n S 是等差数列B . 2{}nS 是等差数列 C . {}n d 是等差数列 D . 2{}nd 是等差数列 7. 已知椭圆()212211x m C y m +=>:与双曲线()2222–10n x C y n=>:的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则 ( )A . 121m n e e >>且B . 121m n e e ><且C . 121m n e e <>且D . 121m n e e <<且 8. 已知实数a ,b ,c .( )A . 若22|||1|a b c a b c +++++≤,则222100a b c ++< B . 若22|||1|–a b c a b c ++++≤,则222100a b c ++< C . 若22|||–1|a b c a b c ++++≤,则222100a b c ++< D . 若22|||–1|a b c a b c ++++≤,则222100a b c ++<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9. 若抛物线24y x =上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 10. 已知()()2sin 2cos i 20s n x x A x b A ωϕ+=++>,则A =______,b =________. 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.12. 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a = ,b = . 13. 设数列{}n a 的前n 项和为n S 若21421n n S a S n +==+∈*N ,,,则1a = ,5S = .14. 如图,在ABC △中,2120AB BC ABC ==∠=︒,.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA PB BA ==,,则四面体PBCD 的体积的最大值是 .15. 已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是 .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2cos b c a B +=. (Ⅰ)证明:2A B =; (Ⅱ)若ABC △的面积2=4aS ,求角A 的大小.17.(本小题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,BE =1EF FC ==,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求二面角B AD F --的平面角的余弦值.18.(本小题满分15分) 已知3a ≥,函数2{||min 2}1242F x x x ax a =--+-(),,其中,min{}.,p p q q p q p q ⎨⎩=⎧≤,>,(Ⅰ)求使得等式2242F x x ax a =-+-()成立的x 的取值范围; (Ⅱ)(i )求()F x 的最小值()m a ;(ii )求()F x 在区间[0,6]上的最大值()M a .19.(本小题满分15分)如图,设椭圆22211x y a a+=(>).(Ⅰ)求直线1y kx =+被椭圆截得的线段长(用a ,k 表示);(Ⅱ)若任意以点0,1A ()为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.20.(本小题满分15分)设数列{}n a 满足1||12n n a a +-≤,n ∈*Ν. (Ⅰ)证明:112(||2)n n a a --≥,n ∈*Ν;(Ⅱ)若3||2nn a ≤(),n ∈*Ν,证明:||2n a ≤,n ∈*Ν.数学试卷 第7页(共18页)数学试卷 第8页(共18页)数学试卷 第9页(共18页)2016年普通高等学校招生全国统一考试(浙江卷)理科数学答案解析选择题部分一、选择题 1.【答案】B【解析】2{|}{Q x x 4x |x 2x 2}=∈≥=∈≥≤R R 或﹣,即有R {|Q x 2}x 2-=∈<<R ð, 则R P(Q)23](,=-ð【提示】运用二次不等式的解法,求得集合Q ,求得Q 的补集,再由两集合的并集运算,即可得到所求 【考点】并集及其运算 2.【答案】C【解析】∵互相垂直的平面α,β交于直线l ,直线m ,n 满足m α∥,∴m β∥,m ⊆β或m ⊥β,l ⊆β,∵n ⊥β,∴n l ⊥.故选:C .【提示】由已知条件推导出l ⊆β,再由n ⊥β,推导出n l ⊥ 【考点】直线与平面垂直的判定【提示】做出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可 【考点】简单线性规划的应用. 4.【答案】D【解析】因为全称命题的否定是特称命题,所以,命题“x ∀∈R ,n ∃∈*N ,使得2n x ≥”的否定形式是:x ∃∈R ,n ∀∈*N ,使得2n x <.故选:D .【提示】直接利用全称命题的否定是特称命题写出结果即可 【考点】命题的否定. 5.【答案】B【解析】∵设函数2f (x)sin x bsinx c =++,∴c 是图像的纵坐标增加了c ,横坐标不变,故周期与c 无关,当b 0=时,211f (x)sin x bsinx c cos2x c 22=++=-++的最小正周期为2πT π2==, 当b 0≠时,11f x cos2x bsinx c 22=-+++(), ∵y cos2x =的最小正周期为π,y bsinx =的最小正周期为2π, ∴f (x)的最小正周期为2π,故f (x)的最小正周期与b 有关,故选:B. 【提示】根据三角函数的图像和性质即可判断 【考点】三角函数的周期性及其求法. 6.【答案】A【解析】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,n d h ,可得即为n 2n 1n 1n S S S S +++-=-,则数列n {S }为等差数列.故选:A .【提示】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,由于a ,b 不确定,判断C ,D 不正确,设n n n 1A B B +△的底边n n 1B B +上的高为n h ,运用三角形相似知识,n n 2n 1h h 2h +++=,由n n 1S d h 2=,可得n n 2n 1S S 2S +++=,进而得到数列n {S }为等差数列 【考点】数列与函数的综合. 212c c c e m n mn==, 221222c c e m n m (m 1)(n )-⎛⎫=⎛⎫= ⎪⎝⎭ ⎪⎝⎭数学试卷 第10页(共18页) 数学试卷 第11页(共18页)数学试卷 第12页(共18页)∴12e e 1>,故选:A .【提示】根据椭圆和双曲线有相同的焦点,得到222c m 1n 1-==+,即22m n 2-=,进行判断,能得m n >,求出两个离心率,先平方进行化简进行判断即可 【考点】椭圆的简单性质,双曲线的简单性质. 8.【答案】D 【解析】A .设a b 10==,c 110=-,则22a b c ||a c 1||b 0+++++=≤,222a b c 100++>;B .设a 10=,b 100=-,c 0=,则22a b c ||a b c 0|1|++++-=≤,222a b c 100++>;C .设a 100=,b 100=-,c 0=,则22a b c a b c 0|||1|+++-=≤+,222a b c 100++>;故选:D .【提示】本题可根据选项特点对a ,b ,c 设定特定值,采用排除法解答 【考点】命题的真假判断与应用.非选择题部分二、填空题 9.【答案】9【解析】解:抛物线的准线x 1=-,∵点M 到焦点的距离为10,∴点M 到准线x 1=-的距离为10,∴点M 到y 轴的距离为9,故答案为:9【提示】根据抛物线的性质得出M 到准线x 1=-的距离为10,故到y 轴的距离为9 【考点】抛物线的简单性质. 【提示】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案 【考点】两角和与差的正弦函数. 11.【答案】7232【解析】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为222(246)72cm ⨯-=,其体积为34232⨯=,故答案为:72,32【提示】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,代入体积公式和面积公式计算即可. 【考点】由三视图求面积、体积 12.【答案】4 【提示】设b t log a =并由条件求出t 的范围,代入a b log b log a 2+=化简后求出t 的值,得到a 与b 的关系式代入b a a b =化简后列出方程,求出a 、b 的值. 【考点】对数的运算性质. 13.【答案】1 121【解析】由n 1=时,11a S =,可得211a 2S 12a 1=+=+,又2S 4=,即12a a 4+=,即有13a 14+=,解得1a 1=;由n 1n 1n a S S ++-=,可得n 1n S 3S 1+=+,由2S 4=,可得3S 34113=⨯+=,4S 313140=⨯+=,5S 3401121=⨯+= 故答案为:1,121.【提示】运用n 1=时,11a S =,代入条件,结合2S 4=,解方程可得首项;再由n 1>时,n 1n 1n a S S ++-=,结合条件,计算即可得到所求和.【考点】数列的概念及简单表示法. 14.【答案】1【解析】如图,M 是AC 的中点.①当AD t AM 3=<=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AE ,h t22211t 13(3t)(23t)1326(3t)1(3t)---=-+-+②当AD t AM 3=>=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AH ,11AD BM BD AH 22=,∴11t 1(t 22=22211t 13(3t)V (23t)1326(3t)1(3t)--=-=-+-+213(36(3t)---[)11,2+∈214m 6m-,∴数学试卷 第13页(共18页)数学试卷 第14页(共18页) 数学试卷 第15页(共18页)【提示】由题意,ABD PBD △≌△,可以理解为PBD △是由△ABD 绕着BD 旋转得到的,对于每段固定的AD ,底面积BCD 为定值,要使得体积最大,PBD △必定垂直于平面ABC ,此时高最大,体积也最大. 【考点】棱柱、棱锥、棱台的体积.15.【答案】12【解析】∵(a b)e a e b e a e b e 6+=+≤+≤,∴(a b)e a b 6+=+≤,平方得:22a b 2a b 6++≤,即22122a b 6++≤,则1a b 2≤,故a b 的最大值是12,故答案为:12.【提示】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论 【考点】平面向量数量积的运算. 三、解答题【考点】余弦定理,正弦定理.【提示】(Ⅰ)先证明BF AC ⊥,再证明BF CK ⊥,进而得到BF ⊥平面ACFD . (Ⅱ)先找二面角B AD F --的平面角,再在Rt BQF △中计算,即可得出; 【考点】二面角的平面角及求法,空间中直线与直线之间的位置关系. 18.【答案】解:(Ⅰ)由于a 3≥,故当x 1≤时,数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)19.【答案】解:(Ⅰ)设直线y kx 1=+被椭圆截得的线段为AP ,由222y kx 1x y 1a=+⎧⎪⎨+=⎪⎩,得2222(1a k )x 2a kx 0++=,221k +.轴左侧的椭圆上 【考点】椭圆的简单性质;圆与圆锥曲线的综合.m mn n nn 1m 113322222224-⎡⎤⎫⎛⎫⎛⎫≤+=+⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎭⎣⎦.,均有mn n 3a 224⎛⎫<+ ⎪⎝⎭.由m 的任意性得n a 2≤①否则,数0m >03n 042n 33244⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭综上,对于任意n ∈*Ν,均有n a (Ⅱ)利用(Ⅰ)的结论得出n m n m n 1a a 1222--<,进而得出n n 3a 224⎛⎫<+ ⎪⎝⎭,利用m 的任意性可证n a 2≤ 【考点】数列与不等式的综合。
