四川省成都市青羊区树德中学2014-2015学年七年级下学期5月月考数学试卷 (解析版)
- 格式:doc
- 大小:259.51 KB
- 文档页数:17
立德中学七年级(下)数学试卷(时间 120 分钟满分 150 分 ) 命题人 宣以好A 卷( 100 分)一、选择题 (每题 3 分 ,共 36 分 ).1.以下图案是几种名车的标记,请你指出,在这几个图案中是轴对称图形的共有( )雪佛兰 三菱 雪铁龙 丰田A.4 个 个 个 个2.在代数式1a bac ,3b, , 3x 2 4x 2 , x y , ab , 0, b中,25 xya 以下结论正确 的是 ( )..A .有 4 个单项式, 2 个多项式B .有 4 个单项式, 3 个多项式C .有 7 个整式D .有 3 个单项式, 2 个多项式3.以下四个算式: ( 1) a 2a3a ;( 2) x 3 x 3x 6 ;( 3) m 3 ( m)5 ( m) 5m 3 ;( 4) (4x 22x) 2x2x ,此中错误 的个数为()..A . 1B .2C .3D . 44..等腰三角形一腰上的高与另一腰的夹角为20o ,则顶角的度数为()A . 70oB. 55oC. 110oD. 70o 或 110o5..如图 1,若∠ AOB = 180o ,∠ 1 是锐角,则∠ 1 的余角是()A . 1∠2-∠1B. 1(∠ 2-∠ 1)22C.1∠2-3∠1D. 1(∠ 2+∠ 1)2 236.同时投掷两枚质地平均的正方体,正方体的六个面上分别刻有1 到 6 的整数,以下事件是不行能 事件的是(...)A. 点数之和为 13B .点数之和小于 3 C. 点数之和大于 4且小于 8 D. 点数之和为 127.等腰三角形的三边均为整数,且周长为11,则底边是( )A .1或3B .3或5C .1或3或 5D .1或3或5或 78.王老师骑车上班,最先以某一速度匀速行进,半途因为自行车发生故障,停下修车耽搁了几分钟,为了准时到校,王老师加速了速度, 仍保持匀速行进, 结果准时抵达学校。
在下边的表示图中, 能正确地表示自行车行进行程s (千米)与行进时间 t (小时)的表示图的是( )9.以下说法中,正确的是()..A.近似数 5 百与 500 的精准度是同样的 .B .近似数 5.05 是精准到0.01 的数,它有 3 个有效数字C. .近似数 55.0 与 55 是同样的 .D. 近似数 5.05 是精准到百分位的数,它的有效数字是 5 和 0.10.如图2,PD⊥ AB于D,PE⊥ AC于E,且PD=PE,则△ APD与△ APE全等的原因是()A.SSS B.ASA C.SSA D.HL11.在以下结论中:( 1)有一个外角是120°的等腰三角形是等边三角形(2)有两个外角相等的等腰三角形是等边三角形(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形(4)三个外角都相等的三角形是等边三角形。
成都树德中学七年级下册数学期末试卷测试卷附答案一、解答题1.已知,//AE BD ,A D ∠=∠. (1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.2.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)3.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 4.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.5.已知:AB ∥CD ,截线MN 分别交AB 、CD 于点M 、N .(1)如图①,点B 在线段MN 上,设∠EBM =α°,∠DNM =β°,且满足30-a +(β﹣60)2=0,求∠BEM 的度数;(2)如图②,在(1)的条件下,射线DF 平分∠CDE ,且交线段BE 的延长线于点F ;请写出∠DEF 与∠CDF 之间的数量关系,并说明理由;(3)如图③,当点P 在射线NT 上运动时,∠DCP 与∠BMT 的平分线交于点Q ,则∠Q 与∠CPM 的比值为 (直接写出答案).二、解答题6.如图,已知//AB CD P ,是直线AB CD ,间的一点,PF CD ⊥于点F PE ,交AB 于点120E FPE ∠=︒,.(1)求AEP ∠的度数;(2)如图2,射线PN 从PF 出发,以每秒40︒的速度绕P 点按逆时针方向旋转,当PN 垂直AB时,立刻按原速返回至PF后停止运动:射线EM从EA出发,以每秒15︒的速度绕E 点按逆时针方向旋转至EB后停止运动,若射线PN,射线EM同时开始运动,设运动间为t秒.①当20MEP∠=︒时,求EPN∠的度数;EM PN时,求t的值.②当//7.如图1,E点在BC上,∠A=∠D,AB∥CD.(1)直接写出∠ACB和∠BED的数量关系;(2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H 大60°,求∠E;(3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由.8.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,∴∠B=∠EAB,∠C=又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.9.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.10.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.三、解答题11.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.12.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,∠ADC =α°,∠ABC =β°,求∠AEC 的度数;(3)如图3,PQ ⊥MN 于点O ,点A 是平面内一点,AB 、AC 交MN 于B 、C 两点,AD 平分∠BAC 交PQ 于点D ,请问ADPACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.13.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E ,求∠CEN 的度数;(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)14.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)15.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N ,在点C 的运动过程中,探索∠N:∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】一、解答题1.(1)见解析;(2) 【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E 作,延长DC 至Q ,过点M 作,根据平行线的性质及等量代换可得出,再根据平角的解析:(1)见解析;(2)72︒ 【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案. 【详解】 (1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠ //AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠//CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠ 2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒ 18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒ 189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.2.