100测评网高中数学复习06-通州中学5月13日数学基础练习
- 格式:doc
- 大小:170.00 KB
- 文档页数:4
(数学选修1-1)第一章 导数及其应用[基础训练A 组]及答案一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x -D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
株洲市十七中高二排列、组合与二项式定理测试卷一、选择题:(本人题共10小题,每小题5分,共50分)1.若从集合P到集合Q={a,b,c}所冇不同的映射共冇81个,则从集合Q到集合P可作的不同的映射共冇()A. 32 个B. 27 个C. 81 个D. 64 个2.某班举行联欢会,原定的五个节目已排出节目单,演出前乂增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为()A. 42B. 36C. 30D. 123.全班48名学生坐成6排,每排8人,排法总数为P,排成前后两排,每排24人,排法总数为Q,则冇()A. P>QB. P=QC. P<QD.不能确定4.从正方体的六个面小选取3个面,其小有2个面不相邻的选法共有()种A. 8B. 12C. 16D. 205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配A. B. D.方案共冇()6.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊.大厅的地而及楼的外墙,现有编号为1〜6的六种不同花色的装饰石材可选择,具屮1号石材有微量的放射性, 不可用于办公室内,则不同的装饰效果有()种A. 350B. 300C. 65D. 507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有()种重新站位的方法A. 1680B. 256C. 360D. 2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有()种不同的坐法A. 7200B. 3600C. 2400D. 12009.在(Jg + J舌)"的展开式中,所有奇数项一项式系数Z和等J - 1024,则中间项的二A.462B. 33()C.682D.792项式系数是()10.在(1 + d x)7的展开式屮,x'项的系数是/项系数与xh页系数的等比中项,则d的值为()5二、填空题(本大题共5小题,每小题4分,共20分)11.某公园现有A、B、C三只小船,A船可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由人人陪同方可乘船,他们分乘这些船只的方法有__________________ 种。
2023-2024学年北京市通州区高二下学期期末质量检测数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知全集U ={−3,−2,−1,0,1,2,3},集合A ={x ∈Z|x 2<4},则∁U A =( )A. {−3,3}B. {2,3}C. {−1,0,1}D. {−3,−2,2,3}2.下列函数中,在区间(0,+∞)上单调递增的是( )A. f(x)=1 xB. f(x)=(x−1) 2C. f(x)=lg xD. f(x)=(12)x 3.已知a =lg 12,b =30.1,c = 3,则( )A. a <b <cB. b <a <cC. a <c <bD. c <b <a 4.设A ,B 为两个随机事件,若P(B|A)=12,P (A )=25,P (B )=23,则P(A|B)=( )A. 15B. 310C. 12D. 355.已知a >0,b >0,则“ab =1”是“a +b ≥2”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.在(x−2)10的展开式中,x 6的系数为( )A. −64C 610B. 64C 610C. −16C 410D. 16C 4107.有两台车床加工同一型号零件,第1台加工的次品率为4%,第2台加工的次品率为5%,将两台车床加工出来的零件混放在一起,已知第1台,第2台车床加工的零件占比分别为40%,60%,现任取一件零件,则它是次品的概率为( )A. 0.044B. 0.046C. 0.050D. 0.0908.某工厂生产一种产品需经过一,二,三,四共4道工序,现要从A ,B ,C ,D ,E ,F 这6名员工中选出4人,安排在4道工序上工作(每道工序安排一人),如果员工A 不能安排在第四道工序,则不同的安排方法共有( )A. 360种B. 300种C. 180种D. 120种9.设函数f (x )为定义在R 上的奇函数,若曲线y =f (x )在点(2,4)处的切线的斜率为10,则f′(−2)+f (−2)=( )A. −16B. −6C. 6D. 1610.已知函数f(x)={ln x x ,x >0x 2+2x,x ≤0;若方程f(x)=a 恰有三个根,则实数a 的取值范围是( )A. (0,1e ) B. [0,1e ] C. (−1,1e ) D. (0,1e )∪{−1}二、填空题:本题共5小题,每小题5分,共25分。
高中数学基础训练测试题(1)集合的概念,集合间的基本关系一、填空题(共12题,每题5分)1、集合中元素的特征: , , .2、集合的表示法: , , .3、已知集合A ={1,2,3,4},那么A 的真子集的个数是 .4、设集合I={1,2,3},A ⊆I,若把集合M ∪A=I 的集合M 叫做集合A 的配集. 则A={1,2}的配集有 个 .5、设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 . (1).P Q (2).Q P (3).P =Q (4).P ∩Q =Q6、满足条件∅≠⊂M ≠⊂{0,1,2}的集合共有 个.7、 若集合a B A a a a B a a A 则且},1{},43|,2|,12{},1,1,{22-=+--=-+= = .8、 满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有_____个.9、集合{|10}A x ax =-=,{}2|320B x x x =-+=,且AB B =,则实数a =______、10、已知集合{}{}A x x x RB x x a a R =≤∈=-≤∈||||||43,,,,若A B ⊇,则a 的取值范围是_______ .11、 若2{|30}A x x x a =++=,求集合A 中所有元素之和 .12、任意两正整数m 、n 之间定义某种运算⊕,m ⊕n=⎝⎛+异奇偶)与同奇偶)与n m mn n m n m ((,则集合M={(a,b)|a ⊕b=36,a 、b ∈N +}中元素的个数是___________.高三数学基础训练测试题(1)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、、已知集合A =}2432{2++a a ,,,B=}24270{2-+-a a a ,,,,A ∩B={3,7},求B A a ⋃的值及集合.高中数学基础训练测试题(2)集合的基本运算一、填空题(共12题,每题5分)1、已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T =.2、 如果{}|9U x x =是小于的正整数{}1234A =,,,,{}3456B =,,,, 那么U UA B =痧 .3、若22{228}{log 1}xA xB x x -=∈<=∈>Z R ≤,,则()AB R ð的元素个数为.4、已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = .5、已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N = .6、设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C AB 等于.7、已知集合M ={直线的倾斜角},集合N ={两条异面直线所成的角},集合P={直线与平面所成的角},则(M ∩N)∪P= .8、设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___、9、设集合{|M x y =,集合N ={}2|,y y x x M =∈,则MN =___10、设集合{}{}22|21,|25M y y x x N x y x x ==++==-+,则N M ⋂等于.11、设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是 .12、设a 是实数, {}22|,210,M x x R x ax a =∈-+-≤{}22|,11,N x x R a x a =∈-≤≤+若M 是N 的真子集,则a 的取值范围是 、高三数学基础训练测试题(2)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0(1)有两个实根;(2)有两个实根,且一个比0大,一个比0小;(3)有两个实根,且都比1大;高中数学基础训练测试题(3)命题及其关系一、填空题(共12题,每题5分)1、设集合""""},3{},2{P M x P x M x x x P x x M ∈∈∈<=>=是或那么的.2、 πα≠“”3是α≠1“cos ”2的 .3、“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的.4、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: .