高中物理各章易错题归纳——稳恒电流
- 格式:doc
- 大小:224.50 KB
- 文档页数:31
高考物理易错题专题三物理稳恒电流(含解析)含解析一、稳恒电流专项训练1.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
(1)实验时有两个滑动变阻器可供选择:a、阻值0到200Ω,额定电流b、阻值0到20Ω,额定电流本实验应选的滑动变阻器是(填“a”或“b”)(2)正确接线后,测得数据如下表12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.400.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(mA)a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”)b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)【答案】(1) a(2) a) Pb)【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。
B电阻的额定电流为,加在它上面的最大电压为10V,所以仪器不能正常使用,而选择a。
(2)电压表并联在M与P之间。
因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P点。
视频2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);电压表V(量程3V,内阻约10Ω);电阻0R(阻值约20 kΩ);滑动变阻器R(最大阻值50Ω,额定电流1 A);电池组E(电动势3V,内阻不计);开关S及导线若干.【答案】(1)1.880(1.878~1.882均正确)(2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm 金属丝直径为(1.5+0.380) mm="1.880" mm .(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0VA 0100,0.5R R R R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.3.在如图所示的电路中,电源电动势E=3V,内阻 r=0.5Ω,定值电阻R 1 =9Ω,R 2=5.5Ω,电键S 断开.①求流过电阻R 1的电流; ②求电阻 R 1消耗的电功率;③将S 闭合时,流过电阻R 1的电流大小如何变化? 【答案】(1)0.2A ;(2)0.36W ;(3)变大 【解析】试题分析:(1)电键S 断开时,根据闭合电路的欧姆定律求出电流;(2)根据211P I R =求出1R 消耗的电功率;(3)将S 闭合时回路中的总电阻减小,根据闭合电路的欧姆定律分析电流的变化.(1)电键S 断开时,根据闭合电路的欧姆定律得:12EIR R r=++,解得:I=0.2A(2)根据211P I R =,得210.290.36P W =⨯= (3)将S 闭合时,2R 被短接,回路中的总电阻减小,根据闭合电路的欧姆定律:EI R r=+,可知电流变大,即流过电阻1R 的电流变大 【点睛】本题主要考查了闭合电路的欧姆定律,解决本题的关键就是要知道闭合电路的欧姆定律的表达式,并且知道回路中的电阻变化了,根据闭合电路的欧姆定律可以判断电流的变化.4.如图所示的电路中,电炉电阻R =10Ω,电动机线圈的电阻r =1Ω,电路两端电压U =100V ,电流表的示数为30A ,问:(1)通过电动机的电流为多少?(2)通电一分钟,电动机做的有用功为多少? 【答案】(1)I 2=20A (2)W =9.6×104J 【解析】 【详解】根据欧姆定律,通过电炉的电流强度为:11001010U I A A R === 根据并联电路中的干路电流和支路电流的关系,则通过电动机的电流强度为:I 2=I -I 1=20 A.电动机的总功率为P =UI 2=100×20 W =2×103W. 因发热而损耗的功率为P ′=I 22r =400 W.电动机的有用功率(机械功率)为P ″=P -P ′=1.6×103W , 电动机通电1 min 做的有用功为W =P ″t =1.6×103×60 J =9.6×104J. 【点睛】题图中的两个支路分别为纯电阻电路(电炉)和非纯电阻电路(电动机).在纯电阻电路中可运用欧姆定律I =U/R 直接求出电流强度,而非纯电阻电路中的电流强度只能运用干路和支路中电流强度的关系求出.在非纯电阻电路中,电功大于电热,两者的差值才是有用功.5.利用如图所示的电路可以测量电源的电动势和内电阻。
高考物理专题电磁学知识点之稳恒电流易错题汇编附解析一、选择题1.在输液时,药液有时会从针口流出体外,为了及时发现,某同学设计了一种报警装置,R会发生变化,导致S 电路如图所示,M是贴在针口处的传感器,接触到药液时其电阻M两端电压U增大,从而使装置发出警报,E为内阻不计的电源,此过程中()A.此过程中流过电源的电流变小B.此过程中流过传感器M的电流变小R变大,且R越大,U增大越明显C.MR变小,且R越大,U增大越明显D.M2.图中小灯泡的规格都相同,两个电路中的电池也相同。
