斯伦贝谢LWD introduction
- 格式:ppt
- 大小:26.61 MB
- 文档页数:5
国外主要测井公司介绍测井是技术密集型产业,测井仪器装备一次性投资大,投资回收期较长。
国际性的油田技术服务公司中,以测井为主营业务的公司,主要有斯仑贝谢公司、哈里伯顿公司、贝克-阿特拉斯公司,这三家公司占据90%多的测井服务市场(斯仑贝谢约占62%),哈里伯顿和贝克-阿特拉斯分别约占14%和15%)。
其他公司还有威德福公司、Tucker能源服务公司、REEVES公司和PROBE公司等等,这些公司在整体上逊色于三大公司,但在部分专项上可以与三大公司媲美。
第一节斯仑贝谢公司一、公司概况斯仑贝谢是测井行业的开山鼻祖,公司总部位于美国纽约。
经过70多年的发展,斯仑贝谢公司已成为一家除工程建设服务以外的全球性油田和信息服务超级大型企业集团,但公司主要的经营活动还是集中在石油工业,在世界上100多个国家和地区有业务往来。
公司员工60,000余人,来自140多个国家。
公司2002年总收入为135亿美元,其中测井部分年收入为56亿美元,测井研发经费4亿美元(占测井收入的7%)。
除现场作业外,斯仑贝谢公司在美国、英国等地建有研发中心,作为公司经营服务的强大技术支持。
斯仑贝谢公下设三个主要的经营部门:斯仑贝谢油田服务公司:是世界上最大的油田技术服务公司,为石油和天然气工业提供宽广的技术服务和解决方案。
斯仑贝谢Sema公司:为能源工业,同时也为公共部门、电信和金融市场,提供IT咨询、系统集成、网络和基础建设服务。
斯仑贝谢西方地震服务公司:是与贝克休斯公司合作经营的公司,是世界最大的、最先进的地面地震服务公司。
斯仑贝谢公司其他方面的业务还有智能卡服务(电子付款、安全识别、公用电话、移动电话、身份证、停车系统等)、半导体测试和诊断服务、水资源服务等等。
二、斯仑贝谢油田服务公司斯仑贝谢油田服务公司是具有测井、测试、钻井、MWD/LWD和定向钻井、陆上和海上地震、井下作业和油田化学、软件开发和资料处理等多种能力的综合性油田技术服务公司,在开放的国际测井服务方面,其市场占有率达到62%左右。
LWD发展现状与趋势展望在对随钻测井进行分析的基础上,详细阐述了随钻测井技术的发展过程,重点介绍了HL-MWD+伽马和FEWD随钻地质评价测井技术的应用现状,简单介绍了贝克休斯AutoTrak旋转导向钻井系统,对于今后可能形成的技术发展趋势进行了预测,认为旋转地质导向钻井技术将成为中长期发展方向,加大国内旋转导向研发力度,培养技术人才,缩小与国外技术差距,才能立于竞争制高点。
标签:LWDHL-MWD+伽马;FEWD;旋转导向发展现状;技术展望1 随钻测井发展关键阶段1.1 随钻测井简介随钻测井英文简称LWD(logging while drilling),是在随钻测量基础上发展起来的一种功能更齐全、结构更复杂的随钻测量系统,主要是在常规基础上增加电阻率、孔隙度、中子、密度和声波等测量短节,用以获取测井信息。
与随钻测量系统相比,传输的信息更多,采用井下存储(起钻后回放)和部分信息实时上传方式处理所需测井信息,无导向决策功能。
1.2 随钻测井技术发展阶段1.2.1随钻测井技术发展早期第一个随钻测井的专利是在1929年由Jakosky提出的,用的就是钻井液脉冲遥测系统。
1940年David G.Hawthon和John E.owen公布第一条随钻电阻率曲线,此时的随钻测量方法主要有两种,一是利用测量电极和导电钻杆绝缘,测量井底电极附近的地层电阻率;二是信息传输,在钻杆中埋电缆。
但由于在钻杆和钻杆连接部位很难保证绝缘,以上方法均告失败。
