【人教版】2014届高三数学(理)第一轮夯实基础《同角三角函数基本关系与诱导公式》
- 格式:ppt
- 大小:1.60 MB
- 文档页数:47
2014届高三数学总复习 3.3三角函数的图象和性质教案 新人教A 版1. (必修4P 16例1改编)α是第二象限角,tan α=-815,则sin α=________.答案:817解析:由⎩⎪⎨⎪⎧sin 2α+cos 2α=1,sin αcos α=-815,解得sin α=±817.∵ α为第二象限角,∴ sin α>0,∴ sin α=817.2. cos ⎝ ⎛⎭⎪⎫-523π=________. 答案:-12解析:cos ⎝ ⎛⎭⎪⎫-52π3=cos 52π3=cos(17π+π3)=-cos π3=-12.3. sin 2(π+α)-cos(π+α)·cos(-α)+1=________.答案:2解析:原式=(-sin α)2-(-cos α)cos α+1=sin 2α+cos 2α+1=2. 4. (必修4P 21例题4改编)已知cos ⎝ ⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=________.答案:-223解析:cos ⎝ ⎛⎭⎪⎫π12-α=cos[π2-⎝ ⎛⎭⎪⎫5π12+α]=sin ⎝⎛⎭⎪⎫5π12+α.又-π<α<-π2,所以-712π<5π12+α<-π12.所以sin ⎝ ⎛⎭⎪⎫512π+α=-223,所以cos ⎝ ⎛⎭⎪⎫π12-α=-223.5. (必修4P 22习题9(1)改编)已知tan θ=2,则sin ⎝ ⎛⎭⎪⎫π2+θ-cos ()π-θsin ⎝ ⎛⎭⎪⎫π2+θ-sin (π-θ)=__________.答案:-2解析:sin ⎝ ⎛⎭⎪⎫π2+θ-cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2+θ-sin (π-θ)=cos θ-(-cos θ)cos θ-sin θ=2cos θcos θ-sin θ=21-tan θ=21-2=-2.1. 同角三角函数的基本关系(1) 平方关系:sin 2α+cos 2α=1. (2) 商数关系:tan α=sin αcos α.2. 诱导公式记忆规律:奇变偶不变,符号看象限. [备课札记]题型1 同角三角函数的基本关系式例1 (必修4P 23第18题改编)已知α是三角形的内角,且sin α+cos α=15.(1) 求tan α的值; (2) 将1cos 2α-sin 2α用tan α表示出来,并求其值. 解:(1) (解法1)联立方程⎩⎪⎨⎪⎧sin α+cos α=15 ①,sin 2α+cos 2α=1 ②,由①得cos α=15-sin α,将其代入②,整理,得25sin 2α-5sin α-12=0.∵ α是三角形内角,∴ ⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴ tan α=-43.(解法2)∵ sin α+cos α=15,∴ (sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴ 2sin αcos α=-2425,∴ (sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵ sin αcos α=-1225<0且0<α<π,∴ sin α>0,cos α<0.∵ sin α-cos α>0,∴ sin α-cos α=75.由⎩⎪⎨⎪⎧sin α+cos α=15,sin α-cos α=75,得⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴ tan α=-43.(2) 1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=tan 2α+11-tan 2α. ∵ tan α=-43,∴ 1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257.变式训练已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,且θ∈(0,2π).(1) 求sin 2θsin θ-cos θ+cos θ1-tan θ的值;(2) 求m 的值;(3) 求方程的两根及此时θ的值. 解:(1) 由韦达定理可知 ⎩⎪⎨⎪⎧sin θ+cos θ=3+12①,sin θ·cos θ=m2②,而sin 2θsin θ-cos θ+cos θ1-tan θ= sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin θ+cos θ=3+12.(2) 由①两边平方得1+2sin θcos θ=2+32,将②代入得m =32. (3) 当m =32时,原方程变为2x 2-(1+3)x +32=0,解得x 1=32,x 2=12, ∴ ⎩⎪⎨⎪⎧sin θ=32cos θ=12或⎩⎪⎨⎪⎧sin θ=12,cos θ=32.∵ θ∈(0,2π),∴ θ=π6或π3. 例2 (必修4P 23第10(2)题改编)化简: (1+sin α1-sin α-1-sin α1+sin α)·(1+cos α1-cos α-1-cos α1+cos α).解:原式=((1+sin α)2cos 2α-(1-sin α)2cos 2α)((1+cos α)2sin 2α-(1-cos α)2sin 2α)=(1+sin α|cos α|-1-sin α|cos α|)(1+cos α|sin α|-1-cos α|sin α|)=2sin α|cos α|·2cos α|sin α|=⎩⎪⎨⎪⎧4,α在第一、三象限时,-4,α在第二、四象限时. 备选变式(教师专享)已知sin α·cos α<0,sin αtan α>0,化简:cos α2·1-sinα21+sinα2+sin α2·1+cosα21-cosα2=________. 答案:±2sin ⎝ ⎛⎭⎪⎫α2+π4 解析:∵sin α·cos α<0,∴α为第二或第四象限角. 又∵sin α·tan α>0,∴α为第四象限角, ∴α2为第二或四象限角. ∴原式=cos α2·1-sin α2⎪⎪⎪⎪⎪⎪cos α2+sin α2·1+cosα2⎪⎪⎪⎪⎪⎪sin α2=⎩⎪⎨⎪⎧sin α2+cos α2⎝ ⎛⎭⎪⎫α2为第二象限角,-sin α2-cos α2⎝ ⎛⎭⎪⎫α2为第四象限角,∴原式=±2sin ⎝⎛⎭⎪⎫α2+π4.题型2 利用诱导公式进行化简求值例3 已知sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝ ⎛⎭⎪⎫3π2-α-sin (-α)的值.