实验发现多个并联的小灯泡的亮度明显比单独一个小灯泡暗。
对这一现象的分析正确的是()A.灯泡两端电压不变,由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗B.电源电动势不变,外电路电压变大,但由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗C.电源电动势不变,外电路电压变小,因此灯泡亮度变暗D.并联导致电源电动势变小,因此灯泡亮度变暗3.如图所示,双量程电压表由表头G和两个电阻串联而成。
已知该表头的内阻,满偏电流,下列说法正确的是A.表头G的满偏电压为500VB.使用a、b两个端点时,其量程比使用a、c两个端点时大C.使用a、b两个端点时,其量程为0~10V,则R1为9.5kΩD.使用a、c两个端点时,其量程为0~100V,则为95kΩ4.物理学中常用两个物理量的比值定义一个新的物理量,如速度是用位移与时间的比值来定义的,即xvt=.下面四个物理量的表达式不属于...比值定义的是A.电流qIt=B.电势PEqϕ=C.电容QCU=D.电阻lRSρ=5.如图所示电路中,A、B两灯均正常发光,R为一滑动变阻器,若将滑动片P向下滑动,则()A.A灯变亮B.B灯变亮C.总电流变小D.R1上消耗功率变大6.下列说法正确的是()A.电源是通过非静电力做功把电能转化为其他形式的能的装置B.库仑提出了库仑定律,并最早用实验测得元电荷e的数值C.英国物理学家法拉第最早引入了电场的概念,并提出用电场线表示电场D.牛顿设计了理想斜面实验,得出力不是物体产生运动的原因7.在如图所示的电路中,闭合开关S后,a、b、c三盏灯均能发光,电源电动势为E,内阻为r。
物理稳恒电流易错剖析含解析一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.3.超导现象是20世纪人类重大发现之一,日前我国己研制出世界传输电流最大的高温超导电缆并成功示范运行.(l )超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究.将一个闭合超导金属圈环水平放置在匀强磁场中,磁感线垂直于圈环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化.则表明其电阻为零.请指出自上往下看环中电流方向,并说明理由.(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I ,并经一年以上的时间t 未检测出电流变化.实际上仪器只能检测出大于△I 的电流变化,其中△I<<I ,当电流的变化小于△I 时,仪器检测不出电流的变化,研究人员便认为电流没有变化.设环的横截面积为S ,环中定向移动电子的平均速率为v ,电子质量为m 、电荷量为e .试用上述给出的各物理量,推导出ρ的表达式.(3)若仍使用上述测量仪器,实验持续时间依旧为t .为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法. 【答案】(1)见解析 (2)(3)见解析【解析】(1)逆时针方向。
高考物理稳恒电流易错剖析一、稳恒电流专项训练1.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
(1)实验时有两个滑动变阻器可供选择:a、阻值0到200Ω,额定电流b、阻值0到20Ω,额定电流本实验应选的滑动变阻器是(填“a”或“b”)(2)正确接线后,测得数据如下表12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.400.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(mA)a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”)b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)【答案】(1) a(2) a) Pb)【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。
B 电阻的额定电流为,加在它上面的最大电压为10V ,所以仪器不能正常使用,而选择a 。
(2)电压表并联在M 与P 之间。
因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P 点。