浙江省温州市十校联合体2016届高三数学上学期期初联考试题 理(含解析)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{|1U x x =≤-或}0x ≥,{}|02A x x =≤≤,{}2|1B x x =>,则集合()U AC B 等于( )A.{}|01x x x ><-或 B.{}|12x x <≤ C.{}|01x x ≤≤ D.{}|02x x ≤≤ 【答案】C . 【解析】试题分析:由题意知,{}2|1{|1B x x x x =>=>或1}x <-,所以{11}U C B x x =-≤≤,所以集合(){x 01}U A C B x =≤≤I ,故应选C . 考点:1、集合间的相互关系;2.一个几何体的正视图和侧视图都是面积为1的正方形,则这个几何体的俯视图一定不是( )A B C D【答案】B . 【解析】考点:1、三视图;3.设实数列{}n a 和{}n b 分别是等差数列与等比数列,且114a b ==,441a b ==,则以下结论正确的是( )A.22a b > B.33a b < C.55a b > D.66a b > 【答案】A . 【解析】试题分析:设等差数列{}n a 和等比数列{}n b 的公差、公比分别为,d q ,则由114a b ==,441a b ==得,31131a d b q +==即1,d q =-=213a a d =+=,232144b b q ===,所以()3227a =,()32332416b ⎛⎫== ⎪⎝⎭,所以22a b >,故选项A 正确;3122a a d =+=,21233144b b q ==⨯=,所以33a b >,所以选项B 不正确;5140a a d =+=,41435144b b q -==⨯=,所以55a b <,所以选项C 不正确;6151a a d =+=-,52536144b b q -==⨯=,所以66a b <,所以选项D 不正确;故应选A .考点:1、等差数列;2、等比数列;4.“直线y x b =+与圆221x y +=相交”是“01b <<”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】B . 【解析】试题分析:若“直线y x b =+与圆221x y +=相交”,则圆心到直线的距离为1d =<,即b <01b <<;反过来,若01b <<,则圆心到直线的距离为1d=<<,所以直线y x b=+与圆221x y+=相交,故应选B.考点:1、直线与圆的位置关系;2、充分必要条件;5.已知点(0,2)A,抛物线2:2(0)C y px p=>的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若||||FMMN=,则p的值等于()A.18B.14C.2 D.4【答案】C.【解析】试题分析:设点M到抛物线的准线的距离为'MM,抛物线的准线与x轴的交点记为点B,则由抛物线的定义知,'MM MF=,又因为||||FMMN='||||MMMN=,即''||cos||5MMNMMMN∠==,所以'cos cosOFA NMM∠=∠=,而cospOFOFAAF∠==p=,解之得2p=,故应选C.考点:1、抛物线的简单几何性质;6.设集合{}1,2,3,,nS n=,若Z是nS的子集,把Z中的所有数的和称为Z的“容量”(规定空集的容量为0).若Z的容量为奇(偶)数,则称Z为nS的奇(偶)子集.命题①:nS的奇子集与偶子集个数相等;命题②:当3n≥时,nS的所有奇子集的容量之和与所有偶子集的容量之和相等则下列说法正确的是()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立【答案】A.【解析】试题分析:设S 为n S 的奇子集,令1,1{1,1S ST S S⋃∉⎧=⎨∈⎩,则T 是偶子集,A T →是奇子集的集到偶子集的一一对应,而且每个偶子集T ,均恰有一个奇子集,1,1{1,1T TS T T⋃∉⎧=⎨∈⎩与之对应,故n S 的奇子集与偶子集个数相等,所以①正确;对任一(1)i i n ≤≤,含i 的子集共有12n -个,用上面的对应方法可知,在1i ≠时,这12n -个子集中有一半是奇子集,在1i =时,由于3n ≥,将上边的1换成3,同样可得其中有一半是奇子集,于是在计算奇子集容量之和是2312(1)2nn n i i n n --==+∑,根据上面所说,这也是偶子集的容量之和,两者相等,所以当3n ≥时,n S 的所有奇子集的容量之和与所有偶子集的容量之和相等,即命题②正确,故应选A . 考点:1、集合的综合运用;2、分段函数的表示;7.定义区间12[,]x x 的长度为21x x - 21()x x >,函数22()1()(,0)a a x f x a R a a x+-=∈≠的定义域与值域都是[,]()m n n m >,则区间[,]m n 取最大长度时实数a 的值为( )A.3B.-3 C.1 D.3 【答案】D . 【解析】考点:1、函数的定义域;2、函数的值域;8.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将△ADE 沿AE 翻折成△SAE ,使得平面SAE ⊥平面ABCE ,则下列三个说法中正确的个数是( )①存在点E 使得直线SA ⊥平面SBC ②平面SBC 内存在直线与SA 平行 ③平面ABCE 内存在直线与平面SAE 平行 A.0 B.1 C.2 D.3 【答案】B . 【解析】试题分析:对于命题①,若直线SA ⊥平面SBC ,则直线SA 与平面SBC 均垂直,则SA ⊥BC ,又由AD ∥BC ,则SA ⊥AD ,这与SAD ∠为锐角矛盾,所以命题①不正确;对于命题②,因为平面SBC ⋂直线SA S =,故平面SBC 内的直线与SA 相交或异面,所以命题②不正确;对于命题③,取AB 的中点F ,则CF ∥AE ,由线面平行的判定定理可得CF ∥平面SAE ,所以命题③正确,故应选B .考点: 1、线面垂直的判定定理;2、线面平行的判定 ;第Ⅱ卷(共110分)(非选择题共110分)二、填空题(每题5分,满分36分,将答案填在答题纸上) 9.已知,255lg =x则x= ;已知函数x x f lg )(=,若1)(=ab f ,则=+)()(22b f a f . 【答案】100,2. 【解析】试题分析:因为lg 525x =,所以5lg log 252x ==,所以210100x ==;又因为1)(=ab f ,所以lg()1ab =,即10ab =,所以222222()()lg lg lg()2lg()2f a f b a b a b ab +=+===,故应填100,2.考点:1、对数函数;2、对数运算; 10.设函数31,1,()2,1.x x x f x x -<⎧=⎨≥⎩则2(())3f f = ;若(())1f f a =,则a 的值为 .【答案】2,. 【解析】试题分析:因为22()31133f =⨯-=,所以12(())(1)223f f f ===;若(())1f f a =,则(1)当1a <时,()31f a a =-,(1)当311a -<,即23a <时,()1f a <,所以2(())(31)3(31)19a 41f f a f a a =-=--=-=,所以25a 9=,即a 3=±a 3=不合题意应舍去,所以a =311a -≥,即23a ≥时,()1f a ≥,所以31(())(31)21a f f a f a -=-==,即13a =,应舍去;(2)当1a ≥时,()21af a =≥,所以2(())21af f a ==,所以20a =,不合题意,应舍去,故应填2,. 考点:1、分段函数;11.若函数2()cos 222x x xf x =-,则函数()f x 的最小正周期为 ;函数()f x 在区间[,0]π-上的最小值是 .【答案】2π,12--. 【解析】 试题分析:因为21cos ()cos 2222x x x x f x x -==cos )x x =+sin()42x π=+-,所以其最小正周期为221T ππ==;因为x [,0]π∈-,所以3x [,]444πππ+∈-,再结合三角函数的图像及其性质可得: min ()12f x =--,故应填2π,12--. 考点:1、三角函数的恒等变换;2、三角函数的图像及其性质;12.如图,12,F F 是双曲线的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点B 、A 两点,若2ABF ∆为等边三角形,则该双曲线的离心率为 .. 【解析】试题分析:由双曲线的定义知,21122,2,BF BF a AF AF a -=-=,又因为2ABF ∆为等边三角形,所以11AB AF BF ==,所以224BF AF a AB -==,所以124,6BF a BF a ==. 在12F BF ∆中,由余弦定理可得:22201212122cos 60F F BF BF BF BF =+-,即2220(2)(4)(6)246cos60c a a a a =+-⨯⨯,即ce a==. 考点:1、双曲线的概念;2、双曲线的简单几何性质;13.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点,设异面直线EM 与AF 所成的角为θ,则c o s θ的最大值为 .【答案】25. 【解析】试题分析:根据已知条件,AB ,AD ,AQ 三直线两两垂直,分别以这三直线为,,x y z 轴,建立如图所示空间直角坐标系,设2AB =,则(0,0,0),(1,0,0),(2,1,0)A EF ,M 在线段PQ 上,设(0,,2)(02)M y y ≤≤,所以(1,,2)EM y →=-,(2,1,0)AF →=,所以cos cos ,EM AF θ→→=<>=,函数()25g y y =--是一次函数,且为减函数,(0)20550g =-⨯-=-<,所以()f y 在[0,2]上单调递减,所以当0y =时,()f y 取得最大值25,故应填25.考点:1、空间向量在立体几何中的应用;14.若直线4ax by +=与不等式组2580240240x y x y x y -+≥⎧⎪+-≤⎨⎪++≥⎩表示的平面区域无公共点,则a b +的取值范围是 . 【答案】(3,3)-. 