解:∵ sin(α-3π)=2cos(α-4π),∴ -sin(3π-α)=2cos(4π-α), ∴ sin α=-2cos α,且cos α≠0. ∴ 原式=sin α+5cos α-2cos α+sin α=-2cos α+5cos α-2cos α-2cos α=3cos α-4cos α=-34.备选变式(教师专享)已知cos(π+α)=-12,且角α在第四象限,计算:(1) sin(2π-α);(2) sin[α+(2n +1)π]+sin (π+α)sin (π-α)·cos (α+2n π)(n∈Z ).解:∵ cos(π+α)=-12,∴ -cos α=-12,cos α=12.又角α在第四象限,∴ sin α=-1-cos 2α=-32. (1) sin(2π-α)=sin[2π+(-α)]=sin(-α)=-sin α=32.(2)sin[α+(2n +1)π]+sin (π+α)sin (π-α)cos (α+2n π)=sin (α+2n π+π)-sin αsin αcos α=sin (π+α)-sin αsin αcos α=-2sin αsin αcos α=-2cos α=-4.1. (2013·广东文)已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,那么cos α=________. 答案:15解析:sin ⎝⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=15.2. 已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)=________. 答案:-12解析:由条件,知π=a 1+a 5+a 9=3a 5,∴ a 5=π3,∴ cos(a 2+a 8)=cos2a 5=cos 2π3=-12. 3. 已知sin α=13,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=________.答案:-24解析:因为sin α=13,α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-1-19=-223,从而tan α=-24. 4. 已知2tan α·sin α=3,-π2<α<0,则cos(α-π6)=____________.答案:0解析:依题意得2sin 2αcos α=3,即2cos 2α+3cos α-2=0,解得cos α=12或cos α=-2(舍去).又-π2<α<0,因此α=-π3,故cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫-π3-π6=cos π2=0.1. 已知0<x<π,sinx +cosx =15.(1) 求sinx -cosx 的值; (2) 求tanx 的值.解:(1) ∵ sinx +cosx =15,∴ 1+2sinxcosx =125,∴ 2sinxcosx =-2425,又∵ 0<x<π,∴ sinx>0,2sinxcosx =-2425<0,∴ cosx<0,∴sinx -cosx>0,∴ sinx -cosx =1-2sinxcosx =75.(2) sinx +cosx sinx -cosx =17,tanx +1tanx -1=17,tanx =-43.2. 已知3cos 2(π+x)+5cos ⎝ ⎛⎭⎪⎫π2-x =1,求6sinx +4tan 2x -3cos 2(π-x)的值.解:由已知得3cos 2x +5sinx =1,即3sin 2x -5sinx -2=0,解得sinx =-13或sinx =2(舍去).这时cos 2x =1-⎝ ⎛⎭⎪⎫-132=89,tan 2x =sin 2x cos 2x =18,故6sinx +4tan 2x -3cos 2(π-x)=6×⎝ ⎛⎭⎪⎫-13+4×18-3×89=-256.3. 已知在△ABC 中,sinA +cosA =15.(1) 求sinA·cosA;(2) 判断△ABC 是锐角三角形还是钝角三角形; (3) 求tanA 的值.解:(1) 因为 sinA +cosA =15①,两边平方得1+2sinAcosA =125,所以sinA·cosA=-1225. (2) 由(1) sinAcosA =-1225<0,且0<A<π,可知cosA<0,所以A 为钝角,所以△ABC是钝角三角形.(3) (sinA -cosA)2=1-2sinAcosA =1+2425=4925.又sinA>0,cosA<0,sinA -cosA>0, 所以sinA -cosA =75②,所以由①,②可得sinA =45,cosA =-35,则tanA =sinA cosA =45-35=-43.4. 已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ的值.解:因为sin(3π+θ)=-sin θ=13,所以sin θ=-13.原式=-cos θcos θ(-cos θ-1)+cos (2π-θ)-sin ⎝⎛⎭⎪⎫3π2-θcos (π-θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝ ⎛⎭⎪⎫-132=18.1. 利用平方关系解决问题时,要注意开方运算结果的符号,需要根据角α的范围进行确定.2. 应熟练应用诱导公式.诱导公式的应用原则是:负化正、大化小、化到锐角为终了.诱导公式的应用是求任意角的三角函数值,其一般步骤:① 负角变正角,再写成2k π+α(k∈Z ),0≤α<2π;② 转化为锐角.3. 在应用诱导公式时需先将角变形,有一定技巧,如化32π+α为π+⎝ ⎛⎭⎪⎫π2+α或2π-⎝ ⎛⎭⎪⎫π2-α.请使用课时训练(A )第2课时(见活页).[备课札记]。
高考数学第一轮复习:《同角三角函数的基本关系与诱导公式》最新考纲1.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin xcos x =tan x .2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.【教材导读】1.同角三角函数的基本关系中,对任意角均成立吗?提示:在tan α=sin αcos α的关系中,须保证tan α有意义,所以须使α≠π2+k π,k ∈Z . 2.诱导公式的功能是什么?提示:负角化正角,大角化小角,再求值.1.同角三角函数的基本关系式 (1)平方关系 sin 2 α+cos 2 α=1; (2)商数关系 tan α=sin αcos α. 2.诱导公式 组序 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin α -sin α sin α cos α cos_α 余弦 cos α -cos α cos α -cos_α sin α -sin α 正切tan αtan α-tan α-tan_α诱导公式可简记为:奇变偶不变,符号看象限.