(1)见解析;(2)55°;(3) 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数. 【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒,55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒; ②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=,1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD ∠的度数为1118022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.3.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB =∠CBN ,当∠ACB =∠ABD 时,则有∠CBN =∠ABD ,∴∠ABC +∠CBD =∠CBD +∠DBN ,∴∠ABC =∠DBN ,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠ABC ,∠PBN =2∠DBN ,∴∠ABP =∠PBN =2∠DBN =12∠ABN ,∵AM ∥BN ,∴∠A +∠ABN =180°, ∴12∠A +12∠ABN =90°, ∴12∠A +2∠DBN =90°, ∴14∠A +∠DBN =12(12∠A +2∠DBN )=45°. 【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键. 4.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180°∴∠BCF =135°-4a ,∴∠AFC =∠BCF =135°-4a ,又∵AM //CN ,∴∠AFC +∠ NCF =180°,即:∠AFC +∠BCN +∠BCF =180°,∴135°-4a +135°-4a +2a =180,解得a =15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键. 5.(1)30°;(2)∠DEF+2∠CDF =150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)12【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】解:(1)∵30α-+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB ∥CD ,∴∠BME =∠MEC ,∠BMP =∠PND ,∵∠MEC =∠Q +∠DCQ ,∴2∠MEC =2∠Q +2∠DCQ ,∴∠PMB =2∠Q +∠PCD ,∵∠PND =∠PCD +∠CPM =∠PMB ,∴∠CPM =2∠Q ,∴∠Q 与∠CPM 的比值为12, 故答案为:12.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 二、解答题6.(1);(2)①或;②秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间解析:(1)30;(2)①2803︒或403︒;②185秒或5411或9011秒 【分析】(1)通过延长PG 作辅助线,根据平行线的性质,得到90∠=︒PGE ,再根据外角的性质可计算得到结果;(2)①当20MEP ∠=︒时,分两种情况,Ⅰ当ME 在AE 和EP 之间,Ⅱ当ME 在EP 和EB 之间,由20MEP ∠=︒,计算出EM 的运动时间t ,根据运动时间可计算出FPN ∠,由已知120FPE ∠=︒可计算出EPN ∠的度数; ②根据题意可知,当//EM PN 时,分三种情况,Ⅰ射线PN 由PF 逆时针转动,//EM PN ,根据题意可知15AEM t ∠=︒,40FPN t ∠=︒,再平行线的性质可得AEM AHP ∠=∠,再根据三角形外角和定理可列等量关系,求解即可得出结论;Ⅱ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,//ME PN ,15GHP t ∠=︒,可计算射线PN 的转动度数1809015t ︒+︒-︒,再根据PN 转动可列等量关系,即可求出答案;Ⅲ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,940()2GPN t ∠=-︒,根据(1)中结论,30PEG ∠=︒,60PGE ∠=,可计算出PEM ∠与EPN ∠代数式,再根据平行线的性质,可列等量关系,求解可得出结论.【详解】解:(1)延长FP 与AB 相交于点G ,如图1,PF CD ⊥,90PFD PGE ∴∠=∠=︒,EPF PGE AEP ∠=∠+∠,1209030AEP EPF PGE ∴∠=∠-∠=︒-︒=︒;(2)①Ⅰ如图2,30AEP ∠=︒,20MEP ∠=︒,10AEM ∴∠=︒,∴射线ME 运动的时间102153t ==(秒), ∴射线PN 旋转的角度2804033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,8028012033EPN EPF EPN ︒︒∴∠=∠-∠=︒-=;Ⅱ如图3所示,30AEP ∠=︒,20MEP ∠=︒,50AEM ∴∠=︒,∴射线ME 运动的时间5010153t ==(秒), ∴射线PN 旋转的角度104004033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,4004012033EPN FPN EPF ︒︒∴∠=∠-∠=-︒=; EPN ∴∠的度数为2803︒或403︒;②Ⅰ当PN 由PF 运动如图4时//EM PN ,PN 与AB 相交于点H ,根据题意可知,经过t 秒,15AEM t ∠=︒,40FPN t ∠=︒,//EM PN ,15AEM AHP t ∴∠=∠=︒,又=FPN PGH PHA ∠∠+∠,409015t t ∴︒=︒+︒, 解得185t =(秒);Ⅱ当PN 运动到PG ,再由PG 运动到如图5时//EM PN ,PN 与AB 相交于点H ,根据题意可知,经过t 秒,15AEM t ∠=︒,//EM PN ,15GHP t ∴∠=︒,9015GPH t ∠=︒-︒,PN ∴运动的度数可得,18040GPH t ︒+∠=︒,解得5411t =;Ⅲ当PN 由PG 运动如图6时,//EM PN ,根据题意可知,经过t 秒,15AEM t ∠=︒,40180GPN t ∠=-︒,30AEP ∠=︒,60EPG ∠=︒,1530PEM t ∴∠=︒-︒,24040EPN t ∠=︒-,又//EM PN ,180PEM EPN ∴∠+∠=︒,153040240180t t ∴︒-︒+-︒=︒, 解得9011t =(秒), 当t 的值为185秒或5411或9011秒时,//EM PN .【点睛】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键.7.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据ABCD 可得∠DFB=∠D ,则∠DFB=∠A ,可得ACDF ,根据平行线的性质得∠A解析:(1)∠ACB +∠BED =180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据AB //CD 可得∠DFB =∠D ,则∠DFB =∠A ,可得AC //DF ,根据平行线的性质得∠ACB +∠CEF =180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠, ∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 8.