【解析】试题分析:由已知不等式组可画出其所表示的平面区域图下图所示,并分别联立直线方程组2580240x y x y -+≥⎧⎨+-≤⎩,2580240x y x y -+≥⎧⎨++≥⎩,240240x y x y +-≤⎧⎨++≥⎩并计算得到点,,A B C 的坐标为(1,2),(4,0),(4,4)--要使直线直线4ax by +=与不等式组2580240240x y x y x y -+≥⎧⎪+-≤⎨⎪++≥⎩表示的平面区域无公共点,则24044010a b a a b +->⎧⎪-->⎨⎪-->⎩或24044010a b a a b +-<⎧⎪--<⎨⎪--<⎩,点(,)a b 所在平面区域如图所示:同理可解得点M(1,2),N(2,1)--.令直线t a b =+,即b a t =-+,当直线b a t =-+过点M 时,t 有最小值为-3;当直线t a b =+过点N 时,t 有最小值为3,所以t a b =+的取值范围是(3,3)-.故应填(3,3)-.考点:1、一元二次不等式组所表示的平面区域;2、简单的线性规划;15.已知ABC ∆中,2,1AB AC ==,当2(0)x y t t +=>时,2||2xAB yAC t +≥恒成立,则ABC ∆的面积为 ,在前述条件下,对于ABC ∆内一点P ,()PA PB PC ⋅+的最小值是 . 【答案】51,8-. 【解析】试题分析:因为||xAB yAC +==uu u r uu u r当cos 0A =时,||)xAB y AC x y +=+uu u r uuu r 满足题意,所以此时112ABC S AB AC ∆=⨯⨯=;在直角三角形ABC 中,取BC 的中点D ,连接PD ,则2PB PC PD →→→+=,即()2PA PB PC PA PD →→→→→⋅+=⋅,当,,A P D 三点共线时,0PA PD →→⋅<,又此时12AD BC ==2522228PA PD PA PD PA PD →→→→→→⎛⎫+ ⎪⎪⋅=-≥-⨯=- ⎪⎪⎝⎭,即有最小值为58-,故应填51,8-. 考点:1、平面向量的数量积的应用;2、基本不等式的应用;三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分14分)设△ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且sin sin cos ,,sin sin cos B C BA A A成等差数列 (1)求角A的值;(2)若5a b c =+=,求ABC ∆的面积.【答案】(1)060A=;(2. 【解析】试题分析:(1)根据已知可得等式sin sin cos 2sin sin cos C B BA A A⨯=+,然后结合sin()sin A B C +=可求出cos A 的值,进而可得其角的大小;(2)应用余弦定理即可计算出bc 的值,然后结合三角形的面积公式1sin 2ABC S bc A ∆=即可求出其大小. 试题解析:(Ⅰ)由已知sin sin cos 2sin sin cos C B BA A A⨯=+, 2sin sin cos cos sin sin()2sin sin sin cos sin cos 2sin cos C B A B A A B C A A A A A A A ++===,1cos 2A =,060A =.(Ⅱ)22222102c o s ()353a b c b c A b c b c b c ==+-=+-=-,所以5bc =,所以1s i n 24ABC S bc A ∆==. 考点:1、三角函数的恒等变换;2、余弦定理;3、正弦定理; 17.(本小题满分15分)如图(1)所示,直角梯形ABCD 中,90BCD ∠=,//AD BC ,6AD =,3DC BC ==.过B 作BE AD ⊥于E ,P 是线段DE 上的一个动点.将ABE ∆沿BE 向上折起,使平面AEB ⊥平面BCDE .连结PA ,PC ,AC (如图(2)).(Ⅰ)取线段AC 的中点Q ,问:是否存在点P ,使得//PQ 平面AEB ?若存在,求出PD 的长;不存在,说明理由;(Ⅱ)当23EP ED =时,求平面AEB 和平面APC 所成的锐二面角的余弦值.【答案】(Ⅰ)当P 为DE 的中点时,满足//PQ 平面AEB ;(Ⅱ)面AEB 和平面APC 所成的 【解析】试题分析:(Ⅰ)首先作出辅助线——取AB 的中点M ,连结EM ,QM .在三角形ABC 中,由Q 、M 为AC 、A BE CDA DCBEP QP•AB 的中点,于是可得//MQ BC ,且12M Q B C =,再由//PE BC ,且12P E B C=,可得四边形PEMQ为平行四边形,进而得出//ME PQ ,即可说明//PQ 平面AEB ;(Ⅱ)建立适当的空间直角坐标系如下图所示,根据已知分别写出各点的坐标,然后分别求出平面AEB 和平面APC 的法向量1n 和2n ,再由公式 121212cos ,⋅=⋅n n n n n n 即可计算出其二面角的余弦值.试题解析:(Ⅰ)存在.当P 为DE 的中点时,满足//PQ 平面AEB .取AB 的中点M ,连结EM ,QM .由Q 为AC 的中点,得//MQ BC ,且12MQ BC =,又//PE BC ,且12PE BC =,所以//PE MQ ,=PE MQ ,所以四边形PEMQ 为平行四边形,故//ME PQ .又PQ ⊄平面AEB ,ME ⊂平面AEB ,所以//PQ 平面AEB .从而存在点P ,使得//PQ 平面AEB ,此时3=2PD .(Ⅱ)由平面AEB ⊥平面BCDE ,交线为BE ,且AE BE ⊥, 所以AE ⊥平面BCDE ,又BE DE ⊥,以E 为原点,分别以 ,,EB ED EA 为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),则(0,0,0)E ,(3,0,0)B ,(0,0,3)A ,(0,2,0)P ,(3,3,0)C . (3,1,0)PC =,(0,2,3)PA =-.ADCE PMQ平面AEB 的一个法向量为1(0,1,0)=n ,设平面APC 的法向量为2(,,)x y z =n ,由220,0,PC PA ⎧⋅=⎪⎨⋅=⎪⎩n n 得30,230.x y y z +=⎧⎨-+=⎩ 取3y =,得2(1,3,2)=-n,所以12cos ,==n n ,即面AEB 和平面APC考点:1、直线与平面平行的判定定理;2、空间向量法解空间立体几何问题; 18.(本小题满分15分)已知二次函数2()(,,)f x ax bx c a b c R =++∈满足条件:①当x R ∈时,(4)(2)f x f x -=-,且()f x x ≥;②当(0,2)x ∈时,21()2x f x +⎛⎫≤ ⎪⎝⎭;③()f x 在R 上的最小值为0 (1)求()f x 的解析式;(2)求最大的m(m>1),使得存在t R ∈,只要[1,]x m ∈,就有()f x t x +≤. 【答案】(1)21()(1)4f x x =+;(2)m 的最大值为9. 【解析】试题分析:(1)根据已知条件①可得其对称轴为1x =-,根据已知条件③知其开口向上,即0a >,于是可设函数2()(1)f x a x =+,再由①结合②知(1)1f ≥、211(1)12f +⎛⎫≤= ⎪⎝⎭可得(1)1f =,进而求出a 的值,即可得出所求结果;(2)将问题“存在t R ∈,只要[1,]x m ∈,就有()f x t x +≤”转化为“在区间[1,]m 上函数()y f x t =+的图像在直线y x =的下方,且m 最大”,进而可得1和m 是关于x 的方程21(1)4x t x ++=,于是可求出参数t 的值,进而求出参数m 的值即可. 试题解析:(1)由(4)(2)f x f x -=-知,对称轴为1x =-,由③知开口向上,即0a >,故设2()(1)f x a x =+,由①知(1)1f ≥;由②知211(1)12f +⎛⎫≤= ⎪⎝⎭,故(1)1f =,代入得,14a =,所以21()(1)4f x x =+. (2)由题意,在区间[1,]m 上函数()y f x t =+的图像在直线y x =的下方,且m 最大,故1和m 是关于x 的方程21(1)4x t x ++= ……①的两个根,令x=1代入①,得t=0或t=-4,当t=0时,方程①的解为121x x ==(这与m>1矛盾).当t=-4时,方程①的解为121,9x x ==,所以m=9. 又当t=-4时,对任意[1,9]x ∈,恒有21(1)(9)0(41)4x x x x --≤⇔-+=,即(4)f x x -≤,所以m 的最大值为9.考点:1、二次函数的解析式;2、函数与方程; 19.(本小题满分15分)已知,A B 是椭圆2222:1(0)x y C a b a b +=>>的左、右顶点,(2,0)B ,过椭圆C 的右焦点F 的直线交椭圆于点,M N ,交直线4x =于点P ,且直线,,PA PF PB 的斜率成等差数列,R 和Q 是椭圆上的两动点,R 和Q 的横坐标之和为2,RQ (不垂直x 轴)的中垂线交x 轴与于T 点.(1)求椭圆C 的方程; (2)求MNT ∆的面积的最大值【答案】(1)22143x y +=;(2)max 98S =.【解析】试题分析:(1)设出点P 的坐标为(4,)t ,然后根据已知直线,,PA PF PB 的斜率成等差数列可列方程,进而求出参数c 的值,从而求出椭圆的方程即可;(2)首先设出直线MN 的方程为1x my =+,然后联立直线与椭圆的方程并消去x 整理得到关于y 的一元二次方程,再求出判别式以及12||y y -的值,于是由点差法可得出点T 的坐标,再由MNT ∆的面积计算公式可得MNT S ∆的表达式,进而求出其最大值即可得出结果.试题解析:(1)设(4,)P t ,直线,,PA PF PB 的斜率成等差数列⇔2462t t tc =+-1c ⇒=, 所以椭圆方程22143x y +=. (2)设直线MN 方程为1x my =+,联立22143x y +=得22(34)690m y my ++-=,2144(1)0m ∆=+>,12||y y -=RQ 中垂线与x 轴相交于点1T 04⎛⎫⎪⎝⎭,,1219||||22MNT S TF y y ∆=⋅-=,当0m =时,max 98S =. 考点:1、椭圆的标准方程;2、直线与椭圆的相交问题; 20.(本小题满分15分)在数列{}n a 中,12(0),3ta t t a =>≤,n S 为{}n a 的前n 项和,且21143(2)n n n n S S S S n -+=++≥(1)比较2014a 与20153a 大小; (2)令211n n n n b aa a ++=-+,数列{}nb 的前n 项和为n T ,求证:24n t T <.【答案】(1)201420153a a >;(2)112,33a t a t a =≤=,且由(1)知2130n n n a a S +-=≥113n n a a +∴≤∴12111113n n n n n n a a a a a t a a a ---⎛⎫=⋅⋅⋅⋅≤ ⎪⎝⎭,211n n n n b a a a ++=-+是关于1n a +的二次函数,当12n n a a +=时取到最大值,但13n n a a +≤,222339n n n n n a a a b a ⎛⎫⎛⎫∴≤-+= ⎪ ⎪⎝⎭⎝⎭2221212222999n n n a a a T b b b ∴=+++≤+++22212111199994n t t -⎛⎫≤++++= ⎪⎝⎭. 【解析】试题分析:(1)根据1(2)n n n a S S n -=-≥及21143(2)n n n n S S S S n -+=++≥可得到等式213n n n a a S +-=,并令2014n =,即可得出等式22014201520143a a S -=,进而可得20142015,3a a 的大小关系;(2)由(1)知不等式2130n n n a a S +-=≥,即113n n a a +≤,进而可得不等式12111113n n n n n n a a a a a t a a a ---⎛⎫=⋅⋅⋅⋅≤ ⎪⎝⎭,再结合已知211n n n n b a a a ++=-+是关于1n a +的二次函数,根据二次函数的图像可得出其最大值为233n n n n a a b a ⎛⎫⎛⎫≤-+ ⎪ ⎪⎝⎭⎝⎭,进而由数列的前n 项和可得所证结论即可.试题解析:(1)由21143(2)n n n n S S S S n -+=++≥得213n n n a a S +-=,当2014n =时,有220142015201430a a S -=≥,所以201420153a a >.(2)112,33a t a t a =≤=,且由(1)知2130n n n a a S +-=≥ 113n n a a +∴≤∴12111113n n n n n n a a a a a t a a a ---⎛⎫=⋅⋅⋅⋅≤ ⎪⎝⎭211n n n n b a a a ++=-+是关于1n a +的二次函数,当12nn a a +=时取到最大值 但13n n a a +≤,222339n n nn n a a a b a ⎛⎫⎛⎫∴≤-+= ⎪ ⎪⎝⎭⎝⎭2221212222999n n n a a a T b b b ∴=+++≤+++22212111199994n t t -⎛⎫≤++++= ⎪⎝⎭. 考点:1、数列的前n 项和;2、放缩法;。
绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别书写在试卷和答题纸规定的位置上.2. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上书写作答,在本试卷上作答,一律无效.选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{13}P x x =∈R ≤≤,2{4}Q x x =∈R ≥,则()P Q =R( )A . []2,3B . (]2,3-C . [)1,2D . (][),21,-∞-+∞2.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m α∥,n β⊥,则 ( ) A . m l ∥ B . m n ∥ C . n l ⊥D . m n ⊥2.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域20,0,340,x x y x y -⎧⎪+⎨⎪-+⎩≤≥≥中的点在直线20x y +-=上的投影构成的线段记为AB ,则||AB =( )A . 22B . 4C . 32D . 6 4.命题“*x n ∀∈∃∈R N ,,使得2n x >”的定义形式是( )A . *x n ∀∈∃∈R N ,,使得2n x <B . *x n ∀∈∀∈R N ,,使得2n x <C . *x n ∃∈∃∈R N ,,使得2n x <D . *x n ∃∈∀∈R N ,,使得2n x <5.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A . 与b 有关,且与c 有关B . 与b 有关,但与c 无关C . 与b 无关,且与c 无关D . 与b 无关,但与c 有关6.如图,点列{},{}n n A B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,2n n A A +≠,*n ∈N ,112||||n n n n B B B B +++=,2n n B B +≠,*n ∈N (P Q ≠表示点P 与Q 不重合),若||n n n d A B =,n S 为1n n n A B B +△的面积,则( )A . {}n S 是等差数列B . 2{}nS 是等差数列 C . {}n d 是等差数列 D . 2{}nd 是等差数列 7. 已知椭圆()212211x m C y m +=>:与双曲线()2222–10n x C y n=>:的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则( )A . 121m n e e >>且B . 121m n e e ><且C . 121m n e e <>且D . 121m n e e <<且 8. 已知实数a ,b ,c .( )A . 若22|||1|a b c a b c +++++≤,则222100a b c ++<B . 若22|||1|–a b c a b c ++++≤,则222100a b c ++<C . 若22|||–1|a b c a b c ++++≤,则222100a b c ++<D . 若22|||–1|a b c a b c ++++≤,则222100a b c ++<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9. 若抛物线24y x =上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 10. 已知()()2sin 2cos i 20s n x x A x b A ωϕ+=++>,则A =______,b =________. 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.12. 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a = ,b = . 13. 设数列{}n a 的前n 项和为n S 若21421n n S a S n +==+∈*N ,,,则1a = ,5S = .14. 如图,在ABC △中,2120AB BC ABC ==∠=︒,.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA PB BA ==,,则四面体PBCD 的体积的最大值是 .15. 已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是 .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2cos b c a B +=. (Ⅰ)证明:2A B =; (Ⅱ)若ABC △的面积2=4aS ,求角A 的大小.17.(本小题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,BE =1EF FC ==,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求二面角B AD F --的平面角的余弦值.18.(本小题满分15分) 已知3a ≥,函数2{||min 2}1242F x x x ax a =--+-(),,其中,min{}.,p p q q p q p q ⎨⎩=⎧≤,>, (Ⅰ)求使得等式2242F x x ax a =-+-()成立的x 的取值范围; (Ⅱ)(i )求()F x 的最小值()m a ; (ii )求()F x 在区间[0,6]上的最大值()M a .19.(本小题满分15分)如图,设椭圆22211x y a a+=(>).(Ⅰ)求直线1y kx =+被椭圆截得的线段长(用a ,k 表示);(Ⅱ)若任意以点0,1A ()为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.20.(本小题满分15分)设数列{}n a 满足1||12n n a a +-≤,n ∈*Ν. (Ⅰ)证明:112(||2)n n a a --≥,n ∈*Ν;(Ⅱ)若3||2nn a ≤(),n ∈*Ν,证明:||2n a ≤,n ∈*Ν.2016年普通高等学校招生全国统一考试(浙江卷)理科数学答案解析选择题部分一、选择题 1.【答案】B【解析】2{|}{Q x x 4x |x 2x 2}=∈≥=∈≥≤R R 或﹣,即有R{|Q x 2}x 2-=∈<<R ,则R P(Q)23](,=-【提示】运用二次不等式的解法,求得集合Q ,求得Q 的补集,再由两集合的并集运算,即可得到所求 【考点】并集及其运算 2.【答案】C【解析】∵互相垂直的平面α,β交于直线l ,直线m ,n 满足m α∥,∴m β∥,m ⊆β或m ⊥β,l ⊆β,∵n ⊥β,∴n l ⊥.故选:C . 【提示】由已知条件推导出l ⊆β,再由n ⊥β,推导出n l ⊥ 【考点】直线与平面垂直的判定 3.【答案】C【解析】做出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线x y 20+-=上的投影构成线段R Q '',即SAB ,而R Q RQ ''=,由x 3y 44x y 0-+=⎧⎨+=⎩得x 1y 1=-⎧⎨=⎩,即Q(1,1)-,由x 2x y 0=⎧⎨+=⎩得x 2y 2=⎧⎨=-⎩,即R(2,2)﹣,则AB QR ==故选:C【提示】做出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可 【考点】简单线性规划的应用. 4.【答案】D【解析】因为全称命题的否定是特称命题,所以,命题“x ∀∈R ,n ∃∈*N ,使得2n x ≥”的否定形式是:x ∃∈R ,n ∀∈*N ,使得2n x <.故选:D .【提示】直接利用全称命题的否定是特称命题写出结果即可 【考点】命题的否定. 5.【答案】B【解析】∵设函数2f (x)sin x bsinx c =++,∴c 是图像的纵坐标增加了c ,横坐标不变,故周期与c 无关,当b 0=时,211f (x)sin x bsinx c cos2x c 22=++=-++的最小正周期为2πT π2==,当b 0≠时,11f x cos2x bsinx c 22=-+++(), ∵y cos2x =的最小正周期为π,y bsinx =的最小正周期为2π, ∴f (x)的最小正周期为2π,故f (x)的最小正周期与b 有关,故选:B. 【提示】根据三角函数的图像和性质即可判断 【考点】三角函数的周期性及其求法. 6.【答案】A【解析】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,由于a ,b 不确定,则n {d }不一定是等差数列,2n {d }不一定是等差数列,设n n n 1A B B +△的底边n n 1B B +上的高为n h ,由三角形的相似可得n n n 1n 1h OA a (n 1)bh OA a nb+++-==+,n 2n 2n 1n 1h OA a (n 1)bh OA a nb++++++==+, 两式相加可得n n 2n 1h h 2a 2b2h a nb ++++==+,即有n n 2h h 2++=,由n n 1S d h 2=,可得n n 2n 1S S 2S +++=,即为n 2n 1n 1n S S S S +++-=-,则数列n {S }为等差数列.故选:A .【提示】设锐角的顶点为O ,1|OA |a =,1|OB |b =,n n 1n 1n 2A A A |||A b |+++==,n n 1n 1n 2B B B |||B d |+++==,由于a ,b 不确定,判断C ,D 不正确,设n n n 1A B B +△的底边n n 1B B +上的高为n h ,运用三角形相似知识,n n 2n 1h h 2h +++=,由n n 1S d h 2=,可得n n 2n 1S S 2S +++=,进而得到数列n {S }为等差数列 【考点】数列与函数的综合. 