视频2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.3.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.4.如下左图所示,R1=14Ω,R2=9Ω,当S 扳到位置1时,电压表示数为2.8V ,当开关S 扳到位置2时,电压表示数为2.7V ,求电源的电动势和内阻?(电压表为理想电表)【答案】E=3V, r=1Ω【解析】试题分析:根据开关S 扳到位置1和2时,分别由闭合电路欧姆定律列出含有电动势和内阻的方程,联立组成方程组求解. 解:根据闭合电路欧姆定律,可列出方程组: 当开关S 扳到位置1时,E=U 1+I 1r=U 1+当开关S 扳到位置2时,E=U 2+I 2r=U 2+代入解得:E=3V ,r =1Ω答:电源的电动势和内阻分别为3V 和1Ω.【点评】本题提供了一种测量电源的电动势和内阻的方法,可以用电阻箱代替两个定值电阻,即由电压表和电阻箱并连接在电源上,测量电源的电动势和内阻,此法简称伏阻法.5.如图所示,M 为一线圈电阻R M =0.5Ω的电动机,R=8Ω,电源电动势E=10V .当S 断开时,电流表的示数I 1=1A ,当开关S 闭合时,电流表的示数为I 2=3A . 求:(1)电源内阻r ;(2)开关S 断开时,电阻R 消耗的功率P . (3)开关S 闭合时,通过电动机M 的电流大小I M . 【答案】(1)2Ω (2)8W (3) 2.5A【解析】(1)当S 断开时,根据闭合电路欧姆定律: ()1E I R r =+, ()1018r =⨯+,r=2Ω;电阻R 消耗的功率: 221188P I R W W ==⨯=路端电压: ()210324U E I r V V =-=-⨯= R 之路电流: 40.58R U I A A R === 电动机的电流: ()230.5 2.5M R I I I A A =-=-=点睛:当S 断开时,根据闭合电路欧姆定律求解电源的内阻.当开关S 闭合时,已知电流表的示数,根据闭合电路欧姆定律求出路端电压,由欧姆定律求出通过R 的电流,得到通过电动机的电流.6.在现代生活中,充电宝是手机一族出行的必备品.当充电宝电量不足时,需要给充电宝充电,此时充电宝相当于可充电的电池,充电过程可简化为如图所示电路.先给一充电宝充电,充电电压为5V ,充电电流为1000mA ,充电宝的内阻为0.2.Ω试求:()1充电宝的输入功率;()2充电宝内阻消耗的热功率; ()3一分钟内充电宝储存的电能.【答案】()1 5W ;()2?0.2W ;()3 288. 【解析】 【分析】(1)根据P UI =求解充电宝的输入功率;(2)根据2P I r =求解热功率;(3)根据2Q Pt I rt =-求解一分钟内充电宝储存的电能. 【详解】(1)充电宝的输入功率为:351000105P UI W 入-==⨯⨯=;(2)充电宝内阻消耗的热功率为:2210.20.2P I r W ==⨯=热;(3)一分钟内充电宝储存的电能为:25600.260288Q P t I rt J =-=⨯-⨯=入.【点睛】注意本题中的充电宝是非纯电阻电路,输入功率不等于热功率,知道热功率只能用2P I r =求解.7.如图中A 、B 、C 、D 四个电路中,小灯L 1上标有“6V 3A”字样,小灯L 2上标有“4V 0.2A”字样,电压U ab 均为U =10V 。
高考物理稳恒电流易错剖析及解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U–I图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.2 4 E r(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222 ()2E EP I R RrR rR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq=+=+E Ir IR U U=+=+外内本题答案是:(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流 (2)a .如图所示当外电路电阻R =r 时,电源输出的电功率最大,为2max =4E P r(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.3.能量守恒是自然界基本规律,能量转化通过做功实现。
(物理)物理稳恒电流易错剖析含解析一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件3.在如图所示的电路中,电源电动势E=3V,内阻 r=0.5Ω,定值电阻R 1 =9Ω,R 2=5.5Ω,电键S 断开.①求流过电阻R 1的电流; ②求电阻 R 1消耗的电功率;③将S 闭合时,流过电阻R 1的电流大小如何变化? 【答案】(1)0.2A ;(2)0.36W ;(3)变大 【解析】试题分析:(1)电键S 断开时,根据闭合电路的欧姆定律求出电流;(2)根据211P I R =求出1R 消耗的电功率;(3)将S 闭合时回路中的总电阻减小,根据闭合电路的欧姆定律分析电流的变化.(1)电键S 断开时,根据闭合电路的欧姆定律得:12EIR R r=++,解得:I=0.2A(2)根据211P I R =,得210.290.36P W =⨯=(3)将S 闭合时,2R 被短接,回路中的总电阻减小,根据闭合电路的欧姆定律:EI R r=+,可知电流变大,即流过电阻1R 的电流变大 【点睛】本题主要考查了闭合电路的欧姆定律,解决本题的关键就是要知道闭合电路的欧姆定律的表达式,并且知道回路中的电阻变化了,根据闭合电路的欧姆定律可以判断电流的变化.4.在图所示的电路中,电源电压U 恒定不变,当S 闭合时R 1消耗的电功率为9W ,当S 断开时R 1消耗的电功率为4W ,求:(1)电阻R 1与R 2的比值是多大?