(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【详解】解:(1)过点A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案为:∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE =12∠ABC =30°,∠CDE =12∠ADC =35°,∴∠BED =∠BEF +∠DEF =30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算. 9.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC ∠=∠,理由如下://DE BA ,EDF BFD ∴∠=∠,//DF CA ,BA BFD C ∴∠=∠,EDF BAC ∴∠=∠;(2)//DE BA ,理由如下:如图,延长BA 交DF 于点O ,//DF CA ,BAC BOD ∴∠=∠,EDF BAC ∠=∠,EDF BOD ∴∠=∠,//DE BA ∴;(3)由题意,有以下两种情况:①如图3-1,EDF BAC ∠=∠,理由如下://DE BA ,180E EAF ∴∠+∠=︒,//DF CA ,180E EDF ∴∠+∠=︒,EAF EDF ∴∠=∠,由对顶角相等得:BAC EAF ∠=∠,EDF BAC ∴∠=∠;②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.10.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=1×90°=45°;2x+1,则G点坐标为(0,1),然(3)先根据待定系数法确定直线AC的解析式为y=12后利用S△PAC=S△APG+S△CPG进行计算.【详解】解:(1)由题意知:a=−b,a−b+4=0,解得:a=−2,b=2,∴ A(−2,0),B(2,0),C(2,2),∴S△ABC=1AB BC=4;2(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=1×90°=45°;2(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A (−2,0)、C (2,2)代入得:-2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.三、解答题11.(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.【分析】(1)根据题意,当点P 与点E 、F 在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出GEP EGP ∠=∠=60°,计算∠PFD 即可;(2)根据点P 是动点,分三种情况讨论:①当点P 在AB 与CD 之间时;②当点P 在AB 上方时;③当点P 在CD 下方时,分别求出∠AEP 、∠EPF 、∠CFP 之间的关系即可.【详解】(1)当点P 与点E 、F 在一直线上时,作图如下,∵AB ∥CD ,∠FHP=60°,GEP EGP ∠=∠,∴GEP EGP ∠=∠=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP 、∠EPF 、∠CFP 之间满足的关系式为:∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,故答案为:∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP .【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.12.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E= 12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E ,∴∠E=12(∠D+∠B ), ∵∠ADC=50°,∠ABC=40°,∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F ,∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D ,∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD =∠B+∠BAE -12(∠B+∠BAD+∠D ) = 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠ 理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F ,,PQ MN ⊥90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠,OEB CAD ADP ∴∠-∠=∠2,ADP ACB ABC ∠=∠-∠ 1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.13.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN 中,用三角形内角和定理即可求出;(2)由∠BON =30°,∠N=30°可得MN ∥CB ,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN 中,用三角形内角和定理即可求出;(2)由∠BON =30°,∠N =30°可得MN ∥CB ,再根据两直线平行,同旁内角互补即可求出∠CEN 的度数.(3)画出图形,求出在MN ⊥CD 时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.14.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.15.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于1;理由如下:2∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。
54D3E 21C B A 中学2014---2015学年下学期第三次月考七年级数学试卷友情提示: 亲爱的同学,现在是检验你三个月以来学习情况的时候,相信你能沉着、冷静,发挥出平时的水平,祝你考出好的成绩。
一、 细心选一选:(下列各题中有四个选项只有一个正确,请将正确答案选出来,1.如右图,下列能判定AB ∥CD 的条件有( )个. (1)︒=∠+∠180BCD B ; (2)21∠=∠;(3)43∠=∠;(4)5∠=∠B . A.1 B.2 C.3 D.4 2.关于X 的一元一次不等式(m-1)X ﹥4的解集是X ﹤-1,则( ) A. m < 0 B. m > -3 C. m < -3 D. m = - 3 3.在-0.3,4,316-,-π,2.010010001……(相邻两个1之间依次多一个0)中,无理数的个数有( )A 、3个B 、4个C 、5个D 、6个 4、-27的立方根与81的平方根之和是( )A 、3B 、-6C 、0或-6D 、65. 如图,表示下列某个不等式的解集,其中正确的是 ( ) A. x >2 B. x <2 C. x≥2 D. x≤-26. 小丽准备用10元钱买笔和笔记本,已知每枝笔2元,每个笔记本1.5元,她买了2个笔记本,她最多还能买笔 ( )A . 2枝B .3枝C .4枝D .5枝7. 一艘船的顺流的速度是80千米/时,逆流的速度是60千米/时,则水流的速度为 A. 10千米/时 B. 20千米/时 C. 30千米/时 D. 40千米/时8、在直角坐标系中,点P (-2,3)先向右平移3个单位长度,再向下平移5个单位长度后的坐标为( )A .(-5,8) B.(1,-2) C.(1,2) D.(-5,-2)9、已知坐标平面内点M(a,b)在第三象限,那么点N(b, -a)在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.若2-x +|a +1|=0,则a x =( )A .2B .-1C .1D .0 二、认真填一填( 每小题3分,共30分) 11.若方程2x1-m +ymn +2=21是二元一次方程,则mn = 。