20世纪40年代和50年代随钻测井进展缓慢,仅有的几个专利文献表明,研究单位和个人继续致力于实时、可靠的随钻测井系统研究,注意力从地面设备和井下设备的硬联结转向用电磁波或无线电波通过地层传输到地面或是用声信号通过地层或钻杆传输信息。
遗憾的是,传输技术发展缓慢,难以有实质性的突破。
1950年J.J.Arps发明正向泥浆脉冲系统,1960年利用正向泥浆脉冲的机械测斜仪出现,并应用至今;1964年第一个机械脉冲遥测系统研究成功。
大斜度/水平井生产测井技术Schlumberger Private斯伦贝谢Schlumberger Private水平井生产所面临的挑战•初期产量较高•含水上升快•产量递减快•产液剖面测量难•井段产液不均匀•措施作业难•有效期较短…主要难点:¾井下多相流态复杂¾产液剖面测量仪器¾仪器传输方式Schlumberger Private油水均匀混合 速度剖面光滑 持率线性变化 单相水在底部,分散相油在顶部速度和持率变化剧烈水有可能回流分层流动,油水分异呈单相井斜微变,相速度和持率剧变井斜<20°井斜20°~85°井斜85°~95°复杂多相流流态-油水两相流试验Schlumberger Private水平井产液剖面测量-流体扫描成像Flow Scanner具有5个微转子测量分层流速,6对光学和电阻探针测量分层三相持率,实时监测数据质量Schlumberger PrivateFlow Scanner* 仪器示意图H y dra u l i c a c t u a t o r F l ow S c a n n e r *4 MS5 O P、5E P1 mi n i s p i n n e r , 1o p t i c a l p r o b e , 1e l e c t r i c a lp r o b e Minispinner cartridgewith integrated one-wire detectorFluid local velocityOptical GHOST*probesGas holdupElectrical FloView*probesWater holdup5 ft11 ftSchlumberger PrivateFlow Scanner* 流速传感器相速度-Minispinner最新技术;5个微型转子流量计垂直于井轴方向分布; 直接测量气相速度;电动短节扫描转子流量计,精确测定相速度。
未来属于非常规资源11.Chakrabarty C :“Peak in Gas Output Predicted ”,Rocky Mountain News ,能源与采矿版,(2006年8月1日),/drmn/energy/article/0,277,DRMN_23914_4884051,000.html (2006年10月13日浏览)。
2.Rogner H-H :“An Assessment of World Hydrocarbon Resources ”,Annual Review of Energy and Environment 22(1997年11月):217-262。
美国的首次商业天然气开采来自今天所谓的非常规资源。
1821年,阿巴拉契亚盆地的一口浅井开始从富含有机质的泥盆纪页岩产气。
附近纽约州Fredonia 村庄的村民利用开采的天然气进行照明。
从这些普通应用开始,非常规天然气目前在为世界经济增长提供能源方面发挥着重要作用。
一般将页岩气、致密气和煤层气(CBM )称为非常规资源。
非常规资源对能源供应的影响越来越大,这一情况在美国非常明显,在一定程度上加拿大也是如此。