(2)S 断开时,电阻R 2消耗的电功率是多少? (3)S 闭合与断开时,流过电阻R 1的电流之比是多少? 【答案】2∶1,2W ,3∶2 【解析】 【分析】 【详解】(1)当S闭合时R1消耗的电功率为9W,则:2119WUPR==当S断开时R1消耗的电功率为4W,则:21112'()4WUP RR R=+=解得:12:2:1R R=(2)S断开时R1和R2串联,根据公式2P I R=,功率之比等于阻值之比,所以:1122':':2:1P P R R==又因为1'4WP=,所以,S断开时,电阻R2消耗的电功率:22'WP=(3)S闭合时:1UIR=S断开时:12'URIR+=所以:1212'3R RIRI+==5.某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L、长度为d的平行金属电极.电极间充满磁感应强度为B、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R,传送带背面固定有若干根间距为d的平行细金属条,其电阻均为r,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度v匀速运动时,(1)电压表的示数(2)电阻R产生焦耳热的功率(3)每根金属条经过磁场区域的全过程中克服安培力做功【答案】(1)BLvRUR r=+;(2)2222()B L v RPR r=+;(3)22B L vdWR r=+.【解析】试题分析:(1)金属条产生的感应电动势为E=BLv,电路中的感应电流为I=BLvR r+,故电压表的示数BLvRU IRR r==+;(2)电阻R产生焦耳热的功率P=I2R=2222()B L v RR r+;(3)每根金属条经过磁场区域的全过程中克服安培力做功W=F安d=BILd=22B L vdR r+.考点:电磁感应,欧姆定律,焦耳定律,安培力.6.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L,导轨的两端分别与电源(串有一滑动变阻器 R)、定值电阻、电容器(原来不带电)和开关K相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B.一质量为m,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E,内阻为r,电容器的电容为C,定值电阻的阻值为R0,不计导轨的电阻.(1)当K接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBLrmg-(2)442222B L s m gRmgR B L+(3)匀加速直线运动2222mgsCB Lm cB L+【解析】【详解】(1)金属棒ab在磁场中恰好保持静止,由BIL=mgEI R r=+ 得 EBLR r mg=- (2)由 220B L vmg R =得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLsq It R ==得4422220B L s m gR t mgR B L +=(3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t∆∆∆∆=====∆∆∆∆ mg-BIL=ma 得22mga m CB L =+=常数所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的. v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=--解得:2222mgsCB L E m cB L ∆=+【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.7.电源是通过非静电力做功把其他形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势来表明电源的这种特性。
高考物理稳恒电流易错剖析含解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.四川省“十二五”水利发展规划指出,若按现有供水能力测算,我省供水缺口极大,蓄引提水是目前解决供水问题的重要手段之一。
高考物理稳恒电流易错剖析含解析一、稳恒电流专项训练1.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U–I图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.2 4 E r(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222 ()2E EP I R RrR rR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq=+=+E Ir IR U U=+=+外内本题答案是:(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a .