成都市某区名校七年级下数学5月月考试卷真卷精编(考试时间:120分 满分:150分)A 卷(共100分)一、选择题(每小题3分,共30分)1、下列计算正确的是( )A. 532a a a =+B. 236a a a =÷C. 235=-x xD. ()363282b a b a -=-2、生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为( )A. 6103.4⨯米B. 6103.4-⨯米C. 5103.4-⨯米D. 7103.4⨯米3、下列图形中;是轴对称图形的是( ) A. B. C. D.4、下列事件为必然事件的是( )A.同位角相等B.任意买一张电影票座位号为奇数C.打开电视机,正播放动画片D.等边三角形的每个角为60°5、若32=+y x ,则代数式142-+y x 的值是( )A. 0B. 2C. 5D. 86、已知等腰三角形中,顶角比底角大30°,则底角的度数为( )A. 70°B. 60°C. 50°D. 40°7、如图,已知等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2=( )A. 65°B. 55°C. 45°D. 35°8、如图,已知∠1=∠2,则不一定使△ABD ≅△DCA 成立的条件是( ) A. ∠BAD=∠CDA B. ∠B=∠C C. BD=CA D. AB=DC9、如图,在四边形ABCD 中,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到点D 为止。
在这个过程中,△APD 的面积S 随时间t 的变化关系用图象表示正确的是( )A. B. C. D.10、如图,已知AD 是△ABC 的角平分线,DF ⊥AB,垂足为点F, DE=DM, △ADM 和△AED 的面积分别为58和40,则△EDF 的面积为( )A. 11B. 10C. 9D. 8二、填空题(每小题4分,共16分)11、已知25=a ,35=b ,则b a +25= 。
七年级下数学五月月考试题一、选择题(每小题3分,共30分)1、下列计算正确的是()A、a + a = 2aB、m6 -^m2 = m3C、t -t3 =t3D、2x2+ x2 = 2x22> 2008年北京奥运会主会场“鸟巢”的座位数是91000个,这个数用科学记数发表示为()A、0.91X105B、9.1xl04C、91xl03D、9.1xl033、下列交通标志,不是轴对称图形的是()A A /ckA B C D4、如图,在AABC中,AB=AC=10cm, DE是AB的中垂线,Z\BDC的周长为16Ccm, 则BC的长为()cmA、5B、6C、8D、10A、60°B、45°C、30°D、15°6、下列说法错误的是()A、三角形的中线、高线、角平分线都是线段B、任意三角形的内角和都是180°C、直角三角形的两锐角互余D、三角形按角分类:分为锐角三角形、直角三角形和等腰三角形7、如图,用尺规作ZAOB的平分线,方法如下:以O点为圆心任意长为半径画孤交OA, OB与C、D两点,再分以C、D为圆心,以大于LCD为半径画弧,两弧交于点2 P,作射线OP,由做法的左OCP£Z\ODP的根据是()A、SASB、ASAC、AASD、SSS8、 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行, 按时赶到了学校。
右图描述他上学的情景,下列说法错误的是()A 、修车时间为15分钟B 、学校离家的距离为2000米C 、到达学校是共用时间20分钟D 、自行车发生故障时离家距离为1000米9、 同一平面内三条直线a 、b^ c,如果a_Lb, b 〃c,贝U a 和c 的位置关系是()A 、平行B 、垂直C 、相交但不垂直D 、重合 10、 能使两个直角三角形全等的条件是()A 、两直角边对应相等B 、一锐角对应相等C 、两锐角对应相等D 、斜边相等 二、填空题(每小题4分,共16分)11、 等腰三角形有两边为5和6,则它的周长为12、 如图,直线 AB 〃CD,若ZB=40° , ZAOB=60° ,则ZD=13、 如图,直线AB 和CD 相交于O 点,OD 平分ZBOF, ZAOC=40° ,则ZEOF-14、 ^x 2+6x + m 是一个完全平方式,则m 的值是三、解答题(第15题,每小题5分,第16题5分,共20分)15> (1)计算:2a//)2 (3) 计算:[(x + yXx-y)-(x-y)2]+(2y) 16、先化简,再求值:(3x-2yX% + y )-x (3x- y ),其中 x = ^,y = 4(2)计算: _(3.14_勿)°四、(第17题,每小题6分,第18题6分,共18分)17、(1)已知:如图,AB=AD, AC=AE, Z1=Z2,求证:BC=DE(2)如图,在Z^ABC中,ZC=90° , BD平分ZABC,交AC于点D,过点D作DE ±AB于点E,点E恰好为AB的中点,若DE=2, BD=4.求AC的长。
成都市青羊区2014-2015学年下期初2017届摸底测试七年级数学(下)一、选择题。
(每题3分,共30分)1.下列运算错误是( )A.()222a b a b +=+ B.235a a a ⋅=C.()()22a b a b a b +-=-D.347a a a += 2012,,0.833a b c π--⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭,则,,a b c 三数的大小是( ) A.a b c >> B.c a b >> C.c b a >> D.a c b >>3.为了做一个试管架,在长为a cm (6a >cm )的木板上钻3个小孔,每个小孔的直径为2cm ,则x 等于( )A.34a -cmB.34a +cmC.64a -cmD.64a +cm4.下列事件为必然事件的是( )A.任意买一张电影票,座位号是奇数C.打开电视机,正在播放纪录片D.三根长度为4cm ,4cm ,8cm 的木棒能摆成三角形5.下列有4个汽车标志图案,其中是轴对称图形的有( )35x y -=-,则代数式526x y -+的值是( )210︒,这个角的度数为( )A.70︒B.60︒C.50︒D.40︒8.有四条线段长度为3cm,4cm,5cm,6cm ,从中任意取三条线段能组成三角形的概率是( )A.34B.12C.149.如图,在△ABC 中,ABC ∠和ACB ∠的角平分线交于点E ,过点E 作MNBC 交AB 于点M ,交AC 于点N ,若BM+CN=7,则MN 的长为( ).10.小华同学热爱体育锻炼.每周六上午他都先从家跑步到离家较远的新华公园,在那里与( )A. B. C. D.第二卷 非选择题(共70分)二、填空题(每题4分,共16分)11.计算:()()3222a b ab ÷= . ABC 中,90A ∠=︒度,点D 在AC 边上,DE//BC ,若139ADE ∠=︒,则B ∠的度数是 .13.某人购进一批苹果,到市场零售,已知卖出苹果数量x 与售价y 的关系如下表,写出用x 表示y 的关系式 。
A 卷(100分)一、选择题(每小题3分、共30分)1.下列计算正确的是( )A .x 5+x 5=x 10B .x 5·x 5=x 10C .(x 5)5=x 10D .x 20÷x 2= x 102.下列各组长度的三条线段能组成三角形的是( ) A .1cm ,2cm ,3cm B .1cm ,1cm ,2cm C .1cm ,2cm ,2cm ; D .1cm ,3cm ,5cm ;3.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(b+m)(m-b)C.(-x-b)(x-b)D.(a+b)(-a-b) 4. 如图1,下列条件中,不能判断直线l 1∥l 2的是( )A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180图1 图2 图35、如图2,在△ABC 中,∠ABC 与∠ACB 的平分线相交于O ,则∠BOC 一定( )A.大于90°B.等于90°C.小于90°D.小于或等于90° 6、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个 7、 由四舍五入得到近似数3.00万是( )A.精确到万位,有1个有效数字B. 精确到个位,有1个有效数字C.