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) (A)-32 (B)32 (C)-12(D)12D 解析:因为α和β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.故选D.2.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝ ⎛⎭⎪⎫-25π3的值为( )(A)12 (B)-12 (C)32(D)-32A 解析:∵f (α)=sin αcos α(-cos α)·(-tan α)=sin αtan α=cos α,∴f (-25π3)=cos(-25π3)=cos ⎝ ⎛⎭⎪⎫-π3=12.故选A.3.若α=11π3,则tan α·cos α等于( ) (A)12 (B)-12 (C)-32(D)32C 解析:若α=113π,tan α·cos α=sin αcos α·cos α=sin α=sin 113π=sin ⎝ ⎛⎭⎪⎫4π-π3=-sin π3=-32.故选C.4.已知a ∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________.解析:因为a ∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-1-sin 2α=-35,所以tan α=sin αcos α=-43. 答案:-435.已知sin x cos x =38,且x ∈π4,π2,则cos x -sin x =________. 解析:因为x ∈π4,π2, 所以sin x >cos x , 即cos x -sin x <0,所以(cos x -sin x )2=1-2sin x cos x =14,所以cos x -sin x =-12. 答案:-12考点一 同角三角函数的基本关系(1)已知α∈⎝ ⎛⎭⎪⎫π,3π2,tan α=2,则cos α=________.(2)已知sin α+3cos α3cos α-sin α=5,则sin 2 α-sin αcos α的值是( )(A)25 (B)-25 (C)-2(D)2解析:(1)依题意得⎩⎨⎧tan α=sin αcosα=2,sin 2 α+cos 2 α=1,由此解得cos 2 α=15;又α∈⎝ ⎛⎭⎪⎫π,3π2,因此cos α=-55.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,即tan α=2.所以sin2α-sin αcos α=sin2α-sin αcos αsin2α+cos2α=tan2α-tan αtan α+1=25.答案:(1)-55(2)A【反思归纳】同角三角函数关系式的应用技巧(1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)关系式的逆用及变形用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.(3)sin α,cos α的齐次式的应用:分式中分子与分母是关于sin α,cos α的齐次式,或含有sin2α,cos2α及sin αcos α的式子求值时,可将所求式子的分母看作“1”,利用“sin2α+cos2α=1”代换后转化为“切”后求解.【即时训练】已知角α的始终与x轴的非负半轴重合,顶点与坐标原点重合,终边过点P(3,4),则sin α+2cos αsin α-cos α=________.答案:10考点二三角函数的诱导公式(1)化简sin(kπ-α)·cos[(k-1)π-α]sin[(k+1)π+α]·cos(kπ+α),k∈Z;(2)已知sin α=255,求tan(α+π)+sin⎝⎛⎭⎪⎫5π2+αcos⎝⎛⎭⎪⎫5π2-α;(3)化简tan(π-α)cos(2π-α)sin⎝⎛⎭⎪⎫-α+3π2 cos(-α-π)sin(-π-α).解:(1)当k=2n+1(n∈Z)时,原式=sin(2nπ+π-α)·cos(2nπ-α)sin(2nπ+2π+α)·cos(2nπ+π+α)=sin(π-α)·cos αsin α·cos(π+α)=sin α·cos αsin α·(-cos α)=-1;当k =2n (n ∈Z )时,原式=sin (2n π-α)·cos (2n π-π-α)sin (2n π+π+α)·cos (2n π+α)=-sin α·(-cos α)-sin α·cos α=-1.所以原式=sin (k π-α)·cos[(k -1)π-α]sin[(k +1)π+α]·cos (k π+α)=-1.(2)∵sin α=255>0,∴α为第一或第二象限角.当α是第一象限角时,cos α=1-sin 2 α=55,tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α=52.当α是第二象限角时,cos α=-1-sin 2 α=-55,原式=1sin αcos α=-52.(3)方法一:原式=(-tan α)·cos[π+(π-α)]·sin ⎝ ⎛⎭⎪⎫π+π2-αcos (π+α)·[-sin (π+α)]=(-tan α)·[-cos (π-α)]·⎣⎢⎡⎦⎥⎤-sin ⎝ ⎛⎭⎪⎫π2-α(-cos α)·sin α=-tan α·cos α·(-cos α)-cos α·sin α=-tan α·cos αsin α=-sin αcos α·cos αsin α=-1.方法二:原式=-tan α·cos (-α)·sin ⎝ ⎛⎭⎪⎫-α-π2cos (π-α)·sin (π-α)=tan α·cos α·sin ⎝ ⎛⎭⎪⎫α+π2-cos α·sin α=sin αcos α·cos α-sin α=-1.【反思归纳】 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【即时训练】 已知sin(3π+θ)=13, 求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ的值.答案:18考点三 诱导公式与同角关系的综合应用 (高频考点)已知sin θ、cos θ是关于x 的方程x 2-ax +a =0(a ∈R )的两个根.求: (1)cos 3⎝ ⎛⎭⎪⎫π2-θ+sin 3⎝ ⎛⎭⎪⎫π2+θ的值;(2)tan(π-θ)-1tan θ的值. 解:由已知原方程判别式Δ≥0,即(-a )2-4a ≥0,∴a ≥4或a ≤0.