如图所示当外电路电阻R =r 时,电源输出的电功率最大,为2max =4E P r(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.2.超导现象是20世纪人类重大发现之一,日前我国己研制出世界传输电流最大的高温超导电缆并成功示范运行.(l )超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究.将一个闭合超导金属圈环水平放置在匀强磁场中,磁感线垂直于圈环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化.则表明其电阻为零.请指出自上往下看环中电流方向,并说明理由.(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I ,并经一年以上的时间t 未检测出电流变化.实际上仪器只能检测出大于△I 的电流变化,其中△I<<I ,当电流的变化小于△I 时,仪器检测不出电流的变化,研究人员便认为电流没有变化.设环的横截面积为S ,环中定向移动电子的平均速率为v ,电子质量为m 、电荷量为e .试用上述给出的各物理量,推导出ρ的表达式.(3)若仍使用上述测量仪器,实验持续时间依旧为t .为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法. 【答案】(1)见解析 (2)(3)见解析【解析】(1)逆时针方向。
高中物理稳恒电流易错剖析一、稳恒电流专项训练1.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻)E=I 2(r+R 1+R 2+R )由以上两式可解得R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v .(a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】(1)(a )电流Q I t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ=柱体体积V Sl =柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总= 设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的1.6【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.3.守恒定律是自然界中某种物理量的值恒定不变的规律,它为我们解决许多实际问题提供了依据.在物理学中这样的守恒定律有很多,例如:电荷守恒定律、质量守恒定律、能量守恒定律等等.(1)根据电荷守恒定律可知:一段导体中通有恒定电流时,在相等时间内通过导体不同截面的电荷量都是相同的.a.己知带电粒子电荷量均为g,粒子定向移动所形成的电流强度为,求在时间t内通过某一截面的粒子数N.b.直线加速器是一种通过高压电场使带电粒子加速的装置.带电粒子从粒子源处持续发出,假定带电粒子的初速度为零,加速过程中做的匀加速直线运动.如图l所示,在距粒子源l1、l2两处分别取一小段长度相等的粒子流I .已知l l:l2=1:4,这两小段粒子流中所含的粒子数分别为n1和n2,求:n1:n2.(2)在实际生活中经常看到这种现象:适当调整开关,可以看到从水龙头中流出的水柱越来越细,如图2所示,垂直于水柱的横截面可视为圆.在水柱上取两个横截面A、B,经过A、B的水流速度大小分别为v I、v2;A、B直径分别为d1、d2,且d1:d2=2:1.求:水流的速度大小之比v1:v2.(3)如图3所示:一盛有水的大容器,其侧面有一个水平的短细管,水能够从细管中喷出;容器中水面的面积S l远远大于细管内的横截面积S2;重力加速度为g.假设水不可压缩,而且没有粘滞性.a.推理说明:容器中液面下降的速度比细管中的水流速度小很多,可以忽略不计:b.在上述基础上,求:当液面距离细管的高度为h时,细管中的水流速度v.【答案】(1)a. Q It N q q== ;b. 21:2:1n n =;(2)221221::1:4v v d d ==;(3)a.设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =,由12S S >>,可得12v v <<.所以:液体面下降的速度1v 比细管中的水流速度可以忽略不计. b. 2v gh 【解析】【分析】【详解】(1)a.电流Q I t=, 电量Q Nq = 粒子数Q It N q q == b.根据2v ax = 可知在距粒子源1l 、2l 两处粒子的速度之比:12:1:2v v = 极短长度内可认为速度不变,根据x v t∆=∆, 得12:2:1t t = 根据电荷守恒,这两段粒子流中所含粒子数之比:12:2:1n n =(2)根据能量守恒,相等时间通过任一截面的质量相等,即水的质量相等. 也即:2··4v d π处处相等 故这两个截面处的水流的流速之比:221221::1:4v v d d == (3)a .设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =由12S S >>,可得:12v v <<.所以液体面下降的速度1v 比细管中的水流速度可以忽略不计.b.