精确到百分位,有3个有效数字D. 精确到百位,有3个有效数字 8、从一个袋子中摸出红球的概率为51,且袋子中红球有5个,则袋子中共有球的个数为( ) A . 1 B .5 C .25 D .159、如图3,是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法中正确的个数为( ) (1)汽车行驶时间为40分钟; (2)AB 表示汽车匀速行驶;(3)第40分钟时,汽车停下来了 (4)在第30分钟时,汽车的速度是90千米/时;. A. 1个 B. 2个 C. 3个 D. 4个10. 小华的爷爷每天坚持体育锻炼.某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( )B C FD EA 312二、填空题(每小题3分,共15分)11.空气就是我们周围的气体.我们看不到它,也品尝不到它的味道,但是在刮风的时候,我们就能够感觉到空气的流动.已知在0摄氏度及一个标准大气压下1cm 3空气的质量是0.001293克,数0.001293保留3个有效数字,用科学计数法表示为12.在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是 。
2014-2015学年度第二学期月调研七 年 级 数 学(总分150分 时间120分钟) 一、选择题(每题3分,共24分)1.计算 b 2·(-b 3)2的结果是( )A 、b 8B 、b 11C 、-b 8D 、-b 11 2、下列各式中错误的是 ( )A .[(a -b) 3]2=(a -b)6B .(-2a 2)4=16a 8C .(-13m 2n)3=-127m 6n 3D. (-ab 3)3=-a 3b 6 3.如图1,阴影部分的面积是( )A .112xy ; B .132xy ; C . 6xy ; D .3xy . 4.02267,56,43⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-三个数中,最小的是( ) A.243-⎪⎭⎫ ⎝⎛ B.256⎪⎭⎫ ⎝⎛ C.067⎪⎭⎫⎝⎛ D.不能确定 5.在下列多项式的乘法中,可以用平方差公式计算的是( ) A 、(x +3)(3+x )B 、(a +b 21)(a b 21-) C 、(-x +y )(x -y ) D 、 (a 2-b )(a +b 2)6.多项式5mx 3+25mx 2-10mxy 各项的公因式是( )A .5mx 2B .5mxyC . mxD .5mx7.要使N x x M x ++=∙-2)3(成立,且M 是一个多项式,N 是一个整数,则( ) A . 12,4=-=N x M B . 15,5=-=N x M C . 12,4-=+=N x M D . 15,5-=+=N x M 8.(x 2+m x +1)(x -3)的积中x 的二次项系数为零,则m 的值是( ). A .3 B .-3 C . 1D .-1二、填空题(每题3分,共30分) 9.计算0.25100×4100=______________.10.遗传物质脱氧核糖核酸(DNA)的分子半径为0.000000115cm ,用科学记数法表示 为 cm .11.已知a=277 ,b=344 ,c=433,那么a 、b 、c 的大小关系是____________. 12、如果x+4y-3=0,那么2x ·16y = .13.在多项式241x +中,添加一个单项式使其成为一个二项式的完全平方,则加上的单项式可以是____________(填一个即可).14.分解因式:a a -3= .15.若分解因式x 2+mx -24=(x +3)(x +n ),则m 的值为 . 16.如果42++mx x 是一个完全平方式,那么m 的值是____________. 17、已知22y x +=17,xy=4,则x-y= .18、己知 2x+3y=5 , 代数式4x 2+30y-9y 2 的值是 . 三、解答题(共96分)19.计算或化简(幂的运算)(每题2分,共8分)(1).m 3·m ·(m 2)3 (2).(p -q)4÷(q -p)3·(p -q)2.(3).(-3a 3)3-a 5·(-3a 2)2 (4).22- (-2)-2 -32÷(3.14-π)0.20.计算或化简(整式乘法)(每题3分,共12分)(1). (-3ab)· (- 4b )2 ; (2).235)109()1034(⨯∙⨯.(3). 3x(x 2-2x-1)+6x (4).)2)(5(-+x x +(-x+1)(x-2)21.计算或化简(乘法公式)(每题3分,共12分) (1)(2x +7y )2(2). (1.0a 21-)2(3).(ab -c 41)(ab +c 41) (4)22)32()32(-+x x332332424.3,2,()()m n m n m n m n a b a b a b a b ==+-已知求22.分解因式:(每题3分,共18分)(1)25x x - (2) 25x 2﹣81y 2(3)x 3﹣2x 2y+xy 2 (4)()()a y a x -+-1122(5).a 4-1 (6).a 4-18a 2+8123.先化简,再求值:(每题4分,共12分) (1).的值(2). 先化简,再求值。
一、选择题(每题4分,共20分)1. 下列数中,属于整数的是()A. 2.5B. -3.14C. 0.1D. -52. 下列图形中,轴对称图形是()A. 正方形B. 等腰三角形C. 长方形D. 梯形3. 如果a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b4. 下列代数式中,同类项是()A. 3x^2和4x^3B. 5a^2b和2ab^2C. 7mn和3m^2nD. 4x和5y5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 2/xD. y = 3x - 5二、填空题(每题5分,共25分)6. 3的平方根是______,4的立方根是______。
7. (-5)的相反数是______,0的倒数是______。
8. 若a = 3,b = -2,则a - b的值是______。
9. (-2)的平方是______,3的立方是______。
10. 若m + n = 5,m - n = 1,则m的值是______。
三、解答题(共55分)11. (10分)计算下列各题:(1)3.5 - 2.1 + 1.4(2)5/8 + 3/4 - 7/1612. (10分)解下列方程:(1)2x - 3 = 7(2)5(x + 2) - 3x = 413. (10分)判断下列命题的真假,并说明理由:若a > b,则a + c > b + c。
14. (10分)已知等腰三角形ABC中,AB = AC,AD是BC的中线,E是AD的中点,求证:BE = CE。
15. (10分)已知一次函数y = kx + b,其中k ≠ 0,当x = 1时,y = 3;当x = 2时,y = 5,求该一次函数的解析式。
16. (5分)计算下列各式的值:(1)(a^2 - b^2)(a + b)(2)(x^2 + 2x + 1) - (x - 1)^217. (5分)解下列不等式:(1)3x - 2 > 7(2)2(3x + 1) ≤ 818. (5分)已知数列{an}中,a1 = 2,an = an-1 + 3(n ≥ 2),求该数列的前5项。