又⎩⎪⎨⎪⎧sin θ+cos θ=a ,sin θcos θ=a ,∴(sin θ+cos θ)2=1+2sin θcos θ,即a 2-2a -1=0, ∴a =1-2或a =1+2(舍去), ∴sin θ+cos θ=sin θcos θ=1- 2. (1)cos 3⎝ ⎛⎭⎪⎫π2-θ+sin 3⎝ ⎛⎭⎪⎫π2+θ=sin 3 θ+cos 3 θ=(sin θ+cos θ)(sin 2 θ-sin θcos θ+cos 2 θ) =(1-2)[1-(1-2)]=2-2.(2)tan(π-θ)-1tan θ=-tan θ-1tan θ=-⎝ ⎛⎭⎪⎫tan θ+1tan θ=-⎝ ⎛⎭⎪⎫sin θcos θ+cos θsin θ=-1sin θcos θ=-11-2=2+1.答案:(1)2-2 (2)2+1【反思归纳】 熟练运用诱导公式和同角三角函数基本关系,并确定相应三角函数值的符号是解题的关键.另外,切化弦是常用的规律技巧.【即时训练】 (1)若α为三角形的一个内角,且sin α+cos α=23,则这个三角形是( ) (A)正三角形 (B)直角三角形 (C)锐角三角形(D)钝角三角形(2)若sin α+π6=-513,且α∈π2,π,则sin α+2π3=________. 解析:(1)因为(sin α+cos α)2=1+2sin αcos α=49, 所以sin αcos α=-518<0,所以α为钝角.故选D. (2)因为π2<α<π,所以2π3<α+π6<7π6, cos α+π6=-1--5132=-1213,而sin α+2π3=sin π2+α+π6=cos α+π6=-1213. 答案:(1)D (2)-1213同角关系与诱导公式结合解题教材源题:化简: (1)cos α-π2sin 52π+α·sin(α-2π)·cos(2π-α);(2)cos 2(-α)-tan (360°+α)sin (-α).解:(1)原式=cos π2-αsin π2+α·sin α·cos α=sin αcos α·sin α·cos α=sin 2α.(2)原式=cos 2α-tan α-sin α=cos 3α+1cos α.【规律总结】 三角函数式化简目标方向 (1)用同角关系中切弦互化,统一函数名. (2)用诱导公式统一角.(3)用因式分解将式子变形,化为最简.【源题变式】已知f (x )=sin (2π-x )·cos 32π+xcos (3π-x )·sin 112π-x ,则f -21π4=________.解析:因为f (x )=sin (-x )·sin xcos (π-x )·sin6π-π2+x=sin 2xcos x -sin π2+x =sin 2x -cos 2x =-tan 2x . 所以f -214π=-tan 2-214π=-tan 2-5π-π4=-tan 2-π4=-1.答案:-1课时作业基础对点练(时间:30分钟)1.已知α∈⎝ ⎛⎭⎪⎫π,32π,tan(α+π)=43,则cos ⎝ ⎛⎭⎪⎫α+π4=( )(A)210 (B)-210 (C)7210(D)-7210A 解析:由α∈⎝ ⎛⎭⎪⎫π,32π,tan(α+π)=43,即tan α=43,得sin α=-45,cos α=-35∴cos ⎝ ⎛⎭⎪⎫α+π4=22(cos α-sin α)=22⎝ ⎛⎭⎪⎫-35+45=210.故选A.2.已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,那么cos α=( ) (A)-25(B)-15(C)15 (D)25答案:C3.已知sin ⎝ ⎛⎭⎪⎫x -π4=35,则cos ⎝ ⎛⎭⎪⎫x +π4=( )(A)45 (B)35 (C)-45(D)-35 D 解析:cos ⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫x -π4+π2=-sin ⎝ ⎛⎭⎪⎫x -π4=-35,故选D.4.已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝ ⎛⎭⎪⎫-α-3π2cos ⎝ ⎛⎭⎪⎫3π2-αtan 2(π-α)cos ⎝ ⎛⎭⎪⎫π2-αsin ⎝ ⎛⎭⎪⎫π2+α=( )(A)916 (B)-916 (C)-34 (D)34答案:B5.已知α是第二象限角,则cos α1+tan 2α+sin α·1+1tan 2α的值为( ) (A)-2 (B)2 (C)0(D)3C 解析:原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α|cos α|+sin α|sin α|,∵α为第二象限角,∴sin α>0,cos α<0,∴cos α|cos α|+sin α|sin α|=-1+1=0.故选C.6.在△ABC 中,3sin π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则C 等于( ) (A)π3 (B)π4 (C)π2(D)2π3C 解析:因为3sin π2-A =3sin(π-A ), 所以3cos A =3sin A ,所以tan A =33, 又0<A <π,所以A =π6.又因为cos A =-3cos(π-B ), 即cos A =3cos B , 所以cos B =13cos π6=12,又0<B <π, 所以B =π3.所以C =π-(A +B )=π2.故选C. 7.设f (sin x )=3-cos2x ,则f (cos x )=________. 解析:方法一:f (cos x )=f ⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫π2-x=3-cos 2⎝ ⎛⎭⎪⎫π2-x =3-cos(π-2x )=3+cos 2x .方法二:f (sin x )=3-(1-2sin 2 x )=2+2sin 2 x , ∴f (x )=2+2x 2,∴f (cos x )=2+2cos 2x =3+2cos 2x -1=3+cos 2x . 答案:3+cos 2x8.化简sin ⎝ ⎛⎭⎪⎫4n -14π-α+cos ⎝ ⎛⎭⎪⎫4n +14π-α(n ∈Z )的结果为________. 解析:n 为偶数时,原式=sin ⎝ ⎛⎭⎪⎫-π4-α+cos ⎝ ⎛⎭⎪⎫π4-α =-cos ⎝ ⎛⎭⎪⎫π4-α+cos ⎝ ⎛⎭⎪⎫π4-α=0. n 为奇数时,原式=sin ⎝ ⎛⎭⎪⎫3π4-α+cos ⎝ ⎛⎭⎪⎫5π4-α =cos ⎝ ⎛⎭⎪⎫π4-α-cos ⎝ ⎛⎭⎪⎫π4-α=0. 答案:09.已知cos π6-α=23,则sin α-2π3=________.解析:sin α-2π3=sin -π2-π6-α=-sin π2+π6-α=-cos π6-α=-23.答案:-2310.已知f (α)=sin ⎝ ⎛⎭⎪⎫-α+π2·cos ⎝ ⎛⎭⎪⎫3π2-α·tan (α+5π)tan (-α-π)·sin (α-3π)(1)化简f (α);(2)若α是第三象限角,且cos ⎝ ⎛⎭⎪⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.