根据能量守恒和机械能守恒定律分析可知:液面上质量为m 的薄层水的机械能等于细管中质量为m 的小水柱的机械能.又根据上述推理:液面薄层水下降的速度1v 忽略不计,即10v =. 设细管处为零势面,所以有:21002mgh mv +=+ 解得:2v gh =4.在现代生活中,充电宝是手机一族出行的必备品.当充电宝电量不足时,需要给充电宝充电,此时充电宝相当于可充电的电池,充电过程可简化为如图所示电路.先给一充电宝充电,充电电压为5V ,充电电流为1000mA ,充电宝的内阻为0.2.Ω试求:()1充电宝的输入功率;()2充电宝内阻消耗的热功率;()3一分钟内充电宝储存的电能.【答案】()1 5W ;()2?0.2W ;()3 288. 【解析】【分析】(1)根据P UI =求解充电宝的输入功率;(2)根据2P I r =求解热功率;(3)根据2Q Pt I rt =-求解一分钟内充电宝储存的电能.【详解】(1)充电宝的输入功率为:351000105P UI W 入-==⨯⨯=;(2)充电宝内阻消耗的热功率为:2210.20.2P I r W ==⨯=热;(3)一分钟内充电宝储存的电能为:25600.260288Q P t I rt J =-=⨯-⨯=入.【点睛】注意本题中的充电宝是非纯电阻电路,输入功率不等于热功率,知道热功率只能用2P I r =求解.5.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:(1)R1大小、R3发生断路前R2上的电压、及R2阻值各是多少?(R3发生断路时R2上没有电流)(2)电源电动势E和内电阻r各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U2 + I2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】6.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L,导轨的两端分别与电源(串有一滑动变阻器 R)、定值电阻、电容器(原来不带电)和开关K相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B.一质量为m,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E,内阻为r,电容器的电容为C,定值电阻的阻值为R0,不计导轨的电阻.(1)当K接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L + 【解析】【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBL R r mg=- (2)由 220B L v mg R = 得 022mgR v B L = 由动量定理,得mgt BILt mv -= 其中0BLs q It R ==得44220220B L s m gR t mgR B L+= (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma 得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.7.电源是通过非静电力做功把其他形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势来表明电源的这种特性。
高考物理新电磁学知识点之稳恒电流易错题汇编附解析一、选择题1.在如图所示电路中,合上开关S,将滑动变阻器R2的滑动触点向b端移动,则三个电表A1、A2和V的示数I1、I2和U的变化情况是()A.I1增大,I2不变,U增大 B.I1减小,I2不变,U减小C.I1增大,I2减小,U增大 D.I1减小,I2增大,U减小2.一块手机电池的背面印有如图所示的一些符号,另外在手机使用说明书上还写有“通话时间3 h,待机时间100 h”,则该手机通话和待机时消耗的功率分别约为()A.1.8 W,5.4×10-2WB.3.6 W,0.108 WC.0.6 W,1.8×10-2WD.6.48×103 W,1.94×102W3.如图所示的电路,R1、R2、R4均为定值电阻,R3为热敏电阻(温度升高,电阻减小),电源的电动势为E,内阻为r.起初电容器中悬停一质量为m的带电尘埃,当环境温度降低时,下列说法正确的是()A.电压表和电流表的示数都减小B.电压表和电流表的示数都增大C.电压表和电流表的示数变化量之比保持不变D.带电尘埃将向下极板运动4.如图所示,直线A为电源的路端电压与总电流关系的伏安图线,直线B为电阻R两端电压与通过该电阻流关系的伏安图线,用该电源和该电阻组成闭合电路,电源的输出功率和效率分别是()A.2W,66.7%B.2W,33.3%C.4W,33.3%D.4W,66.7%5.如图为某扫地机器人,已知其工作的额定电压为15V,额定功率为30W,充电额定电压为24V,额定电流为0.5A,电池容量为2000mAh,则下列说法中错误的是()A.电池容量是指电池储存电能的大小B.机器人充满电后连续工作时间约为1hC.机器人正常工作时的电流为2AD.机器人充满电大约需要4h6.如图是某款能一件自动上水的全自动智能电热壶,当壶内水位过低时能自动加满水,加热之后的水,时间长了冷却,机器又可以自动加热到设定温度。