①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 5、设p :25x x >≤-或;q :502x x+<-,则非q 是p 的 .6、设集合U={(x,y)|x ∈R,y ∈R},A ={(x,y)|x+y >m},B= {(x,y)|22x y n +≤},那么点(1,2)∈()U C A B ⋂的充要条件是 .7、下列四个命题:①在空间,存在无数个点到三角形各边的距离相等; ②在空间,存在无数个点到长方形各边的距离相等; ③在空间,既存在到长方体各顶点距离相等的点,又存在到它的各个面距离相等的点; ④在空间,既存在到四面体各顶点距离相等的点,又存在到它的各个面距离相等的点、 其中真命题的序号是 、(写出所有真命题的序号) 8、设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x .若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 .9、对于[0,1]x ∈的一切值,20a b +>是使0ax b +>恒成立的.10、设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x+c 1>0和a 2x 2+b 2x+c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的_______条件. 11、 、设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个.12、给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 .其中正确命题的序号是_____ .高三数学基础训练测试题(3)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知集合()3,12y A x y x ⎧-⎫==⎨⎬-⎩⎭,()(){},115B x y a x y =++=,试问当a 取何实数时,A B =∅.高中数学基础训练测试题(4)逻辑联接词一、填空题(共12题,每题5分) 1、下列语句①“一个自然数不是合数是就是质数”②“求证若x ∈R ,方程x 2+x +1=0无实根” ③“垂直于同一直线的两条直线平行吗?” ④“难道等边三角形各角不都相等吗?” ⑤“x +y 是有理数,则x 、y 也都是有理数” 其中有________个是命题,________个真命题2、命题“方程x 2-1=0的解是x=±1”中使用逻辑联结词的情况是________.3、下列四个命题p :有两个内角互补的四边形是梯形或是圆内接四边形或是平行四边形q :π不是有理数;r :等边三角形是中心对称图形;s :12是3与4的公倍数 其中简单命题只有________.4、如果命题“p 或q ”是真命题,那么下列叙述正确的为________.(1).命题p 与命题q 都是真命题 (2).命题p 与命题q 的真值是相同的,即同真同假 (3).命题p 与命题q 中只有一个是真命题 (4).命题p 与命题q 中至少有一个是真命题5、下列说法正确的有________个.①a ≥0是指a >0且a =0;②x 2≠1是指x ≠1且x ≠-1 ③x 2≤0是指x=0;④x ·y ≠0是指x ,y 不都是0⑤>是指=或<a b a b a b / 6、复合命题s 具有p 或q 的形式,已知p 且r 是真命题,那么s 是________. 7、命题“对任意的3210x x x ∈-+R ,≤”的否定是8、分别用“p 或q ”、“p 且q ”、“非p ”填空:(1)命题“非空集A ∩B 中的元素既是A 中的元素,也是B 中的元素”是________的形式.(2)命题“非空集A ∪B 中的元素是A 中的元素或B 中的元素”是________的形式. (3)命题“C I A 中的元素是I 中的元素但不是A 中的元素”是________的形式.(4)x y =1x y =1x =1y =0x =0y =1221122命题“方程组++的整数解是,”是⎧⎨⎩⎧⎨⎩⎧⎨⎩_______的形式. 9、P: 菱形的对角线互相垂直,q :菱形的对角线互相平分,p 或q 形式的复合命题是________10、有四个命题:(1)空集是任何集合的真子集;(2)若x∈R,则|x|≥x(3)单元素集不是空集;(4)自然数集就是正整数集其中真命题是________(填命题的序号)11、指出命题的结构及构成它的简单命题:24 4x x +-有意义时,2x≠±12、已知命题p、q,写出“p或q”、“p且q”、“非p”并判断真假.(1)p:2是偶数q:2是质数________;(2)p:0的倒数还是0 q:0的相反数还是0________高三数学基础训练测试题(4)题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、分别指出下列复合命题的形式及构成它的简单命题,并判断此复合命题的真假.(1)A A B/⊆∪(2)方程x2+2x+3=0没有实根(3)3≥3高中数学基础训练测试题(5)综合运用一、填空题(共12题,每题5分)1、 设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 .2、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,b的取值范围是 .3、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .4、1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有_______个5、定义符号函数⎪⎩⎪⎨⎧-=101sgn x 000<=>x x x ,则不等式:x x x sgn )12(2->+的解集是 .6、满足条件M ∪{1}={1,2,3}的集合M 的个数是 .7、若不等式的值等于则实数的解集为a x a x x ],5,4[4|8|2-≤+-8、设集合}0|{≥+=m x x M ,}082|{2>--=x x x N ,若U =R ,且∅=)(N M U,则实数m 的取值范围是 .9、设[]x 表示不超过x 的最大整数(例[5、5]=5,[-5、5]=-6),则不等式2[]5[]6x x -+≤0的解集为10、 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . 若Q P ⊆,正数a 的取值范围是11、 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是____ _ 12、{25},{121},A x x B x p x p =-<<=+<<-若A B A ⋃=,则实数p 的取值范围是 .高三数学基础训练测试题(5)题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、设命题:p 函数()2lg y ax x a =-+的定义域为R .命题:q 函数()2lg 1y x ax =-+的值域为R .如果命题“p 或q ”为真命题,命题“p 且q ”为假命题,求实数a 的范围.高中数学基础训练测试题(6)函数及其表示方法一、 填空题(共12题,每题5分)1、若f (x -1)=2x +5,则f (x 2) = .2、已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 .3、已知⎪⎩⎪⎨⎧<=>+=0,00,0,1)(x x x x x f π,则f {f [f (-1)]}= .4、已知函数f (x ) = ⎩⎨⎧2x 2+1,x ≤0,-2x , x >0,当f (x ) = 33时,x = .5、设函数x xxf =+-)11(,则)(x f 的表达式为 .6、已知x x x f 2)12(2-=+,则)3(f = .7、已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 .8、设f (x )是一次函数,且f [f (x )]=4x +3,则f (x )= .9、集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射.10、若记号“*”表示的是2*ba b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .11、从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满、 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 .12、若f (x )满足f (x )+2f (x1)=x ,则f (x )= .高三数学基础训练测试题(6)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设x表示P点的行程,y表示PA的长,求y关于x的函数解析式、高中数学基础训练测试题(7)函数的解析式和定义域一、 填空题(共12题,每题5分)1、下列各组函数中,表示同一函数的是 .①xxy y ==,1 ②1,112-=+⨯-=x y x x y③33,x y x y == ④2)(|,|x y x y ==2、函数y =的定义域为 .3、函数1()1f x n x=的定义域为 .4、函数1)y a =<<的定义域是 .5、已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 .6、下列函数:①y =2x +5;②y = xx 2+1 ;③y = |x |-x ;④y = ⎩⎨⎧2x , x <0,x +4,x ≥0.