解:(1)f (α)=cos α·(-sin α)·tan α(-tan α)·(-sin α)=-cos α;(2)∵cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α, ∴sin α=-15,cos α=-52-15=-25 6.∴f (α)=25 6.(3)∵-31π3=-6×2π+5π3,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-6×2π+5π3 =-cos 5π3=-cos π3=-12.11.已知2sin 2α+sin αcos α-3cos 2α=75,求tan α的值.解:由题意得2sin 2α+sin αcos α-3cos 2αsin 2α+cos 2α=75, 所以2tan 2α+tan α-3tan 2α+1=75, 所以10tan 2α+5tan α-15=7tan 2α+7,所以3tan 2α+5tan α-22=0,所以(3tan α+11)(tan α-2)=0,所以tan α=-113或tan α=2.能力提升练(时间:15分钟)12.设f (x )=⎩⎨⎧ s in πx , (x <0),f (x -1)+1, (x ≥0)和g (x )=⎩⎪⎨⎪⎧ cosπx ,(x <12),g (x -1)+1,(x ≥12),则g ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫13+g ⎝ ⎛⎭⎪⎫56+f ⎝ ⎛⎭⎪⎫34的值为( ) (A)2(B)3 (C)4 (D)5 B 解析:∵g (14)=22,g (56)=cos(-16π)+1=32+1,f (13)=sin(-23π)+1=-32+1,f (34)=sin(-π4)+1=-22+1,∴原式=3.故选B.13.已知sin θ=13,θ∈(-π2,π2),则sin(π-θ)·sin(32π-θ)的值为( )(A)229(B)-229 (C)19(D)-19B 解析:∵θ∈(-π2,π2),∴cos θ=1-sin 2θ=223, ∴sin(π-θ)sin(3π2-θ)=-sin θcos θ=-13×223 =-229.故选B.14.在△ABC 中,已知2cos 2A -3cos(B +C )=2,则A =________. 解析:由2cos 2A -3cos(B +C )=2,得2cos 2A -3cos(π-A )=2,即2cos 2A +3cos A -2=0, 得cos A =12或cos A =-2(舍去),则在△ABC 中,A =π3.答案:π315.在三角形ABC 中,求cos 2A +B 2+cos 2C 2的值. 解:在△ABC 中,A +B =π-C ,所以A +B 2=π2-C 2, 所以cos A +B 2=cos π2-C 2=sin C 2,所以cos 2A +B 2+cos 2C 2=sin 2C 2+cos 2C 2=1. 16.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π),求:(1)sin θ1-1tan θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)由根与系数的关系可知⎩⎪⎨⎪⎧ sin θ+cos θ=3+12 ①sin θcos θ=m 2 ②而sin θ1-1tan θ+cos θ1-tan θ=sin 2 θsin θ-cos θ+cos 2 θcos θ-sin θ =sin 2 θ-cos 2 θsin θ-cos θ=sin θ+cos θ=3+12. (2)由①式平方得1+2sin θcos θ=2+32.∴sin θcos θ=34.由②得m 2=34,∴m =32. (3)当m =32时,原方程变为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12,∴⎩⎪⎨⎪⎧ sin θ=32cos θ=12或⎩⎪⎨⎪⎧ cos θ=32sin θ=12. 又∵θ∈(0,2π),∴θ=π3或θ=π6.。
§4.2 同角三角函数基本关系及诱导公式1. 同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2. 下列各角的终边与角α的终边的关系3.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.( × )(2)六组诱导公式中的角α可以是任意角.( × )(3)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( × ) (4)已知sin θ=m -3m +5,cos θ=4-2m m +5,其中θ∈[π2,π],则m <-5或m ≥3.( × )(5)已知θ∈(0,π),sin θ+cos θ=3-12,则tan θ的值为-3或-33.( × )(6)已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是-13.( √ )2. 已知sin(π-α)=log 814,且α∈(-π2,0),则tan(2π-α)的值为( ) A .-255B.255C .±255D.52答案 B解析 sin(π-α)=sin α=log 814=-23,又α∈(-π2,0),得cos α=1-sin 2α=53, tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255.3. 若tan α=2,则2sin α-cos αsin α+2cos α的值为________.答案 34解析 原式=2tan α-1tan α+2=34.4. 已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. 答案 -23解析 sin ⎝⎛⎭⎫α-2π3=sin ⎣⎡⎦⎤-π2-⎝⎛⎭⎫π6-α =-sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. 5. 已知函数f (x )=⎩⎪⎨⎪⎧2cos π3x ,x ≤2 000,x -15,x >2 000,则f [f (2 015)]=________.答案 -1解析 ∵f [f (2 015)]=f (2 015-15)=f (2 000), ∴f (2 000)=2cos 2 000π3=2cos 23π=-1.题型一 同角三角函数关系式的应用例1 (1)已知cos(π+x )=35,x ∈(π,2π),则tan x =________.(2)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43B.54C .