7.【答案】A【解析】∵椭圆2212C y 1,(x 1m ):m +=>与双曲线2222C y 1,(x )m0:n =->的焦点重合,∴满足222c m 1n 1-==+,即22m n 20-=>,∴22m n >,则m n >,排除C ,D 则222c m 1m -=<,222c n 1n =+>,则c m <、c n >,1c e m =,2ce n=, 则212c c c e e m n mn==, 则221222222222222222222c c (e e m n m n (m 1)(n 1)m n (m n )1m m n m n n 111m n )11-+----⎛⎫==⎛⎫= ⎪⎝⎭=+=+> ⎪⎝⎭∴12e e 1>,故选:A .【提示】根据椭圆和双曲线有相同的焦点,得到222c m 1n 1-==+,即22m n 2-=,进行判断,能得m n>,求出两个离心率,先平方进行化简进行判断即可 【考点】椭圆的简单性质,双曲线的简单性质. 8.【答案】D【解析】A .设a b 10==,c 110=-,则22a b c ||a c 1||b 0+++++=≤,222a b c 100++>;B .设a 10=,b 100=-,c 0=,则22a b c ||a b c 0|1|++++-=≤,222a b c 100++>;C .设a 100=,b 100=-,c 0=,则22a b c a b c 0|||1|+++-=≤+,222a b c 100++>;故选:D .【提示】本题可根据选项特点对a ,b ,c 设定特定值,采用排除法解答 【考点】命题的真假判断与应用.非选择题部分二、填空题 9.【答案】9【解析】解:抛物线的准线x 1=-,∵点M 到焦点的距离为10,∴点M 到准线x 1=-的距离为10,∴点M 到y 轴的距离为9,故答案为:9【提示】根据抛物线的性质得出M 到准线x 1=-的距离为10,故到y 轴的距离为9 【考点】抛物线的简单性质. 10.【解析】∵22cos x sin2x 1cos2x sin2x +=++1122⎫=+++⎪⎪⎭π2x 14⎛⎫=++ ⎪⎝⎭,∴A =b 1=【提示】根据二倍角的余弦公式、两角和的正弦函数化简左边,即可得到答案 【考点】两角和与差的正弦函数. 11.【答案】72 32【解析】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,则其表面积为222(246)72cm ⨯-=,其体积为34232⨯=,故答案为:72,32【提示】由三视图可得,原几何体为由四个棱长为2cm 的小正方体所构成的,代入体积公式和面积公式计算即可. 【考点】由三视图求面积、体积 12.【答案】4 2【解析】解:设b t log a =,由a b 1>>知t 1>,代入a b 5log b log a 2+=得15t t 2+=,即22t 5t 20-+=,解得t 2=或1t 2=(舍去),所以b log a 2=,即2a b =,因为b a a b =,所以2b a b b =,则2a 2b b ==,解得b 2=,a 4=, 故答案为:4;2.【提示】设b t log a =并由条件求出t 的范围,代入a b 5log b log a 2+=化简后求出t 的值,得到a 与b 的关系式代入b a a b =化简后列出方程,求出a 、b 的值. 【考点】对数的运算性质. 13.【答案】1 121【解析】由n 1=时,11a S =,可得211a 2S 12a 1=+=+,又2S 4=,即12a a 4+=, 即有13a 14+=,解得1a 1=;由n 1n 1n a S S ++-=,可得n 1n S 3S 1+=+,由2S 4=,可得3S 34113=⨯+=,4S 313140=⨯+=,5S 3401121=⨯+= 故答案为:1,121.【提示】运用n 1=时,11a S =,代入条件,结合2S 4=,解方程可得首项;再由n 1>时,n 1n 1n a S S ++-=,结合条件,计算即可得到所求和.【考点】数列的概念及简单表示法. 14.【答案】12【解析】如图,M 是AC 的中点.①当AD t AM3=<=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AE ,DM t =,由ADE BDM △∽△,可得h 1, ∴h =,22211t 13(3t)V (23t)1326(3t)1(3t)--=-=-+-+,t ∈ ②当AD t AM 3=>=时,如图,此时高为P 到BD 的距离,也就是A 到BD 的距离,即图中AH ,DM t =,由等面积,可得11AD BM BD AH 22=,∴11t 1(t 22= ∴h =,∴22211t 13(3t)V (23t)1326(3t)1(3t)--=-=-+-+,t ∈综上所述,213(3V 6(3t)--=-,t ∈令[)m 1,2则214m V 6m-=,∴m 1=时,max 1V 2=. 故答案为:12【提示】由题意,ABD PBD △≌△,可以理解为PBD △是由△ABD 绕着BD 旋转得到的,对于每段固定的AD ,底面积BCD 为定值,要使得体积最大,PBD △必定垂直于平面ABC ,此时高最大,体积也最大. 【考点】棱柱、棱锥、棱台的体积.15.【答案】12【解析】∵(a b)e a e b e a e b e 6+=+≤+≤,∴(a b)e a b 6+=+≤,平方得:22a b 2a b 6++≤,即22122a b 6++≤,则1a b 2≤,故a b 的最大值是12,故答案为:12.【提示】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论 【考点】平面向量数量积的运算. 三、解答题16.【答案】(Ⅰ)由正弦定理得sinB sinC 2sinAcosB +=2sinAcosB sinB sin(A B)sinB sinAcosB cosAsinB =++=++,于是sinB sin(A B)=-又A,B (0,π)∈, 故0A B π<-<,所以B π(A B)=--或B A B =-, 因此A π=(舍去)或A 2B =, 所以,A 2B =(Ⅱ)由2a S 4=得21a absinC 24=,故有1sinBsinC sin2B sinBcosB 2==, 因sinB 0≠,得sinC cosB =.又B,C (0,π)∈,所以C B 2π=±.当πB C 2+=时,πA 2=;当πC B 2-=时,πA 4=.综上,πA 2=或πA 4=.【提示】(Ⅰ)利用正弦定理,结合和角的正弦公式,即可证明A 2B =(Ⅱ)若ABC △的面积2a S 4=,则21a absinC 24=,结合正弦定理、二倍角公式,即可求角A 的大小.【考点】余弦定理,正弦定理.17.【答案】解:(Ⅰ)延长AD ,BE ,CF 相交于一点K ,如图所示. 因为平面BCFE ABC ⊥平面,且AC BC ⊥, 所以,AC ⊥平面BCK , 因此,BF AC ⊥.又因为EFBC ∥,BE EF FC 1===,BC 2=, 所以BCK △为等边三角形,且F为CK 的中点, 则BF CK ⊥,所以BF ⊥平面ACFD .(Ⅱ)过点F 作FQ AK ⊥,连结BQ . 因为BF ⊥平面ACK ,所以BF AK ⊥,则AK ⊥平面BQF , 所以BQ AK ⊥.所以BQF ∠是二面角B AD F --的平面角. 在Rt ACK △中,AC 3=,CK 2=,得FQ 在Rt BQF △中,FQ =BF =,得cos BQF ∠=所以,二面角B AD F --的平面角的余弦值为4.【提示】(Ⅰ)先证明BF AC ⊥,再证明BF CK ⊥,进而得到BF ⊥平面ACFD . (Ⅱ)先找二面角B AD F --的平面角,再在Rt BQF △中计算,即可得出; 【考点】二面角的平面角及求法,空间中直线与直线之间的位置关系. 18.【答案】解:(Ⅰ)由于a 3≥,故当x 1≤时,22(x 2ax 4a 2)2x 1x 2(a 1)(2x)0-+---=+-->,当x 1>时,2(x 2ax 4a 2)2x 1(x 2)(x 2a)-+---=--.所以,使得等式2F(x)x2ax 4a 2=-+-成立的x 的取值范围为[2,2a].(Ⅱ)(ⅰ)设函数f (x)2x 1=-,2g(x)x 2ax 4a 2=-+-,则min f (x)f (x)0==,2min g(x)g(a)a 4a 2==-+-,所以,由F(x)的定义知{}m(a)min f (1),g(a)=,即20,3a 2m(a)a 4a 2,a 2⎧≤≤+⎪=⎨-+->+⎪⎩ (ⅱ)当0x 2≤≤时,{}F(x)f (x)max f (0),f (2)2F(2)≤≤==,当2x 6≤≤时,F(x)g(x)max{g(2),g(6)}max{2,348a}max{F(2),F(6)}≤≤=-=.所以,348a,3a 4M(a)2,a 4-≤<⎧=⎨≥⎩. 【提示】(Ⅰ)由a 3≥,讨论x 1≤时,x 1>,去掉绝对值,化简2x 2ax 4a 22x 1-+---,判断符号,即可得到2F(x)x 2ax 4a 2=-+-成立的x 的取值范围;(Ⅱ)(ⅰ)设f (x)2x 1=-,2g(x)x 2ax 4a 2=-+-,求得f (x)和g(x)的最小值,再由新定义,可得F(x)的最小值;(ⅱ)分别对当0x 2≤≤时,当2x 6<≤时,讨论F(x)的最大值,即可得到F(x)在[0,6]上的最大值M【考点】函数最值的应用,函数的最值及其几何意义.19.【答案】解:(Ⅰ)设直线y kx 1=+被椭圆截得的线段为AP ,由222y kx 1x y 1a=+⎧⎪⎨+=⎪⎩,得2222(1a k )x 2a kx 0++=,故1x 0=,22222a k x 1a k =-+.因此2212222a k AP x 1k 1a k =-=++.(Ⅱ)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP AQ =.记直线AP ,AQ 的斜率分别为1k ,2k ,且1k ,2k 0>,12k k ≠.由(Ⅰ)知,1AP =2AQ =12=,所以22222222121212(k k )[1k k a (2a )k k ]0-+++-=.由于12k k ≠,1k ,2k 0>得22222212121k k a (2a )k k 0+++-=,因此22221211111a (a 2)k k ⎛⎫⎛⎫++=+- ⎪⎪⎝⎭⎝⎭①因为①式关于1k ,2k 的方程有解的充要条件是:221a (a 2)1+->,所以a >因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1a 2<≤,由c e a ==得,所求离心率的取值范围为0e 2<≤【提示】(Ⅰ)联立直线y kx 1=+与椭圆方程,利用弦长公式求解即可.(Ⅱ)写出圆的方程,假设圆A 与椭圆由4个公共点,再利用对称性有解已知条件可得任意A(0,1)为圆心的圆与椭圆至多有3个公共点,a 的取值范围,进而可得椭圆的离心率的取值范围.【考点】椭圆的简单性质;圆与圆锥曲线的综合. 20.【答案】解:(Ⅰ)由n 1n a a 12+-≤得n n 11a a 12+-≤,故n n 1n n 1n a a 1222++-≤,n ∈*Ν, 所以1n1223n 1n 1n 1223n 1n 12n 1a a a a a a a a 111122222222222---⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+-≤++⋅⋅⋅+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因此n 1n 1a 2(a 2)-≥-.