其中定义域为R 的函数共有m 个,则m 的值为 .7、若f[g (x )] = 9x +3,且g (x ) = 3x +1,则f (x )的解析式为 .8、已知g (x )=1-2x ,f [g (x )]= 1-x 2x 2 (x ≠0),则f (0.5)= .9、若函数f(x )的定义域为[a ,b ],且b >-a >0,则函数g (x )=f(x )-f (-x )的定义域是 .10、若f (2x +3)的定义域是[-4,5),则函数f (2x -3)的定义域是 .11、函数xx x x x x f +-++-=02)1(65)(的定义域为 .12、 若函数 y =lg(x 2+ax +1)的定义域为R ,实数a 的取值范围为 .高三数学基础训练测试题(7)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知f(x)是定义在R上的函数,且f(1)=1,对任意x∈R都有下列两式成立:(1)f(x+5)≥f(x)+5;(2)f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求g(6)的值.高中数学基础训练测试题(8)函数的值域与最值一、 填空题:(共12题,每题5分)1、函数y = - x 2 + x , x ∈ [1 ,3 ]的值域为 . 2、函数y =2312+-x x 的值域是 .3、函数y=2-x x 42+-的最大值是 .4、函数y x =的值域是 .5、函数y =的最小值是 .6、已知函数2323(0),2y x x x =-+≤≤则函数的最大值与最小值的积是 .7、若函数y=x 2-3x -4的定义域为[0,m],值域为[-425,-4],则m 的取值范围是 .8、已知函数 y =lg(x 2+ax +1)的值域为R ,则a 的取值范围是 .9、若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 是 .10、函数y = 3122+---x x x x 的值域为 .11、已知x ∈[0,1],则函数y =的值域是 .12、已知函数y =的最大值为M ,最小值为m ,则mM的值为 .高三数学基础训练测试题(8)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数f(x) =xax+b(a,b为常数,且a≠0)满足f(2)=1,f(x)=x只有惟一实数解,试求函数y=f(x)的解析式及f[f(-3)]的值.高中数学基础训练测试题(9)函数的单调性与奇偶性一、 填空题:(共12题,每题5分)1、函数b x k y ++=)12(在实数集上是增函数,则k 的范围是 .2、函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 .3、函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 .4、定义在R 上的函数)(x s (已知)可用)(),(x g x f 的和来表示,且)(x f 为奇函数,)(x g 为偶函数,则)(x f = .5、函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .6、函数||2x x y +-=,单调递减区间为 .7、定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则)2(f 、)2(f 、)3(f 的大小关系为 .8、构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0 所构造的函数为 .9、已知]3,1[,)2()(2-∈-=x x x f ,则函数)1(+x f 的单调递减区间为 .10、下面说法正确的选项为 .①函数的单调区间可以是函数的定义域②函数的多个单调增区间的并集也是其单调增区间 ③具有奇偶性的函数的定义域一定关于原点对称 ④关于原点对称的图象一定是奇函数的图象11、下列函数具有奇偶性的是 . ①xx y 13+=; ②x x y 2112-+-=; ③x x y +=4; ④⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y .12、已知8)(32009--+=xbax x x f ,10)2(=-f ,则(2)f = .高三数学基础训练测试题(9)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数1)(2+=x x f ,且)]([)(x f f x g =,)()()(x f x g x G λ-=,试问,是否存在实数λ,使得)(x G 在]1,(--∞上为减函数,并且在)0,1(-上为增函数、高中数学基础训练测试题(10)函数的图像一、 填空题:(共12题,每题5分)1、函数34x y =的图象是 .① ② ③ ④ 2、下列函数图象正确的是 .① ② ③ ④3、若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 . ①(,())a f a - ②))(,(a f a - ③))(,(a f a - ④))(,(a f a ---4、将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,则C 2的解析式为 .5、当a ≠0时,函数y ax b =+和y b ax=的图象只可能是 .6、函数x xx y +=的图象是 .7、已知()x f 是偶函数,且图象与x 轴有4个交点,则方程()0=x f 的所有实根的和是 . 8、下列四个命题,其中正确的命题个数是 .(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线. 9、当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .10、已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)| <1的解集的补集为 . 11、下列命题中正确的是 .①当0=α时函数αx y =的图象是一条直线 ②幂函数的图象都经过(0,0)和(1,1)点③若幂函数αx y =是奇函数,则αx y =是定义域上的增函数④幂函数的图象不可能出现在第四象限12、定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在[0,+∞)上图像与)(x f 的图像重合、设a>b>0,给出下列不等式:①)()()()(b g a g a f b f -->-- ②)()()()(b g a g a f b f --<--③)()()()(a g b g b f a f -->-- ④)()()()(a g b g b f a f --<--其中成立的是 .高三数学基础训练测试题(10)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、 如图,已知底角为450的等腰梯形ABCD,底边BC 的长为7,腰长为 22 ,当一条平行于AB 的直线L 从左至右移动时,直线L 把梯形分成两部分,令BF=x,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象、C1、 集合的概念,集合间的基本关系1.确定性 , 互异性 , 无序性 .2. 列举法 , 描述法 , 韦恩图 . 3. 15. 4. 4 5. (3) 6. 6 个7.0提示:2a-1 =-1,a=0;此类问题要注意验证集合中元素的互异性.8、7提示:满足{1,2}{1,2,3,4,5}M ⊂⊆-集合M 有32=8个.去除M={1,2},满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有7个. 9、 10,1,2a =提示:A B B =A B ⊆=,{}2|320B x x x =-+== {}1,2,x=1时,a=1;x=2时,a=12、而a=0时,A=φ,满足A B B =. 10、1a ≤提示:{}{}|||4|44A x x x R B x x =≤∈=-≤≤,=, a<0时,{}||3|B x x a a R =-≤∈,= φ,满足A B ⊇a ≥0时,{}||3|B x x a a R =-≤∈,={}|33x x a x a -≤≤+,A B ⊇ 4334aa -≤-⎧⎨+≥⎩ 1a ≤;11、 32-提示:注意到0∆=时集合中只有一个元素,此时集合A 中所有元素之和为-3;0∆≠时,集合A 中所有元素之和为32-.12、41提示: a 、b 同奇偶时,有35个;a 、b 异奇偶时,有(1,36)、(3,12)、(4,9)、(9,4)、(12,3)、(36,1)6个,共计41个.填41.13、解:∵ A ∩B={3,7} ∴ 7∈A ∴ 7242=++a a ,即 15=-=a a 或当 5-=a 时,B={0,7,7,3} (舍去)当 1=a 时,B={0,7,1,3} ∴ B={0,7,1,3}2.集合的基本运算1、 {}1,2 ;2、{}7,8 ;3、2;4.