-34D.45思维启迪 (1)应用平方关系求出sin x ,可得tan x ; (2)把所求的代数式中的弦转化为正切,代入可求. 答案 (1)43(2)D解析 (1)∵cos(π+x )=-cos x =35,∴cos x =-35.又x ∈(π,2π), ∴sin x =-1-cos 2x =-1-(-35)2=-45,∴tan x =sin x cos x =43. (2)sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=sin 2θcos 2θ+sin θcos θcos 2θ-2sin 2θcos 2θ+1=tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45. 思维升华 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.(1)已知1+sin x cos x =-12,那么cos xsin x -1的值是( )A.12B .-12C .2D .-2(2)已知tan θ=2,则sin θcos θ=________. 答案 (1)A (2)25解析 (1)由于1+sin x cos x ·sin x -1cos x =sin 2x -1cos 2x =-1,故cos xsin x -1=12.(2)sin θcos θ=sin θ·cos θsin 2θ+cos 2θ=tan θtan 2θ+1=222+1=25.题型二 诱导公式的应用例2 (1)已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-72π的值. 思维启迪 (1)将π6+α看作一个整体,观察π6+α与5π6-α的关系.(2)先化简已知,求出cos α的值,然后化简结论并代入求值. 解 (1)∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33, 即cos ⎝⎛⎭⎫5π6-α=-33. (2)∵cos(α-7π)=cos(7π-α) =cos(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-72π =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫72π-α =sin α·tan ⎝⎛⎭⎫π2-α =sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin α·cos αsin α=cos α=35.思维升华 熟练运用诱导公式和基本关系式,并确定相应三角函数值的符号是解题的关键.另外,切化弦是常用的规律技巧.(1)已知sin ⎝⎛⎭⎫α+π12=13,则cos ⎝⎛⎭⎫α+7π12的值为________. (2)已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.答案 (1)-13 (2)-916解析 (1)cos ⎝⎛⎭⎫α+7π12=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π12+π2 =-sin ⎝⎛⎭⎫α+π12=-13. (2)∵方程5x 2-7x -6=0的根为-35或2,又α是第三象限角,∴sin α=-35,∴cos α=-1-sin 2α=-45,∴tan α=sin αcos α=-35-45=34,∴原式=cos α(-sin α)sin α·cos α·tan 2α=-tan 2α=-916.题型三 三角函数式的求值与化简例3 (1)已知tan α=13,求12sin αcos α+cos 2α的值;(2)化简:tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)sin (-π-α).思维启迪 三角函数式的化简与求值,都是按照从繁到简的形式进行转化,要认真观察式子的规律,使用恰当的公式. 解 (1)因为tan α=13,所以12sin αcos α+cos 2α=sin 2α+cos 2α2sin αcos α+cos 2α=tan 2α+12tan α+1=23.(2)原式=-tan α·cos α·(-cos α)cos (π+α)·(-sin (π+α)) =tan α·cos α·cos α-cos α·sin α=sin αcos α·cos α-sin α=-1.思维升华 在三角函数式的求值与化简中,要注意寻找式子中的角,函数式子的特点和联系,可以切化弦,约分或抵消,减少函数种类,对式子进行化简.(1)若α为三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形(2)已知tan α=2,sin α+cos α<0, 则sin (2π-α)·sin (π+α)·cos (π+α)sin (3π-α)·cos (π-α)=________.答案 (1)D (2)-255解析 (1)∵(sin α+cos α)2=1+2sin αcos α=49,∴sin αcos α=-518<0,∴α为钝角.故选D.(2)原式=-sin α·(-sin α)·(-cos α)sin α·(-cos α)=sin α,∵tan α=2>0,∴α为第一象限角或第三象限角. 又sin α+cos α<0,∴α为第三象限角, 由tan α=sin αcos α=2, 得sin α=2cos α代入sin 2α+cos 2α=1, 解得sin α=-255.方程思想在三角函数求值中的应用典例:(5分)已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.思维启迪 利用同角三角函数基本关系,寻求sin θ+cos θ,sin θ-cos θ和sin θcos θ的关系. 规范解答解析 方法一 因为sin θ+cos θ=713,θ∈(0,π),所以(sin θ+cos θ)2=1+2sin θcos θ=49169,所以sin θcos θ=-60169.由根与系数的关系,知sin θ,cos θ是方程x 2-713x -60169=0的两根,所以x 1=1213,x 2=-513.因为θ∈(0,π),所以sin θ>0,cos θ<0. 所以sin θ=1213,cos θ=-513.所以tan θ=sin θcos θ=-125.方法二 同法一,得sin θcos θ=-60169,所以sin θcos θsin 2θ+cos 2θ=-60169.弦化切,得tan θtan 2θ+1=-60169,即60tan 2θ+169tan θ+60=0, 解得tan θ=-125或tan θ=-512.又θ∈(0,π),sin θ+cos θ=713>0,sin θcos θ=-60169<0. 