2014-2015学年四川省成都市青羊区树德中学七年级(下)月考数学试卷(5月份)一、选择题(每题3分,共36分).1.(2015春•青羊区校级月考)下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的共有()A.4个B.5个C.6个D. 7个考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:三菱、雪铁龙、丰田、奥迪、本田、大众图案是轴对称图形.故选:C.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2015春•青羊区校级月考)在代数式a+bac,,π,3x2﹣4x﹣2,,πab,0,中,下列结论正确的是()A.有4个单项式,2个多项式B.有4个单项式,3个多项式C.有7个整式D.有3个单项式,2个多项式考点:多项式;整式;单项式.分析:直接利用单项式以及多项式的定义分别分析得出即可.解答:解:代数式a+bac,,π,3x2﹣4x﹣2,,πab,0,中,,π,πab,0共4个单项式,a+bac,3x2﹣4x﹣2共2个多项式.故选:A.点评:此题主要考查了单项式以及多项式,正确把握相关定义是解题关键.3.(2015春•青羊区校级月考)下列四个算式:(1)﹣a+2a=﹣3a;(2)x3+x3=x6;(3)m3÷(﹣m)5•(﹣m)﹣5=m3;(4)(4x2+2x)÷2x=2x,其中错误的个数为()A. 1 B. 2 C. 3 D. 4考点:整式的混合运算.分析:根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;多项式除单项式的法则,对各选项分析判断后利用排除法求解.解答:解:(1)应为﹣a+2a=a,故本选项错误;(2)应为x3+x3=2x3,故本选项错误;(3)应为m3÷(﹣m)5•(﹣m)﹣5=m3÷m5•m﹣5=m3﹣5+(﹣5)=m﹣7,故本选项错误;(4)应为(4x2+2x)÷2x=2x+1,故本选项错误.所以(1)(2)(3)(4)都错误.故选D.点评:本题主要考查了合并同类项,同底数幂的乘法,同底数幂的除法,多项式除单项式,熟练掌握运算法则是解题的关键.4.(2015春•青羊区校级月考)等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数为()A.70° B.55° C.110°D. 70°或110°考点:等腰三角形的性质.专题:分类讨论.分析:本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.解答:解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故选D点评:考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.5.(2015春•青羊区校级月考)如图,若∠AOB=180°,∠1是锐角,则∠1的余角是()A.∠2﹣∠1 B.(∠2﹣∠1)C.∠2﹣∠1 D.(∠2+∠1)考点:余角和补角.分析:根据题意得出(∠1+∠2)=90°,进而利用互余的性质得出答案.解答:解:∵∠1+∠2=180°,∴(∠1+∠2)=90°,∴∠1的余角为:90°﹣∠1=(∠1+∠2)﹣∠1=(∠2﹣∠1).故选:B.点评:此题主要考查了余角和补角,得出(∠1+∠2)=90°是解题关键.6.(2015春•青羊区校级月考)同时抛掷两枚质地均匀的正方体,正方体的六个面上分别刻有1到6的整数,下列事件是不可能事件的是()A.点数之和为13 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为12考点:随机事件.分析:分别利用不可能事件和随机事件的定义分析得出即可.解答:解:因为同时抛掷两枚质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,是不可能事件的是点数之和是13.故选:A.点评:此题主要考查了随机事件和不可能事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(2015春•青羊区校级月考)等腰三角形的三边均为整数,且周长为11,则底边是()A.1或3 B.3或5 C.1或3或5 D. 1或3或5或7考点:等腰三角形的性质;三角形三边关系.分析:设底边为x,根据题意要求可得为整数,且x<6,可得出底边的取值.解答:解:设底边为x,根据题意要求可得为整数∵能构成三角形,∴x<11﹣x,x<6∴x可取1,3,5故选C点评:本题考查三角形的性质和三角形三遍大小关系,都一定难度.本题也可用代入法把答案找出来.明确三边均为整数是正确解答本题的关键.8.(2015春•青羊区校级月考)王老师骑车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,王老师加快了速度,仍保持匀速前进,结果准时到达学校.在下面的示意图中,能正确地表示自行车行进路程s(千米)与行进时间t(小时)的示意图的是()A.B.C.D.考点:函数的图象.分析:行驶状态是:匀速行进﹣中途停下﹣加快速度、匀速行进;路程的增加量:平缓增加﹣不增加﹣快速增加,图象由三条线段组成,即:平缓,平,陡.解答:解:依题意,行驶速度为:匀速行进﹣中途停下,速度为0﹣加快速度、匀速行进;时间与路程的函数图象应为三条线段组成,即:平缓,平,陡.故选C点评:本题应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.9.(2015春•青羊区校级月考)下列说法中,正确的是()A.近似数5百与500的精确度是相同的B.近似数5.05是精确到0.01的数,它有3个有效数字C.近似数55.0与55是一样的D.近似数5.05是精确到百分位的数,它的有效数字是5和0考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.解答:解:A、5百精确到百位,500精确到个位,故错误;B、正确;C、近似数55.0精确到十分位,55精确到个位;D、近似数5.05是精确到百分位的数,它的有效数字是5、0和5,故错误.故选B.点评:题目在于考查学生对近似数有效数字的理解,必须掌握近似数有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.10.(2015春•青羊区校级月考)如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP 全等的理由是()A.SSS B.ASA C.S SA D. HL考点:直角三角形全等的判定.分析:先证AO为角平分线,再根据直角三角形全等的判别方法HL可证△AOD≌△AOP.解答:解:∵OD=OP,OD⊥AB且OP⊥AC,∴AO为角平分线,∴△ADO和△OPO是直角三角形,又∵OD=OP且AO=AO∴△AOD≌△AOP.故选D.点评:本题考查直角三角形全等的判定方法HL.11.(2015春•青羊区校级月考)在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形;(2)有两个外角相等的等腰三角形是等边三角形;(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形;(4)三个外角都相等的三角形是等边三角形.其中正确的个数是()A.4个B.3个C.2个D. 1个考点:等边三角形的判定.分析:根据等边三角形的性质和定义,可得:有一个角为60°的等腰三角形是等边三角形;三个内角都相等的三角形为等边三角形;再由中线的性质和三角形内角和的定义可解答本题.解答:解:(1):因为外角和与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确.(2):两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误.(3):等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误.(4)若每一个角各取一个外角,则所有内角相等,即三角形是等边三角形;若一个顶点取2个的话,就不成立,该结论错误.故选D.点评:此题利用等边三角形的定义和性质考查学生对等边三角形的判断能力.考查到的知识点有:外角和内角互补;等腰三角形底边的中线也是它的高.12.(2004•泰安)若当x=1时,代数式ax3+bx+7的值为4,则当x=﹣1时,代数式ax3+bx+7值为()A.7 B.12 C.11 D. 10考点:代数式求值.专题:整体思想.分析:本题考查由已知解求出方程中的未知系数,然后将未知系数和另一解代入代数式求结果.解答:解:将x=1代入得:a+b+7=4,可得a+b=﹣3,当x=﹣1时,ax3+bx+7=﹣a﹣b+7=﹣(a+b)+7=﹣(﹣3)+7=3+7=10.故选D.点评:由x=1时多项式值为4可得a+b的值,再将x=﹣1和a+b作为整体代入可求得此时的多项式值.二、填空题(每题4分,共20分).答案写在答卷上13.(4分)(2015春•青羊区校级月考)一个正方体的棱长为4×102毫米,用科学记数法表示:它的表面积=9.6×10﹣1平方米.