{}1- ; 5、{x |2<x <3}; 6、{},0x x R x ∈≠; 7、 0,2π⎡⎤⎢⎥⎣⎦提示: M ={直线的倾斜角}=[]0,π, N ={两条异面直线所成的角}=0,2π⎛⎤⎥⎝⎦, P ={直线与平面所成的角}=0,2π⎡⎤⎢⎥⎣⎦,则(M ∩N)∪P=0,2π⎡⎤⎢⎥⎣⎦8、提示:利用韦恩图和()()()U U U C A C B C A B =⋃易求{2,3}A =,{2,4}B =9、 [4,)+∞ 提示:[){| 2.M x y ===+∞,N ={}[)2|,4,y y x x M =∈=+∞,则MN = [4,)+∞10、 [)+∞,0提示:{}[){}22|210,,|25M y y x x N x y x x R ==++=+∞==-+= 所以N M ⋂=[)+∞,0;11、 m ≥2提示: {|0}M x x m =+≥,2{|280}(2,4)N x x x =--<=-,U M =(,m -∞-),所以-m ≤-2, 、m ≥2;12、 1,a >或2a ≤-提示:2221011x ax a a x a -+-≤⇔-≤≤+,M N ⊆时2211,11a a a a -≥-+≤+但对边缘值1,-2进行检验知1不合;13、 解:(1)方程有两个实根时,得2[2(m-1)]4(2m+6)0∆=-⨯≥解得m -1m 5≤≥或(2)令2f()=+2(m-1)+2m+6x x x 由题意得(0)0f <,解得3m <-(3)令2f()=+2(m-1)+2m+6x x x 由题意得 2(1)12(1)2602(1)112[2(m-1)]4(2m+6)0f m m m m =+-++>--=->∆=-⨯≥ 解得5-14m <≤-3、命题及其关系1、必要不充分条件2、必要不充分条件3、充分不必要条件4、①②④5、必要不充分条件6、35m n ≥≥且7、 提示: ②在空间,不存在点到长方形各边的距离相等; ③在空间,存在到长方体各顶点距离相等的点,但不存在到它的各个面距离相等的点;真命题的序号是①④8、 a 1[0,]2∈提示:┐p 是┐q 的必要而不充分的条件,所以q 是p 的必要而不充分的条件, 所以p q ⊆,P:|43|1x -≤ 所以112x ≤≤,q:0)1()12(2≤+++-a a x a x 所以a ≤x ≤a+1,1211a a ⎧≤⎪⎪⎨+≥⎪⎪⎩a 1[0,]2∈; 9必要不充分条件提示:对于[0,1]x ∈的一切值0axb +>恒成立 00a b b +>⎧⎨>⎩所以20a b +>;10、 既不必要不充分条件提示:2x 2+x+1>0和2x 2+x+1>0的解集为R, M=N,111222a b c a b c ==不成立;若212121c c b b a a ==,- x 2+2x-1>0和x 2-2x+1>0,此时 M ≠N11、 8、个.12、 提示:②ab>0时b a b a +=+成立.③若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 且0≠y 则0≠xy ”; 正确命题的序号是①④.13、 解:联立关于,x y 的方程组:()3121150y x a x y -⎧=⎪-⎨⎪+++=⎩.消去y 得到关于x 的方程:()214a x += (*) 由题意,关于x 的方程(*)无解或者解为2x =. 若(*)无解,则20a +=,解得2a =-.若(*)的解为2x =,则()2214a +=,解得5a =. 综上所述,2a =-或者5a =.4、逻辑联接词1.三个是命题,一个真命题;2.使用了逻辑联结词“或”;3.r ;4.(4)5.3个.6.真命题.7.提示:3210x x ∃∈-+>R ,.8.提示:(1)p 且q (2)p 或q (3)非p (4)p 或q ;9.提示:(1)菱形的对角线互相垂直或互相平分. 10.②③提示: 11.P 且q;p:244x x +-有意义时,2x ≠;244x x +-有意义时,2x ≠-; 12、提示:1.(1)p 或q :2是偶数或质数,真命题 p 且q :2是偶数且是质数,真命题 非p :2不是偶数,假命题.(2)p 或q :0的倒数还是0或0的相反数还是0,真命题. p 且q :0的倒数还是0且0的相反数还是0,假命题. 非p :0的倒数不是0,真命题.13.解:3(1)p p A A B .非形式的复合命题::∪,此复合命题为假.⊆(2)非P 形式的复合命题:p :方程x 2+2x +3=0有实数根.此复合命题为真.(3)p 或q 形式的复合命题:p :3>3为假,q :3=3为真.此复合命题为真5、综合运用1、 12 ; 2. b<2 ; 3、 92;4、54 ;5、3x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭; 6、 2 ;7、 16提示:等价于(4)(5)0x x --≤;8、 2;m ≥提示:M N R ⋂= ;9、提示:2[]5[]6x x -+≤0 ∴ 2[]3x ≤≤ ∴ 24x ≤<∴不等式2[]5[]6x x -+≤0的解集为{}24x x ≤<10、 a>2 提示:a>-1时,解集为P =(-1,a )因为Q P ⊆,a>2; a<-1时,解集为P =(a ,-1)因为Q P ⊆,舍; a=-1时,解集为P = φ因为Q P ⊆,舍∴a>211、 a ≤-2提示:A ={x ||x |≤2,x ∈R }=[-2,2],B ={x |x ≥a },且A B ,∴ a ≤-212.3≤p 提示: A B A ⋃= ∴ B A ⊆ ∴3≤p13、解:若p 真,则()22140a a >⎧⎪⎨--<⎪⎩,解得12a >. 若q 真,则()240a --≥,解得2a ≤-或者2a ≥. 因为命题“p 或q ”为真命题,命题“p 且q ”为假命题, 所以命题p 和q 有且仅有一个为真.所以实数a 范围为:2a ≤-或122a <<.6、函数及其表示方法1.2x 2+7 ; 2.x c b a c y --=; 3.π+1 ; 4. - 4 ; 5.xx+-11 ; 6.-1;7.提示:327223,(72)32f p q =⨯∴=+ 8.提示:设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b ,∴ ⎩⎨⎧==⇒⎩⎨⎧=+=12342b a b ab a 或⎩⎨⎧-=-=32b a , ∴ f (x )=2x +1或f (x )= -2x -3. 9. 4 ; 10.c b a c b a *+=+)()*(; 11.*,)2019(20N x y x ∈⨯= ; 12.提示:在f (x )+2f (x 1)=x ①中,用x1代换x 得 f (x 1)+2 ;f (x )= x 1 ②,联立①、②解得 )0(32)(2≠-=x xx x f . 13.显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时, PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式.7、函数的解析式和定义域一.填空题:1.③ 2.{}|1x x ≥ 3.[4,0)(0,1]-⋃ 4. (2,3] 5.)2,2(-;6.4 7.f (x )=3x 8.15 9.[a ,-a ] 10. {x |-1≤x <8} 11.),3[]2,1()1,0(+∞ 提示:由函数解析式有意义,得⇒⎪⎩⎪⎨⎧>+≠-≥+-010652x x x x x ⎩⎪⎨⎪⎧x ≥3,或x ≤2x ≠1,x >0.⇒0<x <1或1<x ≤2,或x ≥3.故函数的定义域是),3[]2,1()1,0(+∞ .12.()2,2-提示: 因函数 y =lg(x 2+ax +1)的定义域为R ,故x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1是开口向上的抛物线,从而△<0,即a 2-4<0,解得 -2<a <2.13:反复利用条件(2),有f (x +5) ≤f (x +4)+1≤f (x +3)+2≤f (x +2)+3≤f (x +1)+4≤f (x )+5,(★)结合条件(1)得 f (x +5)=f (x )+5.于是,由(★),可得 f (x +1) = f (x )+1. 故 g (6)=f (6)+1-6= [f (1)+5 ]-5=1.8、函数的值域与最值一.填空题:1. {y|164y -≤≤} ;2.(-∞, 23)∪(23,+ ∞) ; 3.2 ;4.(,1]-∞ ;5. ;6.6 ; 7.[23 ,3] ; 8.利用△≥0⇒ a ≥2或a ≤-2. 9.215± 10..1115|⎭⎬⎫⎩⎨⎧<≤-y y 提示:将函数整理为:0)13)(1(4)1(,1,013)1()1(22≥+---=∆≠=++---y y y y y x y x y 由可见,得.1115|,1115⎭⎬⎫⎩⎨⎧<≤-∴≤≤-y y y 函数的值域为 11.[3,12-]提示:注意到函数y =在[0,1]上是单调递增的,故函数的值域是 [3,12-] ;12.2提示:22+(x+3)=4,14sin ,x+34cos ,[0,]2x πθθθ∴-==∈(1-x )令于是2sin 2cos sin()4y πθθθ==+=+2,2m M ∴===、13、 f (x ) =x 只有惟一实数解,即xax+b= x (*)只有惟一实数解, 当ax 2+(b -1)x =0有相等的实数根x 0, 且a x 0+b≠0时,解得f(x)=2x x +2, f [f (-3)] = 32, 当ax 2+(b -1)x =0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)= 1, f [f (-3)] =1.9、函数的单调性与奇偶性一.