(Ⅱ)任取n ∈*Ν,由(Ⅰ)知,对于任意m n >,n m n n 1n 1n 2m 1m nmnn 1n 1n 2m 1m n n 1m 1n 1a a a a a a a a 1111222222222222+++-+++-+--⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+-≤++⋅⋅⋅+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故m mm n n nn n 1m n 1m a 11133a 2222222224--⎡⎤⎛⎫⎛⎫⎛⎫<+≤+=+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦.从而对于任意m n >,均有mn n 3a 224⎛⎫<+ ⎪⎝⎭.由m 的任意性得n a 2≤①否则,存在0n ∈*Ν,有0n a 2>,取正整数00n 03n 4a 2m log 2->且00m n >,则n 003n 040a 2m log 2m n n 3322a 244-⎛⎫⎛⎫<=- ⎪ ⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n ∈*Ν,均有n a 2≤ 【提示】(Ⅰ)使用三角不等式得出n 1n a a 12+-≤,变形得n n 1n n 1na a 1222++-≤,使用累加法可求得n n 11a a 12+-≤,即结论成立; (Ⅱ)利用(Ⅰ)的结论得出n m n m n 1a a 1222--<,进而得出mn n 3a 224⎛⎫<+ ⎪⎝⎭,利用m 的任意性可证n a 2≤ 【考点】数列与不等式的综合。
浙江省温州市十校联合体2016届高三数学上学期期初联考试题 文(含解析)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U =R ,集合{}012A =,,,{}234B =,,,则阴影部分所表示集合为( ▲ )A .{}2B .{}01,C .{}34,D .{}0,1,2,3,4 【答案】B . 【解析】试题分析:由题意知,阴影部分表示的为集合A 去掉A B ⋂的部分,所以其表示的为{}01,,故应选B .考点:1、集合间的相互关系;2.已知βα,角的终边均在第一象限,则“βα>”是“βαsin sin >”的( ▲ ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】D . 【解析】试题分析:当βα>时,不能推出βαsin sin >,例如:26παπ=+,3πβ=,而1sin sin(2)sin 662ππαπ=+==,sin sin 3πβ==所以sin sin αβ<;当βαs i n si n >时,不能推出βα>,例如:3πα=,26πβπ=+,此时αβ<,故应选D .考点:1、三角函数的概念;3.若三棱锥的三视图如右图所示,则该三棱锥的体积为( ▲ ) A .80 B .40 C .803 D .403【答案】D . 【解析】试题分析:由题意的三视图可知,原几何体是一个底面为直角边为5、4的直角三角形,其高为4,且顶点在底面的射影点分底面边长为3:2,所以原几何体的体积为1140(54)4323V =⨯⨯⨯⨯=,故应选D .考点:1、三视图;4.设n m ,为两条不同的直线,βα,为两个不同的平面,下列命题中为真命题的是( ▲ ) A.若//,n//m αα,则m//n B.若,m ααβ⊥⊥,则//m β C. 若βα//,m m ⊥,则βα⊥ D. 若//,m ααβ⊥,则m β⊥ 【答案】C . 【解析】考点:1、直线与平面的平行的判定定理与性质定理;2、直线与平面垂直的判定定理与性质定理; 5.函数()2sin 1xf x x =+的图象大致为( ▲ )俯视图侧视图正视图【答案】A . 【解析】试题分析:因为()2sin 1xf x x =+,所以()0()()0f f f ππ==-=,所以排除选项,C D ;当0x π<<时,sin 0x >,所以当0x π<<时,()0f x >,所以排除选项B ,故应选A .考点:1、函数的图像;6.已知ABC ∆的面积为2,E,F 是AB,AC 的中点,P 为直线EF 上任意一点,则2PB PC BC ∙+的最小值为( ▲ )A.2B.3C. 【答案】C . 【解析】试题分析:因为E,F 是AB,AC 的中点,所以EF 到BC 的距离等于点A 到BC 的距离的一半,所以2ABC PBC S S ∆∆=,而2ABC S ∆=,所以1PBC S ∆=,又1sin 2PBC S PB PC BPC ∆=⨯∠,所以2sin PB PC BPC ⨯=∠.所以2cos cos sin BPCPB PC PB PC BPC BPC→→∠⋅=⨯∠=∠.由余弦定理有:2222cos BC PB PC PB PC BPC =+-⨯∠.因为,PB PC 都是正数,所以222PB PC PB PC +≥⨯,222cos BC PB PC PB PC BPC ≥⨯-⨯∠,所以242cos cos 22cos sin BPCPB PC BC PB PC BPC PB PC PB PC BPC BPC-∠∙+≥⨯∠+⨯-⨯∠=∠uu r uu u r uu u r ,令42cos sin BPC y BPC -∠=∠,则'224cos sin BPC y BPC -∠=∠,令'0y =,则1cos 2BPC ∠=,此时函数在1(0,)2上单调递增,在1(,1)2上单调递减,所以2PB PC BC ∙+的最小值为C . 考点:1、平面向量的数量积的应用;2、解三角形;7.已知函数222(1)0()4(3)0x k a x f x x x a x ⎧+-≥=⎨-+-<⎩ () (),其中a R ∈,若对任意的非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,则k 的取值范围为( ▲ ).088A k k k ≤≥≤≤ B. C.0 0k ≤D.或8k ≥【答案】D .【解析】试题分析:由于函数222(1)0()4(3)0x k a x f x x x a x ⎧+-≥=⎨-+-<⎩ () (),则0x =时,2()(1)f x k a =-,又由对任意的非零实数1x ,存在唯一的非零实数212()x x x ≠,使得12()()f x f x =成立,所以函数必须为连续函数,即在0x =附近的左右两侧函数值相等,所以22(3)(1)a k a -=-,即2(k 1)a 690a k +-+-=有实数解,所以264(k 1)(9)0k ∆=-+-≥,解得08k k ≤≥或,故应选D .考点:1、分段函数的应用;8.如图,已知双曲线22221(0,0)x y a b a b-=>>上有一点A,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足AF BF ⊥,设ABF α∠=,且,126ππα⎡⎤∈⎢⎥⎣⎦,则该双曲线离心率e 的取值范围为( ▲ ).3,232,132,233,13A ⎡⎣⎡⎣ B. C. D.【答案】B . 【解析】试题分析:设左焦点为'F ,令'12,AF r AF r ==,则'2BF AF r ==,所以212r r a -=,因为点A 关于原点O 的对称点为B ,AF BF ⊥,所以OA OB OF c ===,所以222214r r c +=,所以22122()rr c a =-,因为2ABF AOF S S ∆∆=,所以212112sin 222r r c α=⨯,即2122sin 2rr c α=,所以222sin 2c c a α=-,所以211sin 2e α=-,因为,126ππα⎡⎤∈⎢⎥⎣⎦,所以1sin 2,22α⎡∈⎢⎣⎦,所以2211)1sin 2e α⎡⎤=∈⎣⎦-,所以1e ⎤∈⎦,故应选B .考点:1、双曲线的概念;2、双曲线的简单的基本性质;第Ⅱ卷(共110分)(非选择题共110分)二、填空题(每题5分,满分36分,将答案填在答题纸上)9.设函数31,1,()2, 1.x x x f x x -<⎧=⎨≥⎩则(1)f = ▲ ; 若()1f a =,则a 的值为 ▲ .【答案】22,3. 【解析】试题分析:由1(1)22f ==知第一空应填2;若()1f a =,则当1a <时,311a -=,即23a =;当1a ≥时,21a=,即0a =,不合题意,故应填23a =. 考点:1、分段函数; 10.已知,255lg =x则x= ▲ ;设 m 52ba ==,且2b1a 1=+,则m= ▲ .【答案】【解析】试题分析:因为lg 525x =,所以5lg log 252x ==,所以210100x ==;因为 m 52ba==,所以21log log 2m a m ==,51log log 5m b m ==,又因为2b1a 1=+,所以log 2log 52m m +=,即210m =,所以m =故应填考点:1、对数函数;2、对数运算;11.设圆C :22()(21)1x k y k -+-+=,则圆C 的圆心轨迹方程为 ▲ ,若0k =时,则直线:310l x y +-=截圆C 所得的弦长= ▲ .【答案】210x y --=【解析】试题分析:设圆心的坐标为(,)C x y ,则,21x k y k ==-,消去k 可得21y x =-,即为所求的圆C 的圆心轨迹方程;若0k =时,则圆心到直线的距离为5d ==,故应填210x y --=,5. 考点:1、直线与圆的位置关系;12.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{}n a 中,11=a ,12=a …)(12*++∈+=N n a a a n n n 则=7a ▲ ;若2017a m =,则数列{}n a 的前2015项和是 ▲ (用m 表示). 【答案】13,1m -. 【解析】考点:1、数列的求和;13.若实数y x ,满足不等式组330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,,,则2||z x y =+的取值范围是 ▲ .【答案】[]1,11-. 【解析】试题分析:首先根据题意的二元一次不等式组可画出其所表示的平面区域如下图所示:当0x ≥时,2z x y =+即目标函数为2y x z =-+,根据图形可知,在点C 处取得最大值且为max 26111z =⨯-=,在点(0,1)-处取得最小值且为min 2011z =⨯-=-,所以此时2||z x y =+的取值范围是[]1,11-;当0x <时,2z x y =-+即目标函数为2y x z =+,所以在点B 处取得最大值且为max 2(2)13z =-⨯--=,在点(0,1)-处取得最小值且为min 2011z =⨯-=-,所以此时2||z x y =+的取值范围是[]1,3-,故应填[]1,11-.考点:1、二元一次不等式组所表示的平面区域;2、简单的线性规划问题;14.如图,水平地面ABC 与墙面BCD 垂直,E,F 两点在线段BC 上,且满足4EF =,某人在地面ABC 上移动,为了保证观察效果,要求他到E,F 两点的距离和恰好为6,把人的位置记为P ,点R 在线段EF 上,满足RF=1,点Q 在墙面上,且QR BC ⊥,2QR =,由点P 观察点Q 的仰角为θ,当PE 垂直面DBC 时,则tan θ= ▲ .