考点:科学记数法—表示较小的数.分析:根据正方体的表面积公式先求出它的表面积,再用科学记数法表示.解答:解:4×102×4×102×6=9.6×105平方毫米=9.6×10﹣1平方米.点评:本题考查正方体的表面积公式及用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(4分)(2015春•青羊区校级月考)如无意义,则(x﹣1)﹣2=4.考点:负整数指数幂.专题:计算题.分析:由已知无意义,可知x=,然后代入(x﹣1)﹣2求值.解答:解:∵无意义,∴x﹣=0,x=,∴(x﹣1)﹣2===4.故答案为4.点评:本题两个注意点,其一,无意义的条件是底数为0,其二,是负指数的运算要注意.15.(4分)(2015春•青羊区校级月考)如图,AB∥CD,∠A=110°,∠FDA=50°,则∠CDE=60度.考点:平行线的性质.专题:计算题.分析:由AB、CD平行可得∠A+∠CDA=180°,可得∠CDA的度数;已知∠EDA=50°,根据平角的定义即可得∠CDE的度数.解答:解:∵AB∥CD,∴∠A+∠CDA=180°(两直线平行,同旁内角互补),即∠CDA=180°﹣∠A=180°﹣110°=70°;∵∠EDA=50°,∴∠CDE=180°﹣∠FDA﹣∠CDA=180°﹣50°﹣70°=60°.故填60.点评:本题考查了平行线的性质及平角的定义,找到相应关系的角是解题的关键.16.(4分)(2012春•九江期末)小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“”的样子,请你判断这个英文单词是APPLE.考点:镜面对称.分析:注意观察,照镜子看到的字母是左右颠倒,问题可求.解答:解:小明照镜子实际上看到的是APPLE.故答案为:APPLE.点评:本题考查镜面反射的原理与性质.17.(4分)(2007春•招远市期末)某人购进﹣批苹果到集贸市场零售,已知卖出苹果数量x与售价的关系如下表:数量x(千克) 1 2 3 4 5 …售价y(元)2+0.1 4+0.2 6+0.3 8+0.4 10+0.5 …则售价y与数量x之间的关系式是y=2.1x.考点:函数关系式.专题:推理填空题.分析:根据表中所给信息,判断出y与x的数量关系,列出函数关系式即可.解答:解:∵(2+0.1)÷1=2.1;(4+0.2)÷2=2.1;(6+0.3)÷3=2.1;…∴可知y=2.1x.故答案为y=2.1x.点评:本题考查了函数关系式,解题的关键是从表中所给信息中推理出y与x的关系,推理时要注意寻找规律.三、解答题(44分)18.(6分)(2012春•九江期末)化简:(a+b﹣c)(a+b+c)﹣[(a﹣b)2+4ab]考点:平方差公式;完全平方公式.分析:把(a+b)看成一个整体,利用平方差公式展开,然后再利用完全平方公式计算后化简即可.解答:解:(a+b﹣c)(a+b+c)﹣[(a﹣b)2+4ab],=(a+b)2﹣c2﹣(a﹣b)2﹣4ab,=(a+b)2﹣(a﹣b)2﹣4ab﹣c2,=a2+2ab+b2﹣a2+2ab﹣b2﹣c2,=﹣c2.点评:本题考查了平方差公式,完全平方公式,熟练掌握平方差公式和完全平方公式是解答此题关键,要把(a+b)看成一个整体,计算时要注意运算符号的处理.19.(8分)(2015春•青羊区校级月考)先化简再求值:当x=2时,求代数式[x(3﹣2x)﹣2x2(x ﹣1)]÷(﹣2x)的值.考点:代数式求值.分析:把代数式去括号、合并同类项之后,再把已知条件代入求值.解答:解:[x(3﹣2x)﹣2x2(x﹣1)]÷(﹣2x)=(3x﹣2x2﹣2x3+2x2)÷(﹣2x)=x(3﹣2x2)÷(﹣2x)=+x2把x=2代入上式,得+x2=+22=.所以当x=2时,代数式[x(3﹣2x)﹣2x2(x﹣1)]÷(﹣2x)的值是.点评:在化简的过程中,注意去括号时代数式中的“+”、“﹣”符号的变化.20.(8分)(2015春•青羊区校级月考)如图,AB∥CD,直线EF分别交AB、CD点E、F,EG平分∠AEF,(1)求证:△EGF是等腰三角形.(2)若∠1=40°,求∠2的度数.考点:平行线的性质;等腰三角形的判定.分析:(1)根据平行线的性质求出∠1=∠AEG,求出∠AEG=∠FEG,推出∠1=∠FEG,根据等腰三角形的判定推出即可;(2)求出∠AEF的度数,根据邻补角定义求出即可.解答:(1)证明:∵AB∥CD,∴∠1=∠AEG,∵EG平分∠AEF,∴∠AEG=∠FEG,∴∠1=∠FEG,∴FE=FG,即△EGF是等腰三角形;(2)解:∵∠1=40°,∠1=∠AEG=∠FEG,∴∠AEF=40°+40°=80°,∴∠2=180°﹣80°=100°.点评:本题考查了等腰三角形的判定,平行线的性质,角平分线的定义的应用,能求出∠1=∠AEG=∠FEG是解此题的关键,注意:两直线平行,内错角相等.21.(12分)(2015春•青羊区校级月考)如图,小明的爸爸去参加一个聚会,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗?(1)在上述变化过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是什么?(3)小车在哪段时间保持匀速,达到多少?(4)用语言大致描述这辆汽车的行驶情况?考点:函数的图象.专题:应用题.分析:(1)根据自变量与因变量的定义求解;(2)(3)(4)根据速度与时间的图象来求解.解答:解:(1)自变量是时间,因变量是速度.(2)根据速度与时间图象的横坐标可知:小车共行驶了55分钟,最高时速是85千米/时;(3)35分钟到55分钟保持匀速,达到85千米每小时;(4)先匀加速行驶至第10分钟,然后匀减速行驶至第25分钟,接着停下5分钟,再匀加速行驶至第35分钟,然后匀速行驶第55分钟,再匀减速行驶至停止.点评:本题主要考查动点问题的函数的图象,结合图形进行求解.22.(10分)(2015春•青羊区校级月考)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,如图,三个汉字可以看成是轴对称图形.(1)请再写出2个类似轴对称图形的汉字.(2)小明和小红利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小明获胜,否则小红获胜,你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析并写出构成的汉字进行说明.考点:游戏公平性;轴对称图形.专题:计算题.分析:(1)根据轴对称图形的定义可写出如中、申等字;(2)先画树状图展示所有9种等可能的结果数,找出两次抽出的汉字能构成上下结构的汉字的结果数,再根据概率公式分别计算两人获胜的概率,然后比较概率的大小判断对谁有利.解答:解:(1)2个类似轴对称图形的汉字如:中,申;(2)画树状图为:共有9种等可能的结果数,其中两次抽出的汉字能构成上下结构的汉字的结果数为5,所以小明获胜的概率=,小红获胜的概率=,由于>,所以这个游戏不公平,对小红有利.点评:本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.也考查了轴对称图形.一、填空题(每题4分,共16分)23.(4分)(2015春•青羊区校级月考)如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=115度,若△ADE的周长为19cm,则BC=19cm.考点:线段垂直平分线的性质.分析:根据中垂线的性质可知∠B=∠BAD、∠C=∠CAE,所以∠BAC+∠B+∠C=∠DAE+2(∠B+∠C)=180°,所以∠BAC=180°﹣(∠B+∠C).解答:解:①∵DM、EN分别垂直平分AB和AC,∴AD=BD,AE=EC,∴∠B=∠BAD,∠C=∠EAC(等边对等角),∵∠BAC=∠DAE+∠BAD+∠CAE,∴∠BAC=∠DAE+∠B+∠C;又∵∠BAC+∠B+∠C=180°,∠DAE=50°,∴∠BAC=115°;②∵△ADE的周长为19cm,∴AD+AE+DE=19cm,由②知,AD=BD,AE=EC,∴BD+DE+EC=19,即BC=19cm.故答案为:115,19.点评:此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.