美国IHS 能源公司的高级数据专家David Reimers 认为,美国去年完井气井有三分之一是针对非常规气藏[1]。
煤层气产量大约占当前美国天然气供应量的8%,页岩气产量占4%。
在加拿大,虽然CBM 产量比例较小,但是其所占比例正在迅速增长。
2000年,美国共有28000口页岩气井,总产量超过7000亿英尺3/年(198亿米3/年)。
页岩气藏实际产量的增长速度惊人,同样令人惊讶的是页岩气藏的潜在产量会更高。
1996年,在美国已发现的页岩气盆地中,估计总开采量(EUR )高达1.28万亿英尺3/年(362亿米3/年)[2]。
近些年来,这一数字不断增长,现在估计达到5万亿英尺3/年(1416亿米3/年)。
按照这一增长速率,全球页岩气的EUR 可高达75万亿英尺3/年(2.1万亿米3/年)。
关于LWD一.LWD技术概况LWD意为“随钻录井”(Logging While Drilling),是相对电缆测井技术而言的。
一般概念讲,其除包括MWD的测量参数外,还必须全部或部分的有地质参数(如:随钻电阻率、随钻伽马、随钻密度、随钻孔隙度等等)和钻井工程参数(随钻钻具扭矩、随钻振动、随钻钻压等等),可以说LWD是MWD的升级产品。
目前,LWD技术应用主要有:1 分辨地层,确定地层岩性,砂泥岩含量评价。
2 分辨油气水以及油/气,油/水界面。
3判断地层变化,预测轨迹在油层中行进的情况。
4 预测高压地层,实现无风险钻井。
5分辨薄油气层,有效开发地下油气资源。
6 取消中途及完井电测,节约投资,提高施工效率。
7缩短钻井周期,减少油气的浸泡时间,减少拥油层污染。
国外的发达国家的LWD仪器的测量功能基本上含盖了有线测井仪器(也有称为完井录井测量仪器)的绝大部分测量功能,有替代完井测试的趋势,相比之下,我国的随钻仪器研制水平还有一定的差距,在国内MWD仪器已有部分的面市,不过还有很大有待改进的地方,但我国的LWD仪器几乎全部依赖进口,并且还有所为“技术保密”的封锁,一般最高只能买到具有方位、自然伽马、电阻率和钻铤振动等几个基本参数测量功能的产品。
二.LWD技术特点随钻测井技术是完成大角度井、水平井钻井设计、实时井场数据采集、解释和现场决策以及指导并完成地质导向钻井的关键技术。
目前,通过LWD可以完成绝大多数的测井项目,具体包括:侧向电阻率电磁波,传播电阻率,岩性密度,中子孔隙度,声波,俘获截面,光电指数,元素俘获,自然伽马,地层压力,核磁,地层界面,图像等各个层面的测井项目。
97%以上的随钻测井项目不再需要重复电缆测井。
LWD可以实现的测井项目(左为电缆测井,右为LWD)LWD 是录测井技术、钻井技术、油藏描述等多学科的综合性技术,实现了在钻井的同时对钻井作业的综合评价和测井作业,简化了钻井作业程序,节省了钻机时间,降低了成本,提高了钻井作业精度;能实时检测到地层变化以便及时对钻井设计做必要的调整,使钻头最大化地在油气藏中最有价值的地带钻进,提高了油田的采收率,对于高效开发复杂油气藏具有重要意义,现已成为油田开发获得最大效益的至关重要手段。
关于LWD一.LWD技术概况LWD意为“随钻录井”(Logging While Drilling),是相对电缆测井技术而言的。
一般概念讲,其除包括MWD的测量参数外,还必须全部或部分的有地质参数(如:随钻电阻率、随钻伽马、随钻密度、随钻孔隙度等等)和钻井工程参数(随钻钻具扭矩、随钻振动、随钻钻压等等),可以说LWD是MWD的升级产品。
目前,LWD技术应用主要有:1 分辨地层,确定地层岩性,砂泥岩含量评价。
2 分辨油气水以及油/气,油/水界面。
3判断地层变化,预测轨迹在油层中行进的情况。
4 预测高压地层,实现无风险钻井。