【解析】试题分析: 由题意知,6PE PF +=(1),在直角三角形PEF 中,由勾股定理可知,222PE EF PF +=,即2216PE PF +=(2),联立(1)(2)可得53PE =,所以在直角三角形PER 中,由勾股定理可知,222PE ER PR +=,所以3PR =,于是在直角三角形PRQ中,tan QR PR θ===考点:1、空间直线与平面的位置关系;2、空间的角; 15.已知,x y 为正数,且13310x y x y+++=,则3x y +的最大值为 ▲ . 【答案】8. 【解析】试题分析:因为13310x y x y +++=,所以13310()x y x y+=-+,所以()()213310()3x y x y x y ⎡⎤+=-++⎢⎥⎣⎦,即()()23103103y x x y x y x y ⎛⎫+=+--+⎪⎝⎭,令3t x y =+,则231010y x t t x y ⎛⎫+=-+- ⎪⎝⎭,而2y x x y +≥,所以210160t t -+≤,即28t ≤≤,故应填8. 考点:1、基本不等式的应用;2、一元二次不等式的解法;三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分14分)已知(2sin ,sin cos )m x x x =-,(3cos ,sin cos )n x x x =+,记函数()f x m n =⋅. (1)求函数()f x 的最大以及取最大值时x 的取值集合;(2)设ABC ∆的角,,A B C 所对的边分别为,,a b c,若()2f C =,c =ABC ∆面积的最大值.【答案】(1)max 2y =,,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)ABC ∆面积的的最大值为4. 【解析】试题分析:(1)运用向量的数量积的定义可求出函数()f x 的表达式,然后根据三角函数的图像及其性质可得出其最大值,并求出此时x 满足的取值集合即可;(2)由已知条件知角C 的大小,再由余弦定理以及基本不等式即可得出ABC ∆面积的的最大值即可. 试题解析:(1)由题意,得22()23sin cos sin cos f xm n x x x x =⋅=+-1cos 21cos 222cos 222x xx x x -+=+-=- 2sin(2)6x π=-max 2y ∴=,当()f x 取最大值时,即sin(2)16x π-=,此时22()62x k k Z πππ-=+∈,解得()3x k k Z ππ=+∈ ,所以x 的取值集合为,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. (2)因()2f C =,由(1)得sin(2)16C π-=,又0C π<<,即112666C πππ-<-<, 所以262C ππ-=,解得3C π=,在ABC ∆中,由余弦定理2222cos c a b ab C =+-,得223a b ab ab =+-≥,即3ab ≤,所以1sin 2ABC S ab C ∆==≤所以ABC ∆面. 考点:1、平面向量的数量积;2、余弦定理;3、基本不等式; 17.(本题满分15分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 【答案】(Ⅰ)321)=2n+1n a n =+-(;n S =2n +2n .(Ⅱ)n T =n4(n+1).【解析】试题分析:(Ⅰ)设出等差数列{}n a 的公差为d ,然后根据已知即可列出方程组112721026a d a d +=⎧⎨+=⎩,进而求 出首项与公差,于是可得其通项公式和前n 项和即可;(Ⅱ)首先根据(Ⅰ)可得数列{}n b 的通项公式,再由裂项相消法即可得出数列{}n b 的前n 项和n T 的表达式,进而可得出结果. 试题解析:(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==,所以321)n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n . (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅, 所以n T =111111(1-+++-)4223n n+1⋅-=11(1-)=4n+1⋅n 4(n+1),即数列{}n b 的前n 项和n T =n4(n+1).考点:1、等差数列;2、等差数列的前n 项和;18.(本题满分15分)如图,在三棱锥P ABC -中,△PAB 和△CAB 都是以AB 为斜边的等腰直角三角形, 若22AB PC =D 是PC 的中点. (1)证明:AB ⊥PC ;(2)求AD 与平面ABC 所成角的正弦值.【答案】(1)取AB 中点E ,连接PE,EC,由于,PAB CAB ∆∆为等腰直角三角形,则CE AB ⊥,PE AB ⊥, 则AB ⊥平面PEC ,所以PC AB ⊥. (2).1421sin ==∠AD DH DAH 【解析】试题分析:(1)首先作出辅助线,即取AB 中点E ,连接PE,EC,然后根据,PAB CAB ∆∆为等腰直角三角形可知CE AB ⊥,PE AB ⊥, 由直线与平面垂直的判定定理知AB ⊥平面PEC ,进而可得出所证的结果;(2)首先作出辅助线取CE 中点O,再取OC 中点F ,连接PO,DF,AF ,根据几何体可计算出,,AB PE CE 的长度,进而判断出,PO CE ⊥于是可得DAF ∠即为所求角,再根据直线与平面的位置关系分别求出:PO ,DH ,AD ,进而求出所求角的正弦值即可.试题解析:(1)取AB 中点E ,连接PE,EC,由于,PAB CAB ∆∆为等腰直角三角形,则CE AB ⊥,PE AB ⊥, 则AB ⊥平面PEC ,所以PC AB ⊥.(2)取CE 中点O,再取OC 中点F ,连接PO,DF,AF ,由于,PAB CAB ∆∆为等腰直角三角形,又AB PE CE ===,又2PC =,PEC ∴∆为正三角形,,CE PO ⊥∴则⊥PO 平面ABC ,,//DF PO ,ABC DF 面⊥∴ 所以DAF ∠为所求角. 于是可得:PO =,86=DH . 又在PAC ∆中可求,414=AD .1421sin ==∠AD DH DAH 考点:1、直线与平面垂直的判定定理;2、直线与平面所成的角的求法;19.(本题满分15分)已知抛物线C:22(0)x py p =>的焦点为F ,直线220x y -+= 交抛物线C 于A 、B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)若直线AB 过焦点F ,求AF BF ∙的值;(2)是否存在实数p ,使ABQ ∆是以Q 为直角顶点的直角三角形?若存在,求出p 的值;若不存在,说明理由.【答案】(1)80;(2)14p =. 【解析】试题分析:(1)由抛物线的方程可知其焦点F 的坐标,然后联立直线与抛物线的方程并消去y可得方程 016162=--x x ,再由韦达定理可知1212,x x x x +,即可求出所求的答案;(2)假设存在这样的实数p ,使ABQ ∆是以Q 为直角顶点的直角三角形,然后联立抛物线的方程与直线的方程可得方程 0442=--p px x ,由韦达定理知1212,x x x x +,进而可求出点Q 的坐标,再由0=⋅QB QA 即可得出关于p 一元二次方程,进而求解之即可得出所求的结果.试题解析:(1)∵ ()0,2F ,4p =, ∴ 抛物线方程为y x 82=,与直线22y x =+联立消去y 得: 016162=--x x ,设),(),,(2211y x B y x A ,则16,162121-==+x x x x ,∴ =++=++=)42)(42()2)(2(||||2121x x y y BF AF 80;(2)假设存在,由抛物线py x 22=与直线22y x =+联立消去y 得:0442=--p px x设),(),,(2211y x B y x A ,则p x x p x x 4,42121-==+,可得),2,2(p p Q 由0=⋅QB QA 得:0)2)(2()2)(2(2121=--+--p y p y p x p x ,即0)22)(222()2)(2(2121=-+-++--p x p x p x p x ,∴ 0488))(64(522121=+-++-+p p x x p x x ,代入得01342=-+p p ,)(141舍或-==p p . 考点:1、抛物线的标准方程;2、直线与抛物线的综合问题;20.(本题满分15分)已知函数2()1,()||f x x g x x a =-=-.(1)当1a =时,求()()()F x f x g x =-的零点;(2)若方程|()|()f x g x =有三个不同的实数解,求a 的值;(3)求()()()G x f x g x =+在[2,2]-上的最小值()h a .【答案】(1)()F x 的零点为1,2-;(2)54a =±或1a =±;(3)251,()4211()1,()2251,()42a a h a a a a a ⎧-+≥⎪⎪⎪=--<<⎨⎪⎪--≤-⎪⎩. 【解析】试题分析:(1)由已知可求出函数()F x 的解析式,然后令()0F x =并分两种情况进行讨论:当1x ≥时和当1x <时,分别即可求出()F x 的零点;(2)将方程|()|()f x g x =转化为22(1)(1)0x x a x x a +---+-=,进一步转化为要求方程210x x a +--=和210x x a -+-=满足下列情形之一:(Ⅰ)一个有等根,另一个有两不等根,且三根不等(Ⅱ)两方程均有两不等根且由一根相同;最后并检验即可得出所求的结果;(3)分两种情况对其进行讨论:当12a ≤-时和当12a ≥时,并分别判断其在区间上的增减性,进而分别求出其对应情况下的最值即可得出所求的结果.试题解析:(1)当1a =时,222,1,()1|1|2, 1.x x x F x x x x x x ⎧- ≥⎪=---=⎨+- <⎪⎩,令()0F x =得,当1x ≥时,20x x -=,1x =(0x =舍去)当1x <时,220x x +-=,2x =-(1x =舍去)所以当1a =时,()F x 的零点为1,2-.(2)方程|()|()f x g x =,即2|1|||x x a -=-,变形得22(1)(1)0x x a x x a +---+-=,从而欲使原方程有三个不同的解,即要求方程210x x a +--= (1)与210x x a -+-= (2)满足下列情形之一:(Ⅰ)一个有等根,另一个有两不等根,且三根不等(Ⅱ)方程(1)、(2)均有两不等根且由一根相同;对情形(I ):若方程(1)有等根,则14(1)0a ∆=++= 解得 54a =-代入方程(2)检验符合; 若方程(2)有等根,则14(1)0a ∆=--=解得54a =代入方程(1)检验符合; 对情形(Ⅱ):设0x 是公共根,则22000011x x a x x a +--=-+-,解得0x a =代入(1)得1a =±,1a =代入|()|()f x g x =检验得三个解为-2、0、1符合1a =-代入|()|()f x g x =检验得三个解为2、0、-1符合故|()|()f x g x =有三个不同的解的值为54a =±或1a =±. (3) 因为2()()()1||G x f x g x x x a =+=-+-=221()1()x x a x a x x a x a ⎧+--≥⎨-+-<⎩, 当12a ≤-时,()G x 在1[2,]2--上递减,在1[,2]2-上递增, 故()G x 在[2,2]-上最小值为min 15()()24G x G a =-=--; 当12a ≥时2()1G x x x a =--+,在1[2,]2-上递减,在1[,2]2上递增, 故()G x 在[2,2]-上最小值为min 15()()24G x G a ==-+,当1122a -<<时,()G x 在[2,]a -上递减,当[,2]x a ∈时递增,故此时()G x 在[-2,2]上的最小值为2min ()()1G x G a a ==-.综上所述: 251,()4211()1,()2251,()42a a h a a a a a ⎧-+≥⎪⎪⎪=--<<⎨⎪⎪--≤-⎪⎩. 考点:1、函数与方程;2、一元二次方程的解法;2、分段函数的最值的求法;。