填空题:1.21->k 2.2b ≤- 3.]2,7[-- 4.2)()(x s x s -- 5.1---=x y 6.]0,21[-和),21[+∞ 7.)2()2()3(f f f << 8.R x x y ∈=,2 提示:本题答案不唯一.9.]1,2[-提示:函数12)1(]2)1[()1(222+-=-=-+=+x x x x x f ,]2,2[-∈x ,故函数的单调递减区间为]1,2[-、10.①③ 11.①④提示:①定义域),0()0,(+∞⋃-∞关于原点对称,且)()(x f x f -=-,奇函数、 ②定义域为}21{不关于原点对称.该函数不具有奇偶性、 ③定义域为R ,关于原点对称,且x x x x x f +≠-=-44)(,)()(44x x x x x f +-≠-=-,故其不具有奇偶性、 ④定义域为R ,关于原点对称, 当0>x 时,)()2(2)()(22x f x x x f -=+-=---=-;当0<x 时,)()2(2)()(22x f x x x f -=---=+-=-;当0=x 时,0)0(=f ;故该函数为奇函数、 故填①④12.-26提示: 已知)(x f 中xb ax x -+32005为奇函数,即)(x g =xb ax x -+32005中)()(x g x g -=-,也即)2()2(g g -=-,108)2(8)2()2(=--=--=-g g f ,得18)2(-=g ,268)2()2(-=-=g f 、二.解答题: 221)1()1()]([)(24222++=++=+==x x x x f x f f x g 、)()()(x f x g x G λ-=λλ--++=22422x x x )2()2(24λλ-+-+=x x)()(21x G x G -)]2()2([2141λλ-+-+=x x )]2()2([2242λλ-+-+-x x)]2()[)((22212121λ-++-+=x x x x x x由题设当121-<<x x 时,0))((2121>-+x x x x ,λλλ-=-++>-++4211)2(2221x x ,则4,04≤≥-λλ 当0121<<<-x x 时,0))((2121>-+x x x x ,λλλ-=-++<-++4211)2(2221x x ,则4,04≥≥-λλ 故4=λ、10、函数的图像1.① 2.② 3. ① ③ 4.121x y +=+ 5.① 6.④7.0提示:()x f 是偶函数,图象与x 轴有4个交点关于一y 轴对称,其横坐标互为相反数,故()0=x f 的所有实根的和是0、 8.1 ,提示:(2)是对的. 9.(2,-2);提示:f (x )=a x 过定点(0,1),故f (x )=a x -2-3过定点(2,—2). 10.(-∞,-1]∪[2,+ ∞)提示:由于函数f(x)是R 上的增函数,且过点A(0,-1)、B((3,1), |f(x+1)| <1的解集为(—1,2),故其补集为(-∞,-1]∪[2,+ ∞) 11.④提示:0y x =不过点(0,1);当α<0时,αx y =不过(0,0);1y x -=在定义域上不是增函数,只有④是对的. 12.①③提示:采用特殊值法.根据题意,可设x x g x x f ==)(,)( ,又设1,2==b a ,易验证①与③成立. 13.(1)()⎪⎩⎪⎨⎧≤<--≤<=73,4710,30,22x x x x y(2)图形如右。
向量与解析几何结合解答题精选平面向量与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算。
或者考虑向量运算的 几何意义,利用其几何意义解决有关问题。
1.已知1OF =(-3,0),2OF =(3,0),(O 为坐标原点),动点M 满足:||1MF +||2MF =10。
(1)求动点M 的轨迹C ;(2)若点P 、Q 是曲线C 上任意两点,且·OQ =0,求222PQ∙的值【解】(1)由||1MF +||2MF =10知: 动点M 到两定点F 1和F 2的距离之和为10根据椭圆的第一定义:动点M 的轨迹为椭圆:122=+y x (2)∵点P 、O 是1162522=+y x 上任意两点 设P(ααsin 4,cos 5),Q(ββsin 4,cos 5)(注意:这是点在椭圆上的一种常规设法,也是椭圆的参数方程的一个应用) ∵OP ·OQ =0 得:βαβαsin sin 16cos cos 25+=0 ①而2PQ 、22OQ OP ∙都可以用α、β的三角函数表示,利用①可以解得:222∙=400412.已知:过点A (0,1)且方向向量为=(1,k )的直线l 与⊙C :1)3()2(22=-+-y x 相交与M 、N 两点。
(1)求实数k 的取值范围;(2)求证:AM ·为定值; (3)若O 为坐标原点,且OM ·ON =12,求k 的值。
【解】∵直线l 过点A (0,1)且方向向量为a =(1,k )∴直线l 的方程为:y =kx +1 (注意:这里已知方向向量即已知直线的斜率) 将其代入⊙C :1)3()2(22=-+-y x ,得:07)1(4)1(22=++-+x k x k ① 由题意:△=07)1(4)]1(4[2>⨯+⨯-+-k k 得:374374+<<-k (注意:这里用了直线和方程组成方程组,方程有两根;本题还可以用圆与直线有两个交点,d<R 来解)(2)利用切割线定理可以证明||·|AN |=||2=7,A T 为切线,T 为切点。
典型例题一例1 过抛物线焦点的一条直线与它交于两点P 、Q ,通过点P 和抛物线顶点的直线交准线于点M ,如何证明直线MQ 平行于抛物线的对称轴?解:思路一:求出M 、Q 的纵坐标并进行比较,如果相等,则MQ//x 轴,为此,将方程)2(,22px k y px y -==联立,解出 ),)11(,2)11((2222k k p k k p P ++++))11(,2)11((2222k k p kk p Q +--+ 直线OP 的方程为,)11()11(2222x k k k y ++++=即.)11(22x kk y +--=令2p x -=,得M 点纵坐标Q M y kk p y =+-=)11(2得证.由此可见,按这一思路去证,运算较为繁琐.思路二:利用命题“如果过抛物线px y 22=的焦点的一条直线和这条抛物线相交,两上交点的纵坐标为1y 、2y ,那么221p y y -=”来证.设),(11y x P 、),(22y x Q 、),(33y x M ,并从px y 22=及)2(px k y -=中消去x ,得到0222=--kp py ky ,则有结论221p y y -=,即122y p y -=. 又直线OP 的方程为x x y y 11=, 2p x -=,得1132x py y -=. 因为),(11y x P 在抛物线上,所以p yx 2112=.从而212211113)(2y y p y p py x py y =-=⋅-==.这一证法运算较小.思路三:直线MQ 的方程为o y y =的充要条件是),2(),,2(0200y py Q y pM -.将直线MO 的方程p y y 02-=和直线QF 的方程)2(2220px py py y o --=联立,它的解(x ,y )就是点P 的坐标,消去o y 的充要条件是点P 在抛物线上,得证.这一证法巧用了充要条件来进行逆向思维,运算量也较小.说明:本题中过抛物线焦点的直线与x 轴垂直时(即斜率不存在),容易证明成立.典型例题二例2 已知过抛物线)0(22>=p px y 的焦点且斜率为1的直线交抛物线于A 、B 两点,点R 是含抛物线顶点O 的弧AB 上一点,求△RAB 的最大面积.分析:求RAB 的最大面积,因过焦点且斜率为1的弦长为定值,故可以AB 为三角形的底,只要确定高的最大值即可.解:设AB 所在的直线方程为2px y -=. 将其代入抛物线方程px y 22=,消去x 得0222=--p py yp y y y y y y AB 44)(222122121=-+⋅=-=∴当过R 的直线l 平行于AB 且与抛物线相切时,△RAB 的面积有最大值. 设直线l 方程为b x y +=.代入抛物线方程得0222=+-pb py y 由,0842=-=∆pb p 得2p b =,这时),2(p p R .它到AB 的距离为p h 22= ∴△RAB 的最大面积为2221p h AB =⋅.典型例题三例3 直线1l 过点)0,1(-M ,与抛物线x y 42=交于1P 、2P 两点,P 是线段1P 2P 的中点,直线2l 过P 和抛物线的焦点F ,设直线1l 的斜率为k .(1)将直线2l 的斜率与直线1l 的斜率之比表示为k 的函数)(k f ; (2)求出)(k f 的定义域及单调区间.分析:2l 过点P 及F ,利用两点的斜率公式,可将2l 的斜率用k 表示出来,从而写出)(k f ,由函数)(k f 的特点求得其定义域及单调区间.解:(1)设1l 的方程为:)1(+=x k y ,将它代入方程x y 42=,得0)42(2222=+-+k x k x k设),(),(),(222111y x P y x P y x P 、、,则2222212,24k k x k k x x -=-=+ 将222k k x -=代入)1(+=x k y 得:k y 2=,即P 点坐标为)2,2(22kk k -. 由x y 42=,知焦点)0,1(F ,∴直线2l 的斜率22221122kk k k k k -=--= ∴函数211)(k k f -=. (2)∵2l 与抛物线有两上交点,∴0≠k 且04)42(422>--=∆k k 解得01<<-k 或10<<k∴函数)(k f =的定义域为{}1001<<<<-k k k 或 当)0,1(-∈k 时,)(k f 为增函数.典型例题四例4 如图所示:直线l 过抛物线px y 22=的焦点,并且与这抛物线相交于A 、B 两点,求证:对于这抛物线的任何给定的一条弦CD ,直线l 不是CD 的垂直平分线.