第九章稳恒电流一、主要内容本章内容包括电流、产生持续电流的条件、电阻、电压、电动势、内电阻、路端电压、电功、电功率等基本概念,以及电阻串并联的特点、欧姆定律、电阻定律、闭合电路的欧姆定律、焦耳定律、串联电路的分压作用、并联电路的分流作用等规律。
二、基本方法本章涉及到的基本方法有运用电路分析法画出等效电路图,掌握电路在不同连接方式下结构特点,进而分析能量分配关系是最重要的方法;注意理想化模型与非理想化模型的区别与联系;熟练运用逻辑推理方法,分析局部电路与整体电路的关系三、错解分析在本章知识应用的过程中,初学者常犯的错误主要表现在:不对电路进行分析就照搬旧的解题套路乱套公式;逻辑推理时没有逐步展开,企图走“捷径”;造成思维“短路”;对含有电容器的问题忽略了动态变化过程的分析。
例1 如图9-1所示电路,已知电源电动势ε=6.3V,内电阻r=0.5Ω,固定电阻R1=2Ω,R2=3Ω,R3是阻值为5Ω的滑动变阻器。
按下电键K,调节滑动变阻器的触点,求通过电源的电流范围。
【错解】将滑动触头滑至左端,R3与R1串联再与R2并联,外电阻再将滑动触头滑至右端R3与R2串联再与R1并联,外电阻【错解原因】由于平时实验,常常用滑动变阻器作限流用(滑动变阻器与用电器串联)当滑动头移到两头时,通过用电器的电流将最大或最小。
以至给人以一种思维定势:不分具体电路,只要电路中有滑动变阻器,滑动头在它的两头,通过的电流是最大或最小。
【分析解答】将图9—1化简成图9-2。
外电路的结构是R′与R2串联、(R3-R′)与R1串联,然后这两串电阻并联。
要使通过电路中电流最大,外电阻应当最小,要使通过电源的电流最小,外电阻应当最大。
设R3中与R2串联的那部分电阻为R′,外电阻R为因为,两数和为定值,两数相等时其积最大,两数差值越大其积越小。
当R2+R′=R1+R3-R′时,R最大,解得因为R1=2Ω<R2=3Ω,所以当变阻器滑动到靠近R1端点时两部分电阻差值最大。
此时刻外电阻R最小。
通过电源的电流范围是2.1A到3A。
【评析】不同的电路结构对应着不同的能量分配状态。
电路分析的重要性有如力学中的受力分析。
画出不同状态下的电路图,运用电阻串并联的规律求出总电阻的阻值或阻值变化表达式是解电路的首要工作。
例2 在如图9-3所示电路中,R1=390Ω,R2=230Ω,电源内电阻r=50Ω,当K合在1时,电压表的读数为80V;当K合在2时,电压表的读数为U1=72V,电流表的读数为I1=0.18A,求:(1)电源的电动势(2)当K合在3时,两电表的读数。
【错解】(1)因为外电路开路时,电源的路端电压等于电源的电动势,所以ε=U断=80V;【错解原因】上述解答有一个错误的“替代假设”:电路中的电流表、电压表都是理想的电表。
事实上,问题并非如此简单。
如果进一步分析K合在2时的情况就会发现矛盾:I1R1=0.18×390=70.2(V)≠80V,这就表明,电路中的电流表和电压表并非理想的电表。
【分析解答】(1)由题意无法判断电压表、电流表是理想电表。
设RA 、Rv分别为电压表、电流表的内阻,R′为电流表与电阻器R1串联后的电阻,R″为电流表与电阻器R2串联的电阻。
则K合在2时:由上述两式解得:R1=400Ωε=90V【评析】本题告诉我们,有些题目的已知条件隐藏得很深。
仅从文字的表面是看不出来的。
只好通过试算的方法判断。
判断无误再继续进行解题。
例3 如图9-4所示,ε1=3V,r1=0.5Ω,R1=R2=5.5Ω,平行板电容器的两板距离d=1cm,当电键K接通时极板中的一个质量m=4×10-3g,电量为q=1.0×10-7C的带电微粒恰好处于静止状态。
求:(1)K断开后,微粒向什么方向运动,加速度多大?(2)若电容为1000pF,K断开后,有多少电量的电荷流过R2?【错解】当电键K接通电路稳定时、电源ε1和ε2都给电容器极板充电,所以充电电压U=ε1+ε2。
带电粒子处于平衡状态,则所受合力为零,F-mg=0ε2=U-ε1=1(v)当电键K断开后,电容器上只有电源给它充电,U′=ε2。
即带电粒子将以7.5m/s2的加速度向下做匀加速运动。
又 Q1=CU=103×10-12×4=4×10-9CQ′=CU′=103×10-12×1=1×10-9C△Q=Q-Q′=3×10-9C极板上电量减少3×10-9C,也即K断开后,有电量为3×10-9C的电荷从R2由下至上流过。
【错解原因】在直流电路中,如果串联或并联了电容器应该注意,在与电容器串联的电路),但电池、电容两端可能出现电中没有电流,所以电阻不起降低电压作用(如R2势差,如果电容器与电路并联,电路中有电流通过。
电容器两端的充电电压不是电源电动势ε,而是路端电压U。
【分析解答】(1)当K接通电路稳定时,等效电路图如图9-5所示。
ε1、r1和R1形成闭合回路,A,B两点间的电压为:电容器中带电粒子处于平衡状态,则所受合力为零,F-mg=0在B,R2,ε2,C,A支路中没有电流,R2两端等势将其简化,U+ε2=UAB,ε2=U-U AB=1.25V当K断开电路再次达到稳定后,回路中无电流电路结构为图9-6所示。
电容器两端电压U′=ε2=1.25V即带电粒子将以6.875m/s2的加速度向下做匀加速运动。