所以θ∈(π2,3π4),所以tan θ=-125.方法三 解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713sin 2θ+cos 2θ=1得,⎩⎨⎧sin θ=1213cos θ=-513或⎩⎨⎧sin θ=-513cos θ=1213(舍).故tan θ=-125.答案 -125温馨提醒 三种解法均体现了方程思想在三角函数求值中的应用.利用已知条件sin θ+cos θ=713和公式sin 2θ+cos 2θ=1可列方程组解得sin θcos θ,sin θ-cos θ,也可以利用一元二次方程根与系数的关系求sin θ、cos θ.各解法中均要注意条件θ∈(0,π)的运用,谨防产生增解.方法与技巧同角三角恒等变形是三角恒等变形的基础,主要是变名、变式.1. 同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2. 三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x 化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sinθcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝⎛⎭⎫1+1tan 2θ=tan π4=…. 失误与防范1. 利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐. 特别注意函数名称和符号的确定.2. 在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 3. 注意求值与化简后的结果一般要尽可能有理化、整式化.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. α是第四象限角,tan α=-512,则sin α等于 ( )A.15B .-15C.513D .-513答案 D解析 ∵tan α=sin αcos α=-512,∴cos α=-125sin α,又sin 2α+cos 2α=1,∴sin 2α+14425sin 2α=16925sin 2α=1.又sin α<0,∴sin α=-513.2. 已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) A .-32B.32C .-12D.12答案 D解析 因为α和β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.3. 已知sin(π-α)=-2sin(π2+α),则sin α·cos α等于( )A.25B .-25C.25或-25D .-15答案 B解析 由sin(π-α)=-2sin(π2+α)得sin α=-2cos α,所以tan α=-2,∴sin α·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25,故选B. 4. 已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝⎛⎭⎫-25π3的值为( )A.12B .-12C.32D .-32答案 A解析 ∵f (α)=sin αcos α-cos α·(-tan α)=cos α,∴f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3 =cos ⎝⎛⎭⎫8π+π3=cos π3=12.5. 已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是 ( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2} 答案 C解析 当k =2n (n ∈Z )时,A =sin (2n π+α)sin α+cos (2n π+α)cos α=2; 当k =2n +1(n ∈Z )时,A =sin (2n π+π+α)sin α+cos (2n π+π+α)cos α=-2. 故A 的值构成的集合为{-2,2}.二、填空题6. 化简:sin ⎝⎛⎭⎫α+3π2·tan (α+π)sin (π-α)=________. 答案 -1解析 原式=-cos α·tan αsin α=-sin αsin α=-1. 7. 如果cos α=15,且α是第一象限的角,那么cos(α+3π2)=________. 答案 265 解析 ∵cos α=15,α为第一象限角, ∴sin α=1-cos 2α= 1-(15)2=265, ∴cos(α+3π2)=sin α=265. 8. 化简:sin 2(α+π)·cos (π+α)·cos (-α-2π)tan (π+α)·sin 3(π2+α)·sin (-α-2π)=________.答案 1解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1. 三、解答题9. 已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. 解 (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=925. 又π2<θ<π,∴cos θ=-35. ∴tan θ=sin θcos θ=-43. (2)由(1)知,sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857. 10.已知sin θ,cos θ是关于x 的方程x 2-ax +a =0(a ∈R )的两个根,求cos 3(π2-θ)+sin 3(π2-θ)的值.解 由已知原方程的判别式Δ≥0,即(-a )2-4a ≥0,∴a ≥4或a ≤0.又⎩⎪⎨⎪⎧sin θ+cos θ=asin θcos θ=a,(sin θ+cos θ)2=1+2sin θcos θ, 则a 2-2a -1=0,从而a =1-2或a =1+2(舍去),因此sin θ+cos θ=sin θcos θ=1- 2.∴cos 3(π2-θ)+sin 3(π2-θ)=sin 3θ+cos 3θ =(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ)=(1-2)[1-(1-2)]=2-2.B 组 专项能力提升(时间:25分钟,满分:43分)1. 已知sin θ=-13,θ∈(-π2,π2),则sin(θ-5π)sin(32π-θ)的值是 ( ) A.229B .-229C .-19 D.19 答案 B解析 ∵sin θ=-13,θ∈(-π2,π2), ∴cos θ=1-sin 2θ=223. ∴原式=-sin(π-θ)·(-cos θ)=sin θcos θ=-13×223=-229. 