分析:本题所要证的命题结论是否定形式,一方面可根据垂直且平分列方程得矛盾结论;别一方面也可以根据l 上任一点到C 、D 距离相等来得矛盾结论.证法一:假设直线l 是抛物线的弦CD 的垂直平方线,因为直线l 与抛物线交于A 、B 两点,所以直线l 的斜率存在,且不为零;直线CD 的斜率存在,且不为0.设C 、D 的坐标分别为)2,2(121pt pt 与)2,2(222pt pt .则211t t k CD += ∴l 的方程为)2()(21p x t t y -⋅+-= ∵直线l 平分弦CD∴CD 的中点))(),((212221t t p t t p ++在直线l 上,即]2)()[()(22212121p t t p t t t t p -++-=+,化简得:0)21)((222121=+++t t t t p 由0)(21≠+t t p 知0212221=++t t 得到矛盾,所以直线l 不可能是抛物线的弦CD 的垂直平分线.证法二:假设直线l 是弦CD 的垂直平分线∵焦点F 在直线l 上,∴DF CF =由抛物线定义,),(),,(2211y x D y x C 到抛物线的准线2px -=的距离相等. ∵2121,y y x x -==,∴CD 的垂直平分线l :0=y 与直线l 和抛物线有两上交点矛盾,下略.典型例题五例5 设过抛物线)0(22>=p px y 的顶点O 的两弦OA 、OB 互相垂直,求抛物线顶点O 在AB 上射影N 的轨迹方程.分析:求与抛物线有关的轨迹方程,可先把N 看成定点),(00y x ;待求得00y x 、的关系后再用动点坐标)(y x ,来表示,也可结合几何知识,通过巧妙替换,简化运算.解法一:设),,(),,(),,(002211y x N y x B y x A则:2221212,2px y px y ==,22221214py y x x ⋅=∴ OB OA ⊥ ,1-=⋅∴O B O A k k 即02121=+y y x x042122221=+∴y y p y y 021≠y y ,2214p y y -=∴ ①把N 点看作定点,则AB 所在的直线方程为:),(000x x y x y y --=-显然00≠x 0200)(x y x y y x -+-=∴代入,22px y =化简整理得:0)(222020020=+-+y x p y py y x00≠∴x ,0202021)(2x y x p y y +-=∴ ② 由①、②得:020202)(24x y x p p +-=-,化简得)0(02002020≠=-+x px y x用x 、y 分别表示00y x 、得:)0(0222≠=-+x px y x解法二:点N 在以OA 、OB 为直径的两圆的交点(非原点)的轨迹上,设)2,2(2pt pt A ,则以OA 为直径的圆方程为:)()()(242222t t p pt y pt x +=-+-022222=--+pty pt y x ①设)2,2(121pt pt B ,OA ⊥OB ,则tt t t 1111-=⇒-= 在求以OB 为直径的圆方程时以t1-代1t ,可得022)(222=+-+pty px y x t ②由①+②得:0)2)(1(222=-++px y x t)0(0222≠=-+∴x px y x典型例题六例6如图所示,直线1l 和2l 相交于点M ,1l ⊥2l ,点1l N ∈,以A 、B 为端点的曲线段C 上的任一点到2l 的距离与到点N 的距离相等,若△AMN 为锐角三角形,7=AM ,3=AN ,且6=BN ,建立适当的坐标系,求曲线段C 的方程.分析:因为曲线段C 上的任一点是以点N 为焦点,以2l 为准线的抛物线的一段,所以本题关键是建立适当坐标系,确定C 所满足的抛物线方程.解:以1l 为x 轴,MN 的中点为坐标原点O ,建立直角坐标系.由题意,曲线段C 是N 为焦点,以2l 为准线的抛物线的一段,其中A 、B 分别为曲线段的两端点.∴设曲线段C 满足的抛物线方程为:),0,)(0(22>≤≤>=y x x x p px y B A 其中A x 、B x 为A 、B 的横坐标令,p MN =则)0,2(),0,2(pN p M -,3,17==AN AM ∴由两点间的距离公式,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++92)2(172)2(22A A A Apx p x px p x解得⎩⎨⎧==14A x p 或⎩⎨⎧==22A x p∵△AMN 为锐角三角形,∴A x p>2,则4=p ,1=A x 又B 在曲线段C 上,4262=-=-=∴pBN x B 则曲线段C 的方程为).0,41(82>≤≤=y x x y典型例题七例7如图所示,设抛物线)10(22<<=p px y 与圆9)5(22=+-y x 在x 轴上方的交点为A 、B ,与圆27)6(22=+-y x 在x 由上方的交点为C 、D ,P 为AB 中点,Q 为CD 的中点.(1)求PQ .(2)求△ABQ 面积的最大值.分析:由于P 、Q 均为弦AB 、CD 的中点,故可用韦达定理表示出P 、Q 两点坐标,由两点距离公式即可求出PQ .解:(1)设),(),,(),,(),,(),,(),,(2211y x Q y x P y x D y x C y x B y x A D D C C B B A A由⎪⎩⎪⎨⎧==+-pxy y x 29)5(222得:016)5(22=+--x p x , P x x x BA -=+=∴521 2198)5(222222)(222p p p p x x x x p x x p y y y BA B A B A B A -=+-=++=+=+=由⎪⎩⎪⎨⎧==+-pxy y x 227)6(222得09)6(22=+--x p x , p x x x DC -=+=∴622 )(2222D C D C x x p y y y +=+=同1y 类似,229p p y -=则0,12121=-=-y y x x ,1=∴PQ(2)B A B A APQ ABQ x x P y y PQ S S S B P Q -=-⋅=+=∆∆∆2221)1(821022p p p P-=--=10<<p ,∴当21=p 时,ABQ S ∆取最大值21.典型例题八例8 已知直线l 过原点,抛物线C 的顶点在原点,焦点在x 轴的正半轴上,且点)0,1(-A 和点)8,0(B 关于直线l 的对称点都在C 上,求直线l 和抛物线C 的方程.分析:设出直线l 和抛物线C 的方程,由点A 、B 关于直线l 对称,求出对称点的坐标,分别代入抛物线方程.或设α=∠Ox B ',利用对称的几何性质和三角函数知识求解.解法一:设抛物线C 的方程为px y 22=)0(>p ,直线l 的方程为kx y =)0(≠k , 则有点)0,1(-A ,点)8,0(B 关于直线l 的对称点为),(11'y x A 、),(22'y x B ,则有⎪⎪⎩⎪⎪⎨⎧-=⋅+-⋅=,11,2121111k x y x k y 解得⎪⎪⎩⎪⎪⎨⎧+-=+-=;12,1121221k k y k k x⎪⎪⎩⎪⎪⎨⎧-=⋅-⋅=+,18,2282222k x y x k y 解得⎪⎪⎩⎪⎪⎨⎧+-=+=.1)1(8,11622222k k y k k x 如图,'A 、'B 在抛物线上∴⎪⎪⎩⎪⎪⎨⎧+⋅=+-+-⋅=+.1162)1()1(64,112)1(42222222222k k p k k k k p k k 两式相除,消去p ,整理,得012=--k k ,故251±=k , 由0>p ,0>k ,得251+=k .把251+=k 代入,得552=p .∴直线l 的方程为x y 251+=,抛物线C 的方程为x y 5542=. 解法二:设点A 、B 关于l 的对称点为),(11'y x A 、),(22'y x B ,又设α=∠Ox B ',依题意,有1'==OA OA ,8'==OB OB .故αcos 82=x ,αsin 82=y .由︒=∠90BOA ,知︒=∠90''OA B .∴ααsin )90cos(1=︒-=x ,ααcos )90sin(1-=︒-=y . 又01>x ,02>x ,故α为第一象限的角. ∴)cos ,(sin 'αα-A 、)sin 8,cos 8('ααB .将'A 、'B 的坐标代入抛物线方程,得⎪⎩⎪⎨⎧==.cos 16sin 64,sin 2cos 22ααααp p ∴αα33cos sin 8=,即21tan =α从而55sin =α,552cos =α, ∴552=p ,得抛物线C 的方程为x y 5542=. 又直线l 平分OB B '∠,得l 的倾斜角为︒+=-︒+452290ααα. ∴251sin 1cos )90cos(1)90sin()452tan(+=-=︒++︒+=︒+=αααααk . ∴直线l 的方程为x y 251+=. 说明:(1)本题属于点关于直线的对称问题.解法一是解对称点问题的基本方法,它的思路明确,但运算量大,若不仔细、沉着,难于解得正确结果.解法二是利用对称图形的性质来解,它的技巧性较强,一时难于想到.(2)本题是用待定系数法求直线的方程和抛物线方程.在已知曲线的类型求曲线方程时,这种方法是最常规方法,需要重点掌握.典型例题九例9 如图,正方形ABCD 的边AB 在直线4+=x y l :上,C 、D 两点在抛物线x y =2上,求正方形ABCD 的面积.分析:本题考查抛物线的概念及其位置关系,方程和方程组的解法和数形结合的思想方法,以及分析问题、解决问题的能力.解:∵直线4+=x y AB :,CD AB //,∴设CD 的方程为b x y +=,且),(11y x C 、),(22y x D .