(4分)(2011春•本溪期中)在班会活动中,同学们设计了一个玩飞镖的游戏,靶子设计如图所示,从里到外三个圆的半径分别是2、3、4,假设每次掷飞镖都击中靶子,则击中阴影部分的概率为.考点:几何概率.分析:根据几何概率的定义,面积比即为概率.解答:解:图中阴影部分的面积为π(32﹣22),总面积为π42,故阴影部分的概率为.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.25.(4分)(2015春•青羊区校级月考)如果等式x2+3x+2=(x﹣1)2+B(x﹣1)+C恒成立,其中B,C为常数,B+C=11.考点:整式的混合运算.分析:因为x2+3x+2=(x﹣1)2+B(x﹣1)+C=x2+(B﹣2)x+1+C恒成立,根据对应相等即可得出答案.解答:解:∵x2+3x+2=(x﹣1)2+B(x﹣1)+C=x2+(B﹣2)x+1+C恒成立,∴B﹣2=3,1+C=2,∴B=5,C=6,故B+C=11.故答案为:11.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.26.(4分)(2015春•青羊区校级月考)若a3+3a2+a=0,求=﹣或0.考点:因式分解的应用.专题:计算题.分析:用提公因式法对方程a3+3a2+a=0的左边因式分解得a(a2+3a+1)=0则a=0或a2+3a+1=0,当a=0时上式的值为零,当a2+3a+1=0时,可将每一项都除以a,得到a+=﹣3,上式分子分母中每一项都除以a3,分子为常数2,分母为a3+3+,再用立方和公式进行计算.解答:解:∵a3+3a2+1=0,∴a(a2+3a+1)=0∴a=0或a2+3a+1=0当a=0时的值为0.当a2+3a+1=0时,每项都除以a得a+=﹣3,将上式的分子分母同时除以a3,分子为常数2,分母为a3+3+,又∵a3+=(a+)(a2﹣1+)=(a+)[(a+)2﹣3]=﹣3[9﹣3]=﹣12,∴==﹣故的值为﹣或0.点评:用因式分解法将多项式分解,使多项式化简,灵活运用立方和公式.二、解答题.27.(6分)(2015春•青羊区校级月考)已知x,y满足,求代数式的值.考点:代数式求值;非负数的性质:偶次方.分析:先把原方程变形为(x﹣1)2+(y+)2=0,根据非负数的性质解得x=1,y=﹣,把x、y的值代入代数式求解即可.解答:解:原方程变形为(x﹣1)2+(y+)2=0,根据非负数的性质解得x=1,y=﹣,所以=﹣1.点评:本题考查了二元二次方程的解法、代数式求值,涉及到完全平方公式、非负数的性质知识点,要求学生有较高的混合运算能力.28.(8分)(2015春•青羊区校级月考)作图题:如图(1)和(2),P是直线m一动点,A.B两点在m的同侧,且A、B所在直线与m不平行.(不写作法,请保留作图痕迹.)(1)当P点运动到P1位置时,距离A点最近;运动到P2位置时,距离B点最近,在图(1)中的直线m上分别画出点P1、P2的位置;(2)当P点运动到P3位置时,与A点的距离和与B点距离相等.请在图(1)中作出P3位置;(3)在直线m上是否存在这样一点P4使得到A点的距离与到B点的距离之和最小,若存在请在图(2)中作出这点,若不存在请说明理由;(4)在直线m上是否存在这样一点P5使得到B点的距离与到A点的距离之差最大.若存在请在图(2)中作出这点.若不存在请说明理由.考点:作图—基本作图.专题:作图题.分析:(1)当AP1⊥m时,P1距离点A最近;当BP2⊥m时,P2距离点B最近;(2)作AB的垂直平分线交m于点P3即可;(3)作点A关于直线m的对称点A′,连接A′B交直线m于点P4;(4)求P5的方法和(3)相同.解答:解:(1);(2);(3);(4).点评:用到的知识点为:垂线段最短;与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;求一直线同侧两点与直线上一点的距离之和最小,或是求这两点与直线上一点的距离之差的绝对值最大,都应从作一点关于直线的对称点入手思考.29.(10分)(2012春•九江期末)如图1,已知:△ABC中,AB=AC,∠BAC=90°,AE是过A的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E.(1)△ABD与△CAE全等吗?BD与AE、AD与CE相等吗?为什么?(2)BD、DE、CE之间有什么样的等量关系(写出关系式即可)(3)若直线AE绕A点旋转,如图2,其它条件不变,那么BD与DE、CE的关系如何?说明理由.考点:全等三角形的判定与性质.专题:证明题.分析:(1)利用AAS判定△ABD≌△CAE,根据全等三角形的对应边相等可以求得BD=AE,AD=CE;(2)因为BD=AE,AD=CE,AE=AD+DE=CE+DE所以BD=DE+CE;(3)因为BD=AE,AD=CE,DE=AE+AD=BD+CE,所以BD=DE﹣CE.解答:(1)解:BD=AE,AD=CE.理由:∵BD⊥AE于D,CE⊥AE于E,∠BAC=90°,∴∠BDA=∠AEC=90°,∠DBA+∠BAD=90°,∠BAD+∠EAC=90°,∴∠DBA=∠EAC,在△ABD和△CAE中,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE;(2)解:BD=DE+CE.理由:∵BD=AE,AD=CE∴AE=AD+DE=CE+DE∴BD=DE+CE;(3)解:BD=DE﹣CE.证明:同(1)可证明△ABD≌△CAE(AAS)∴BD=AE,AD=CE∵DE=AE+AD=BD+CE∴BD=DE﹣CE.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.30.(10分)(2012春•碑林区校级期末)如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D、E两点(D、E不与B、A重合).(1)试说明:MD=ME;(2)求四边形MDCE的面积.考点:勾股定理的应用;全等三角形的判定与性质.分析:(1)连接CM,然后证明∠BMD=∠CME,即可证明△BDM≌△CEM,然后即可证MD=ME;(2)利用三角形全等可知四边形MDCE的面积等于△CMB的面积.解答:(1)证明:如图所示,连接CM,可知∠B=∠MCE=45°,∠DMC+∠CME=∠DMC+∠BMD=90°,所以∠CME=∠BMD,又因为BM=CM,所以△BDM≌△CEM,所以MD=ME;(2)因为△BDM≌△CEM,所以四边形MDCE的面积等于△DMC和△CME的面积和等于△CMB的面积,在Rt△BMC中,BC=2,所以BM=CM=,所以四边形MDCE的面积等于CM•BM=1.点评:本题主要考查对于勾股定理的应用,同时要注意对全等三角形知识的掌握.三、附加题(共20分)31.(2015春•青羊区校级月考)附加题:设a、b、c、d都是整数,且m=a2+b2,n=c2+d2,mn也可以表示成两个整数的平方和,其形式是mn=(ac+bd)2+(ad﹣bc)2.考点:列代数式.分析:首先把mn的结果根据多项式乘法法则求出,然后分解因式即可得到所要求的形式.解答:解:∵m=a2+b2,n=c2+d2,∴mn=(a2+b2)(c2+d2)=a2c2+b2c2+a2d2+b2d2=a2c2+b2d2+a2d2+b2c2=a2c2+b2d2+2abcd+a2d2+b2c2﹣2abcd=(ac+bd)2+(ad﹣bc)2∴mn=(ac+bd)2+(ad﹣bc)2.点评:此题主要考查了多项式的乘法和因式分解,首先利用多项式乘法法则求出mn的结果,然后利用完全平方公式进行因式分解即可解决问题.32.(2015春•青羊区校级月考)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.考点:分式的化简求值.专题:计算题.分析:先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.解答:解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z ﹣x﹣z﹣x+2y)=0,∴x2+y2+z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.点评:本题中多次使用完全平方公式,但使用技巧上有所区别,要仔细琢磨,灵活运用公式,会给解题带来益处.。