2. 当0<x <π4时,函数f (x )=cos 2x cos x sin x -sin 2x的最小值是 ( )A.14B.12 C .2 D .4 答案 D解析 当0<x <π4时,0<tan x <1, f (x )=cos 2x cos x sin x -sin 2x =1tan x -tan 2x, 设t =tan x ,则0<t <1,y =1t -t 2=1t (1-t )≥1[t +(1-t )2]2=4. 当且仅当t =1-t ,即t =12时等号成立. 3. 已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 答案 0解析 cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ =-cos ⎝⎛⎭⎫π6-θ=-a .sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a , ∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 4. 已知f (x )=cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z ). (1)化简f (x )的表达式; (2)求f (π2 014)+f (503π1 007)的值. 解 (1)当n 为偶数,即n =2k (k ∈Z )时,f (x )=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2=sin 2x ;当n 为奇数,即n =2k +1(k ∈Z )时,f (x )=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )]=cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2=sin 2x ,综上得f (x )=sin 2x .(2)由(1)得f (π2 014)+f (503π1 007) =sin 2π2 014+sin 21 006π2 014 =sin 2π2 014+sin 2(π2-π2 014) =sin 2π2 014+cos 2π2 014=1. 5. 已知在△ABC 中,sin A +cos A =15. (1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解 (1)∵sin A +cos A =15,①∴两边平方得1+2sin A cos A =125, ∴sin A cos A =-1225. (2)由sin A cos A =-1225<0,且0<A <π, 可知cos A <0,∴A 为钝角,∴△ABC 是钝角三角形.(3)∵(sin A -cos A )2=1-2sin A cos A =1+2425=4925, 又sin A >0,cos A <0,∴sin A -cos A >0,∴sin A -cos A =75.② ∴由①,②可得sin A =45,cos A =-35, ∴tan A =sin A cos A =45-35=-43.。
城东蜊市阳光实验学校一.课题:同角三角函数的根本关系与诱导公式二.教学目的:1.掌握同角三角函数的根本关系式及诱导公式;并能运用这些公式进展求值、化简与证明.三.教学重点:公式的恰中选用及利用公式时符号的正确选取.四.教学过程:〔一〕主要知识:1.同角三角函数的根本关系式:〔1〕倒数关系:tan cot 1αα⋅=; 〔2〕商数关系:sin cos tan ,cot cos sin αααααα==; 〔3〕平方关系:22sin cos 1αα+=.2.诱导公式,奇变偶不变,符号看象限.〔二〕主要方法:1.利用同角三角函数的根本关系式时要细心观察题目的特征,注意公式的合理选用,特别要注意开方时的符号选取,切割化弦是常用的方法;2.学会利用方程的思想解三角题,对于sin cos ,sin cos ,sin cos αααααα+⋅-三个式子中,其中一个式子的值,可求其余两个式子的值.〔三〕例题分析:例1.化简sin tan tan (cos sin )cot s c c ααααααα+-++ 分析:切割化弦是解此题的出发点.解:原式sin sin sin (cos sin )cos sin cos 1cos sin sin ααααααααααα+-=+=+. 例2.化简〔1〕sin()cos()44ππαα-++; 〔2〕32,cos(9)5παπαπ<<-=-,求11cot()2πα-的值. 解:〔1〕原式sin()cos[()]424πππαα=-++-sin()sin()044ππαα=---=. 〔2〕3cos()cos(9)5απαπ-=-=-,∴3cos 5α=, ∵2παπ<<,∴4sin 5α=-,sin 4tan cos 3ααα==, ∴1134cot()cot()tan 223ππααα-=--=-=. 例3.〔1〕假设tan α=,求值①cos sin cos sin αααα+-;②222sin sin cos cos αααα-+.〔2〕求值66441sin cos 1sin cos x x x x----. 解:〔1〕①原式sin 1cos 3sin 1cos αααα+===---. ②∵2211cos 1tan 3αα==+,∴原式22cos (2tan tan 1)ααα=-+=. 〔2〕∵66224224sin cos (sin cos )(sin sin cos cos )x x x x x x x x +=+-⋅+2222222(sin cos )3sin cos 13sin cos x x x x x x =+-⋅=-⋅.又∵442222222sin cos (sin cos )2sin cos 12sin cos x x x x x x x x +=+-⋅=-⋅. ∴原式66441sin cos 31sin cos 2x x x x --==--. 例4.sin ,cos θθ是方程244210x mx m -+-=的两个根,322πθπ<<,求角θ. 解:∵2sin cos 21sin cos 416(21)0m m m m θθθθ+=⎧⎪-⎪⋅=⎨⎪⎪∆=-+≥⎩,代入2(sin cos )12sin cos θθθθ+=+⋅,得m =,又322πθπ<<,∴21sin cos 04m θθ-⋅=<,sin cos m θθ+==1sin 2θθ==,又∵322πθπ<<, ∴56πθ=.〔四〕稳固练习:1.假设(cos )cos 2f x x =,(sin15)f = 〔D 〕2.1sin cos (0)5αααπ+=-≤≤,那么tan α=34-. 五.课后作业:高考A 方案考点25,智能训练4,6,7,9,10,12,15,16.。