由方程组⎩⎨⎧+==bx y xy 2,消去x ,得02=+-b y y ,于是121=+y y ,b y y =21,∴21211y y kCD -+=(其中1=k ) ∴)41(24)(221221b y y y y CD -=-+⋅=.由已知,ABCD 为正方形,AD CD =, ∴CD 可视为平行直线AB 与CD 间的距离,则有24b CD -=,于是得24)41(2b b -=-.两边平方后,整理得,01282=++b b ,∴6-=b 或2-=b . 当6-=b 时,正方形ABCD 的面积50)241(22=+==CD S . 当2-=b 时,正方形ABCD 的面积18)81(22=+==CD S .∴正方形ABCD 的面积为18或50.说明:运用方程(组)的思想和方法求某些几何量的值是解析几何中最基本的、贯穿始终的方法,本题应充分考虑正方形这一条件.典型例题十例10 设有一颗彗星围绕地球沿一抛物线轨道运行,地球恰好位于抛物线轨道的焦点处,当此彗星离地球为410⨯d km 时,经过地球与彗星的直线与抛物线的轴的夹角为︒30,求这彗星与地球的最短距离.分析:利用抛物线有关性质求解.解:如图,设彗星轨道方程为px y 22=,0>p ,焦点为)0,2(p F , 彗星位于点),(00y x P 处.直线PF 的方程为)2(33p x y -=.解方程组⎪⎩⎪⎨⎧-==),2(33,22p x y px y 得2)347(p x ±=, 故2)347(0p x ±=. p p p p x PF )324(|22)347(|332|2|3320±=-±=-=. 故d p =±)324(,得d p 232±=. 由于顶点为抛物线上到焦点距离最近的点,所以顶点是抛物线上到焦点距离最近的点.焦点到抛物线顶点的距离为d p 4322±=,所以彗星与地球的最短距离为410432⨯+d km 或410432⨯-d km ,(P 点在F 点的左边与右边时,所求距离取不同的值).说明:(1)此题结论有两个,不要漏解;(2)本题用到抛物线一个重要结论:顶点为抛物线上的点到焦点距离最近的点,其证明如下:设),(00y x P 为抛物线px y 22=上一点,焦点为)0,2(p F ,准线方程为2p x -=,依抛物线定义,有220p x p PF ≥+=)0(0≥x ,当00=x 时,PF 最小,故抛物线上到焦点距离最近的点是抛物线的顶点.典型例题十一例11 如图,抛物线顶点在原点,圆x y x 422=+的圆心是抛物线的焦点,直线l 过抛物线的焦点,且斜率为2,直线l 交抛物线与圆依次为A 、B 、C 、D 四点,求CD AB +的值.分析:本题考查抛物线的定义,圆的概念和性质,以及分析问题与解决问题的能力,本题的关键是把CD AB +转化为直线被圆锥曲线所截得的弦长问题.解:由圆的方程x y x 422=+,即4)2(22=+-y x 可知,圆心为)0,2(F ,半径为2,又由抛物线焦点为已知圆的圆心,得到抛物线焦点为)0,2(F ,设抛物线方程为x y 82=,BC AD CD AB -=+ ∵BC 为已知圆的直径,∴4=BC ,则4-=+AD CD AB .设),(11y x A 、),(22y x D ,∵FD AF AD +=,而A 、D 在抛物线上,由已知可知,直线l 方程为)2(2-=x y ,于是,由方程组⎩⎨⎧-==).2(2,82x y y 消去y ,得0462=+-x x ,∴621=+x x . ∴1046=+=AD ,因此,6410=-=+CD AB .说明:本题如果分别求AB 与CD 则很麻烦,因此把CD AB +转化成4-=-AD BC AD 是关键所在,在求AD 时,又巧妙地运用了抛物线的定义,从而避免了一些繁杂的运算.本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。
典型例题一例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.典型例题三例 3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?典型例题四例4 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).(A )1个 (B )2个 (C )3个 (D )4个分析:把034222=-+++y x y x 化为()()82122=+++y x ,圆心为()21--,,半径为22=r ,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选C .典型例题五例5 过点()43--,P 作直线l ,当斜率为何值时,直线l 与圆()()42122=++-y x C :有公共点,如图所示.分析:观察动画演示,分析思路. 解:设直线l 的方程为()34+=+x k y即043=-+-k y kx根据r d ≤有214322≤+-++kk k整理得0432=-k k解得340≤≤k .典型例题六例6 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.典型例题七例7 自点()33,-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆074422=+--+y x y x C :相切(1)求光线l 和反射光线所在的直线方程.(2)光线自A 到切点所经过的路程. 分析、略解:观察动画演示,分析思路.根据对称关系,首先求出点A 的对称点A '的坐标为()33--,,其次设过A '的圆C 的切线方程为()33-+=x k y根据r d =,即求出圆C 的切线的斜率为34=k 或43=k 进一步求出反射光线所在的直线的方程为0334=+-y x 或0343=--y x最后根据入射光与反射光关于x 轴对称,求出入射光所在直线方程为0334=++y x 或0343=-+y x光路的距离为M A ',可由勾股定理求得7222=-'='CM C A MA .说明:本题亦可把圆对称到x 轴下方,再求解.典型例题八例8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.图3解:设),(y x H ,),(''y x C ,连结AH ,CH , 则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥, 所以AH OC //,OA CH //,OC OA =, 所以四边形AOCH 是菱形.所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.,2''x x y y又),(''y x C 满足42'2'=+y x ,所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.典型例题九例9 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.典型例题十例10 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.分析:设P 、Q 两点的坐标为),(11y x 、),(22y x ,则由1-=⋅O Q O P k k ,可得02121=+y y x x ,再利用一元二次方程根与系数的关系求解.或因为通过原点的直线的斜率为x y ,由直线l 与圆的方程构造以xy为未知数的一元二次方程,由根与系数关系得出O Q O P k k ⋅的值,从而使问题得以解决.解法一:设点P 、Q 的坐标为),(11y x 、),(22y x .一方面,由OQ OP ⊥,得1-=⋅O Q O P k k ,即12211-=⋅x y x y ,也即:02121=+y y x x . ① 另一方面,),(11y x 、),(22y x 是方程组⎩⎨⎧=+-++=-+0603222m y x y x y x 的实数解,即1x 、2x 是方程02741052=-++m x x ②的两个根.∴221-=+x x ,527421-=m x x . ③ 又P 、Q 在直线032=-+y x 上,∴])(39[41)3(21)3(2121212121x x x x x x y y ++-=-⋅-=. 将③代入,得51221+=m y y . ④将③、④代入①,解得3=m ,代入方程②,检验0>∆成立, ∴3=m .解法二:由直线方程可得y x 23+=,代入圆的方程0622=+-++m y x y x ,有0)2(9)6)(2(31222=++-+++y x my x y x y x ,整理,得0)274()3(4)12(22=-+-++y m xy m x m . 由于0≠x ,故可得012)3(4))(274(2=++-+-m xym x y m .∴OP k ,OQ k 是上述方程两根.故1-=⋅O Q O P k k .得127412-=-+m m,解得3=m .经检验可知3=m 为所求.说明:求解本题时,应避免去求P 、Q 两点的坐标的具体数值.除此之外,还应对求出的m 值进行必要的检验,这是因为在求解过程中并没有确保有交点P 、Q 存在.解法一显示了一种解这类题的通法,解法二的关键在于依据直线方程构造出一个关于xy的二次齐次方程,虽有规律可循,但需一定的变形技巧,同时也可看出,这种方法给人以一种淋漓酣畅,一气呵成之感.典型例题十一例11 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程. 分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.典型例题十二例12 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程. 