注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、考号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.参考公式:球的表面积公式24S R π=,其中R 表示球的半径. 球的体积公式343V R π=,其中R 表示球的半径. 柱体的体积公式V Sh =,其中S 表示柱体的底面积,h 表示柱体的高. 锥体的体积公式13V Sh =,其中S 表示锥体的底面积,h 表示锥体的高.台体的体积公式121()3V h S S =++,其中12,S S 分别表示台体的上、下底面积,h 表示台体的高. 第I 卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集{}1,2,3,4,5,6,7,8U = ,集合}5,3,2{=A ,集合{}1,3,4,6,7B =, 则集合B C A U =( )A .}3{B .{}2,5C .}5,3,2{D .}8,5,3,2{【答案】B【解析】试题分析:由题首先求出集合B 的补集,然后求与集合A 的交集即可. {}{}2,5,8,2,5U U C B A C B =∴=,故选B.考点:集合的运算2.直线1:(1)10l a x y -+-=错误!未找到引用源。
和2:320l x ay ++=错误!未找到引用源。
垂直,则实数a 的值为( )A .12B .32C .14D .34【答案】D【解析】试题分析:由题根据集合垂直的有关性质计算即可.由题()33110,4a a a ⨯-+⨯=∴=,故选D. 考点:直线的位置关系3.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为 ( ) A .1B .2C .3D .4【答案】B【解析】 试题分析:由题根据抛物线准线与圆相切得到准线到圆心到抛物线准线距离大于半径从而得到p. ∵圆()22316x y -+=与抛物线()220y px p =>的准线相切, 抛物线的准线为34222p p x p =-∴+=∴=,,. 故选B. 考点:抛物线的性质 4.设2:<x p ,1log :2<x q ,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】试题分析:由题p:x<2,q:0<x<2,所以p 是q 的必要不充分条件.考点:充分条件、必要条件5.一个棱锥的三视图如图所示,则该棱锥的体积是( )A .4B .8C .34D .38【答案】C114222323P ABC V -∴=⨯⨯⨯⨯=三棱锥.考点:三视图6.等差数列}{n a 的前n 项和为n S ,其中*N n ∈,则下列命题错误的是( )A .若0>n a ,则n S 0>B .若n S 0>,则0>n aC .若0>n a ,则}{n S 是单调递增数列D .若}{n S 是单调递增数列,则0>n a【答案】D【解析】试题分析:由题根据等差数列有关性质选项A,B,C 显然正确,对于选项D 当数列为-1,1,3,5,…及首项为负值的单调递增数列时数列的通项不一定大于0,所以选D.考点:数列与函数关系7.若实数,x y 满足⎪⎩⎪⎨⎧≥≤-+≤-0040x y x y x ,则|34||28|x y x y +-+++的最小值是( )A .11B .12C .16D .18【答案】A【解析】试题分析:由题所给可行域如图所示,目标函数可化为z 1=-2x+y+12,z 2=4x+3y+4,显然z 在坐标原点取得最小值12,z 在A (1,1)处取得最小值11,所以所求目标函数最小值为11.考点:简单的线性规划8.已知()()222,12log 1,1x x f x x x ⎧+≤⎪=⎨⎪->⎩,则方程f[f(x)]=2实数根的个数是( ) A .5 B .6C .7D .8【答案】C【解析】试题分析:如图作出函数图像如图所示,因为f[f(x)]=2,所以对应的f(x)值为1,在1到2之间,或5,易知f(x)值为1对应的x 值有2个,在1到2之间的x 值有3个,f(x)=5的根有2个,过所求函数实数根一共有7个,故选C.考点:分段函数的通项与性质,函数的零点问题第Ⅱ卷(非选择题 共110分)二、填空题:(本大题共7小题, 前4题每空3分,后3题每空4分, 共36分。
9.双曲线221412x y -=的离心率为 ,焦点到渐近线的距离为 【答案】(1)2,(2)【解析】试题分析:由题2,4,2,a b c e ==∴=∴=渐近线方程为,y =焦点坐标为()4,0±, 所以焦点到对应渐近线的距离d =.考点:双曲线的几何性质10.函数()22cos )2sin cos f x x x x x =-+的最小正周期为 ,单调递增区间为 【答案】(1)π,(2)()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【解析】 试题分析:由题()2sin 22sin 23f x x x x π⎛⎫=+=- ⎪⎝⎭,所以函数的最小正周期为,π 单调递增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 考点:三角函数的通项与性质11.已知函数()()61477x a x x f x a x -⎧-+≤=⎨>⎩;(1)当21=a 时,()x f 的值域为______, (2)若f(x)是(-∞, ﹢∞)上的减函数,则实数a 的取值范围是_____.【答案】(1)()0,+∞ ,(2)121<≤a 【解析】 试题分析:(1)由题可得()614,721,72x x x f x x -⎧-+≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩ ,已知函数在定义域上为减函数,所以函数值域为()0,+∞;(2)由题函数在(-∞, ﹢∞)为减函数,所以()10101,12714a a a a a ⎧-<⎪<<∴≤<⎨⎪-+≥⎩.考点:分段函数的图像与性质12.三棱锥A BCD -中,BCD ∆是边长为1的正三角形,点A 在平面BCD 上的射影为BCD ∆的中心,,E F 分别是,BC BA 的中点, EF FD ⊥,则三棱锥A BCD -的体积为 ,直线AB 与平面BCD 所成角的正弦值为【解析】试题分析:由题连接CO ,延长CO 交BD 于H,连接AH,,易知该三棱锥为正三棱锥,,BD AC,||,,,CO BD EF AC EF FD FD AC AC ⊥∴⊥⊥∴⊥∴⊥ 平面ABD,所以2223,=AC ADCD AC AD DE OD AO+=∴=====13A BCD V -∴== 易知AB 与平面BCD 所成角为,tan sin ABO ABO ABO ∠∴∠==∴∠=考点:柱锥台体的体积、线面角、射影定理13.△ABC 中,|AB|=8,|AC|=6,M 为BC 的中点,O 为△ABC 的外心,则AO AM ⋅=【答案】25【解析】试题分析:过点O 分别作OE ⊥AB 于E ,OF ⊥AC 于F ,可得E 、F 分别是AB 、AC 的中点.根据Rt △AOE 中余弦的定义,分别求出AB AO AC AO ⋅⋅, 的值,再由M 是BC 边的中点,得到12AM AO AB AC AO =+⋅⋅() 问题得以解决;过点O 分别作OE ⊥AB 于E ,OF ⊥AC 于F ,则E 、F 分别是AB 、AC 的中点可得Rt △AEO 中|||||||2|AE AB cos OAE AO AO ∠== , 2||1||||22||32AB AB AO AB AO AB AO ⋅⋅∴⋅===, 同理可得21182||AC AO AC ⋅==, ∵M 是边BC 的中点,12AM AB AC =+() , 111321825222AM AO AB AC AO AB AO AC AO ∴=+⋅=⋅=⋅++⋅=()()() .考点:平面向量数量积运算14.在平面直角坐标系xOy 中,圆()22:15C x y -+=和y 轴的负半轴相交于A 点,点B 在圆C 上(不同于点A ),M 为AB 的中点,且|OA|=|OM|,则点M 的纵坐标为【答案】65-【解析】试题分析:由题易知A(0,-2),设()11,,B x y 22111240x x y ∴-+-=,22221111122,4,441622x y OM x y y -⎛⎫⎛⎫=∴=+∴+-+= ⎪ ⎪⎝⎭⎝⎭ , 联立可得2111111224,51240,,25x y y y y y =+∴++=∴=-=-(舍去),所以M 点纵坐标为65- . 考点:直线与圆的位置关系15.已知正实数,,x y z 满足2221x y z ++=,则12z u xyz +=的最小值为 【答案】4【解析】试题分析:由题()()222211112,4211z z z x y xy u xyz z zz z ++-=+≥∴=≥=≥-- ,当且仅当1,2z x y ===. 考点:均值不等式三、解答题:本大题共5个小题,共74分,解答应写出文字说明,证明过程或演算步骤16.(本题满分14分)设ABC ∆的内角C B A ,,所对应的边分别为c b a ,,,已知()sin sin sin a b a c A B A B+-=+- (Ⅰ)求角B(Ⅱ)若36cos ,3==A b ,求ABC ∆的面积【答案】(Ⅰ)3B π=所以ba c a cb a --=+,----------------------------2分 所以222a b ac c -=-,---------------------------------------------------------------------------3分 所以2221cos 222a cb ac B ac ac +-===,--------------------------------------------------- ---5分 又因为π<<B 0,所以3B π=-------------------------------------------------------------------7分(Ⅱ)由36cos ,3==A b 可得sin A =,-----------------------------------------------------------8分 由Bb A a sin sin =可得2=a ,----------------------------------------------------------------------9分而()sin sin sin cos cos sin C A B A B A B =+=+=分所以ABC ∆的面积==C ab S sin 21-----------------------------------------------14分考点:解三角形;正弦定理及余弦定理的应用17.本题满分15分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,平面PAD ⊥底面ABCD ,Q 为AD 的中点,2,PA PD AD AB ====1BC =(Ⅰ)求证:平面PQB ⊥平面PBC ;(Ⅱ)求二面角Q PC B --的平面角的正弦值。