5分辨薄油气层,有效开发地下油气资源。
6 取消中途及完井电测,节约投资,提高施工效率。
7缩短钻井周期,减少油气的浸泡时间,减少拥油层污染。
国外的发达国家的LWD仪器的测量功能基本上含盖了有线测井仪器(也有称为完井录井测量仪器)的绝大部分测量功能,有替代完井测试的趋势,相比之下,我国的随钻仪器研制水平还有一定的差距,在国内MWD仪器已有部分的面市,不过还有很大有待改进的地方,但我国的LWD仪器几乎全部依赖进口,并且还有所为“技术保密”的封锁,一般最高只能买到具有方位、自然伽马、电阻率和钻铤振动等几个基本参数测量功能的产品。
二.LWD技术特点随钻测井技术是完成大角度井、水平井钻井设计、实时井场数据采集、解释和现场决策以及指导并完成地质导向钻井的关键技术。
目前,通过LWD可以完成绝大多数的测井项目,具体包括:侧向电阻率电磁波,传播电阻率,岩性密度,中子孔隙度,声波,俘获截面,光电指数,元素俘获,自然伽马,地层压力,核磁,地层界面,图像等各个层面的测井项目。
97%以上的随钻测井项目不再需要重复电缆测井。
LWD可以实现的测井项目(左为电缆测井,右为LWD)LWD是录测井技术、钻井技术、油藏描述等多学科的综合性技术,实现了在钻井的同时对钻井作业的综合评价和测井作业,简化了钻井作业程序,节省了钻机时间,降低了成本,提高了钻井作业精度;能实时检测到地层变化以便及时对钻井设计做必要的调整,使钻头最大化地在油气藏中最有价值的地带钻进,提高了油田的采收率,对于高效开发复杂油气藏具有重要意义,现已成为油田开发获得最大效益的至关重要手段。
旋转导向系统介绍一、概述随着科学技术的发展,石油钻井的勘探仪器的信息化、自动化有了长远的进步,从20世纪80年代后期,在国际上开始研究旋转导向钻井技术,到90年代初期多家公司形成了商业化技术并最终实现了信息化和自动化钻井,旋转导向钻井技术作为目前发展的前沿钻井技术之一,代表着世界钻井技术发展的最高水平。
旋转导向钻井技术可以自动、灵活地调整井斜和方位,大大提高钻井速度和钻井安全性,精确控制井眼轨迹,完全适合目前开发特殊油藏的超深井、高难定向井、水平井、大位移井、智能井等特殊工艺井导向钻井的需要,极大的降低了石油勘探、钻井的成本。
目前该项技术主要被斯伦贝谢、贝克休斯和哈里伯顿公司所垄断,而国内旋转钻井技术仅处于初级阶段,未实现商业化。
二、系统组成1-固定钻铤 2-悬挂脉冲器 3-电池短节 4-测斜探管 5-无磁钻铤 6-无线接收短节7-无线发射短节 8-转换接头 9-旋转导向工具 10-钻头旋转导向钻井系统实质上是一个井下闭环变径稳定器与测量传输仪器(MWD/LWD)联合组成的工具系统。
同时配有地面—井下双向通讯系统,可根据井下传来的数据,在不起钻的情况下从地面发出指令改变井眼轨迹。
旋转自动导向闭环钻井系统包括由井下导向工具、MWD系统、地面监控系统组成,实现了全井闭环控制的双向通讯。
1. 井下导向工具导向工具采用推靠式,外壳不旋转,三个支腿(支撑力不低于2.5t)可独立控制;导向工具采用涡轮发电机供电(功率400-500W),发电机的交流电进行整流后,一部分为导向工具主控电路供电,另一部分再逆变为交流电通过无线方式传输到外壳中的执行电路;导向工具需要计算自身井斜及高边,以便控制支腿,停泵再开泵后,各支腿恢复到停泵前的状态;导向工具通过无线发射短节及无线接收短节向MWD系统索取仪器的方位信息后,根据地面指令调整三个支腿的收缩状态以实现导向功能。
2. MWD系统MWD系统通过脉冲器将测斜数据上传的同时,需要根据井下导向工具要求将导向信息同时上传到地面,并为井下导向工具提供仪器的方位参数以便于导向工具调整支腿状态。