(2)K接通时,电容器带电量为Q=CU=4×1O-9CK断开时,电容器带电量为Q′=CU′=1.2×10-9(C)△Q=Q—Q′=2.75×10-9C有总量为2.75×10-9(C)的电子从R2由下至上流过。
【评析】本题考查学生对电容器充放电物理过程定性了解程度,以及对充电完毕后电容所在支路的电流电压状态是否清楚。
学生应该知道电容器充电时,随着电容器内部电场的建立,充电电流会越来越小,电容器两极板间电压(电势差)越来越大。
当电容器两端电压与电容器所并联支路电压相等时充电过程结束,此时电容器所在的支路电流为零。
根据这个特点学生应该会用等势的方法将两端等势的电阻简化,画出等效电路图,如本题中的图9-5,图9-6,进而用电路知识解决问题。
例4 如图9-7所示,电源电动势ε=9V,内电阻r=0.5Ω,电阻R1=5.0Ω、R 2=3.5Ω、R3=6.0Ω、R4=3.0Ω,电容C=2.0μF。
当电键K由a与接触到与b接触通过R3的电量是多少?【错解】K接a时,由图9-8可知流过R3的电量为△Q=QC-Q′C =3×10-6(C) 【错解原因】没有对电容器的充电放电过程做深入分析。
图9-8图中电容器的上极板的电势高,图9-9中电容器的下极板的电势高。
电容器经历了先放电后充电的过程。
经过R3的电量应是两次充电电量之和。
【分析解答】K接a时,由图9-8可知此时电容器带电量QC =CU1=I×10-5(C)K接b时,由图9-9可知此时电容器带电量Q′C =CU1=0.7×10-5(C)流过R3的电量为△Q=QC+Q′C=1.7×10-5(C)【评析】对于电容电量变化的问题,还要注意极板电性的正负。
要分析清电容器两端的电势高低,分析全过程电势变化。
例5 在电源电压不变的情况下,为使正常工作的电热器在单位时间内产生的热量增加一倍,下列措施可行的是( )A、剪去一半的电阻丝B、并联一根相同的电阻丝C、串联一根相同的电阻丝D、使电热器两端的电压增大一任【错解】为原来的一半,所以选A、B。
【错解原因】忽略了每根电阻丝都有一定的额定功率这一隐含条件。
【分析解答】将电阻丝剪去一半后,其额定功率减小一半,虽然这样做在理论上满足使热量增加一倍的要求,但由于此时电阻丝实际功率远远大于额定功率,因此电阻丝将被烧坏。
故只能选B。
【评析】考试题与生产、生活问题相结合是今后考试题的出题方向。
本题除了需要满足电流、电压条件之外,还必须满足功率条件:不能超过用电器的额定功率。
例6 如图9-10所示的电路中已知电源电动势ε=36V,内电阻r=2Ω,R 1=20Ω,每盏灯额定功率都是2W,额定电压也相同。
当K闭合调到R2=14Ω时,两灯都正常发光;当K断开后为使L2仍正常发光,求R2应调到何值?【错解】设所求电阻R′2,当灯L1和L2都正常发光时,即通过灯的电流达额定电流I。
【错解原因】分析电路时应注意哪些是恒量,哪些是变量。
图9-10电路中电源电动势ε是恒量,灯L1和L2正常发光时,加在灯两端电压和通过每个灯的电流是额定的。
错解中对电键K闭合和断开两种情况,电路结构差异没有具体分析,此时随灯所在支路电流强度不变,两种情况干路电流强度是不同的,错误地将干路电流强度认为不变,导致了错误的结果。
【分析解答】解法一:设所求阻值R′2,当灯L1和L2正常发光时,加在灯两端电压力额定电压UL。
当K闭合时,ε1=UL+I1(R1+r+R2)当K断开时,ε2=UL+I2(R1+r+R′2),又∵ε1=ε2=ε I1=2I2=2I,(I为额定电流)得ε= UL +2I(R1+r+R2) ①ε=USL+I(R1+r+R′2) ②①-②I(R1+r+2R2-R2′)=0但I≠0,∴R1+r+2R2=R′2即R′2=20+2+2×14=50Ω解法二:设所求阻值R′2,当灯L1和L2正常发光时,加在灯两端电压为额定电压UL,由串联电路电压分析可得:【评析】电路中的局部电路(开关的通断、变阻器的阻值变化等)发生变化必然会引起干路电流的变化,进而引起局部电流电压的变化。
应当牢记当电路发生变化后要对电路重新进行分析。
例7 如图9-11所示,电源电压保持不变,变阻器R1的最大值大于R2的阻值,在滑片P自右向左滑动过程中,R1的电功率如何变化?【错解】采用“端值法”,当P移至最左端时,R1=0,则Rl消耗的电功率变为0,由此可知,当滑片P自右向左滑动过程中,R1的电功率是变小的。
【错解原因】由于题中R1>R2,所以用端值法只假设R1=0是不够的。
【分析解答】因此,在这两种情况时,R1的电功率都是P1<U2/4R,且不难看出,Rl与R2差值越大,P1越小于U2/4R。
综上所述,本题答案应是滑片P自右向左移动时,Rl的电功率逐渐变大;当R 1=R2时R1的电功率最大;继续沿此方向移动P时,R1的电功率逐渐变小。
【评析】电路中某电阻消耗的功率,不止是由本身电阻决定,还应由电路的结构和描述电路的各个物理量决定。
求功率的公式中出现二次函数,二次函数的变化不一定单调变化的,所以在求解这一类问题时,千万要作定量计算或者运用图像进行分析。
例8 如图9-12所示电路,当电键K依次接a和b的位置时,在(1)R1>R2(2)R l =R2(3) R1<R2三种情况时,R1、R2上消耗的电功率哪个大?【错解】(l)根据P=I2R可知,当R1>R2时,P1>P2;当R1=R2时,P1=P2;当Rl<R2时,P 1>P2。