分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d .将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?典型例题十三例13 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.典型例题十四例14 已知对于圆()1122=-+y x 上任意一点()y x P ,,不等式0≥++m y x 恒成立,求实数m 的取值范围.解:运用圆的参数方程,设P 的坐标为()θθsin 1cos +,, [)πθ20,∈即θcos =x ,θsin 1+=y , ∵0≥++m y x 恒成立 ∴()y x m +-≥恒成立即()θθsin 1cos ++-≥m 恒成立∴只需m 大于等于()θθsin 1cos ++-的最大值.令()()14sin 21sin cos sin 1cos -⎪⎭⎫⎝⎛+-=-+-=++-=πθθθθθu u 的最大值为12-∴12-≥m说明:在上述解法中我们运用了圆上点的参数设法.采用这种设法的优点在于,一方面可以减少参数的个数,另一方面可以灵活地运用三角公式.从代数的观点看,这种设法的实质就是三角代换.另外本题也可以不用圆的参数方程求解,本题的实质就是求最值问题,方法较多.但以上述解法较简.典型例题十五例15 试求圆⎩⎨⎧==θθsin 2,cos 2y x (θ为参数)上的点到点)4,3(A 距离的最大(小)值.分析:利用两点间距离公式求解或数形结合求解. 解法一:设P 是圆⎩⎨⎧==θθsin 2,cos 2y x 上任一点,则)sin 2,cos 2(θθP .所以22)sin 24()cos 23(θθ-+-=PAθθsin 16cos 12425--+=)43arctan()sin(2029=+-=ϕϕθ. 因为R ∈θ,所以R ∈+ϕθ,因此 当1)sin(-=+ϕθ时,72029=+=最大值PA . 当1)sin(=+ϕθ时,32029=-=最小值PA .解法二:将圆⎩⎨⎧==θθsin 2,cos 2y x 代入普通方程得422=+y x .如图所示可得,A P 1、A P 2分别是圆上的点到)4,3(A 的距离的最小值和最大值.易知:31=A P ,72=A P.说明:(1)在圆的参数方程⎩⎨⎧+=+=θθsin ,cos r b y r a x (θ为参数)中,),(b a A 为圆心,)0(>r r 为半径,参数θ的几何意义是:圆的半径从x 轴正向绕圆心按逆时针方向旋转到P 所得圆心角的大小.若原点为圆心,常常用)sin ,cos (θθr r 来表示半径为r 的圆上的任一点.(2)圆的参数方程也是解决某些代数问题的一个重要工具.典型例题十六例16 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.分析:利用几何法求解,或利用转移法求解,或利用参数法求解.解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(by a x M ++.由222OA AM OM =+,即22222])()[(41)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+. 又22AB PQ =,即)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.①又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+. 这就是所求的轨迹方程.解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q , 由于APBQ 为矩形,故AB 与PQ 的中点重合,即有βαcos cos r r a x +=+, ① βαsin sin r r b y +=+, ②又由PB PA ⊥有1cos sin cos sin -=--⋅--ar br a r b r ββαα ③联立①、②、③消去α、β,即可得Q 点的轨迹方程为)(222222b a r y x +-=+. 说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.本题给出三种解法.其中的解法一是几何方法,它充分利用了图形中隐含的数量关系.而解法二与解法三,从本质上是一样的,都可以称为参数方法.解法二涉及到了1x 、2x 、1y 、2y 四个参数,故需列出五个方程;而解法三中,由于借助了圆222r y x =+的参数方程,只涉及到两个参数α、β,故只需列出三个方程便可.上述三种解法的共同之处是,利用了图形的几何特征,借助数形结合的思想方法求解.典型例题十七例17 设点),(y x P 是圆122=+y x 是任一点,求12+-=x y u 的取值范围. 分析一:利用圆上任一点的参数坐标代替x 、y ,转化为三角问题来解决. 解法一:设圆122=+y x 上任一点)sin ,(cos θθP 则有θcos =x ,θsin =y )2,0[πθ∈ ∴1cos 2sin +-=θθu ,∴2sin cos -=+θθu u∴)2(sin cos +-=-u u θθ.即2)sin(12+=-+u u ϕθ(u =ϕtan ) ∴1)2()sin(2++=-u u ϕθ.又∵1)sin(≤-ϕθ∴1122≤++u u解之得:43-≤u . 分析二:12+-=x y u 的几何意义是过圆122=+y x 上一动点和定点)2,1(-的连线的斜率,利用此直线与圆122=+y x 有公共点,可确定出u 的取值范围.解法二:由12+-=x y u 得:)1(2+=-x u y ,此直线与圆122=+y x 有公共点,故点)0,0(到直线的距离1≤d .∴1122≤++u u解得:43-≤u . 另外,直线)1(2+=-x u y 与圆122=+y x 的公共点还可以这样来处理:由⎩⎨⎧=++=-1)1(222y x x u y 消去y 后得:0)34()42()1(2222=++++++u u x u u x u , 此方程有实根,故0)34)(1(4)42(2222≥+++-+=∆u u u u u ,解之得:43-≤u . 说明:这里将圆上的点用它的参数式表示出来,从而将求变量u 的范围问题转化成三角函数的有关知识来求解.或者是利用其几何意义转化成斜率来求解,使问题变得简捷方便.典型例题十八例18 已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.分析一:为了使不等式0≥++m y x 恒成立,即使m y x -≥+恒成立,只须使m y x -≥+min )(就行了.因此只要求出y x +的最小值,m 的范围就可求得.解法一:令y x u +=,由⎩⎨⎧=-+=+1)1(22y x u y x 得:0)1(2222=++-u y u y ∵0≥∆且228)1(4u u -+=∆, ∴0)12(42≥++-u u .即0)122≤--u u ,∴2121+≤≤-u , ∴21min -=u ,即21)(min -=+y x 又0≥++m y x 恒成立即m y x -≥+恒成立. ∴m y x -≥-=+21)(min 成立, ∴12-≥m .分析二:设圆上一点)sin 1,(cos θθ+P [因为这时P 点坐标满足方程1)1(22=-+y x ]问题转化为利用三解问题来解.解法二:设圆1)1(22=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈∴θcos =x ,θsin 1+=y ∵0≥++m y x 恒成立∴0sin 1cos ≥+++m θθ 即)sin cos 1(θθ++-≥m 恒成立.∴只须m 不小于)sin cos 1(θθ++-的最大值. 设1)4sin(21)cos (sin -+-=-+-=πθθθu∴12max -=u 即12-≥m .说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆222)()(r b y a x =-+-上的点设为)sin ,cos (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.典型例题十九例19 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决. 解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x . 可设圆的参数方程为⎩⎨⎧+=+=,sin 4,cos 3θθy x (θ是参数).则θθθθ2222sin sin 816cos cos 69+++++=+=y x d)cos(1026sin 8cos 626φθθθ-+=++=(其中34tan =φ). 所以361026max =+=d ,161026min =-=d .(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'1d 减去半径1.所以6143221=++=d .4143222=-+=d .所以36max =d .16min =d .(2) (法1)由1)2(22=++y x 得圆的参数方程:⎩⎨⎧=+-=,sin ,cos 2θθy x θ是参数.则3cos 2sin 12--=--θθx y .令t =--3cos 2sin θθ, 得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ1)sin(1322≤-=+-⇒φθt t 433433+≤≤-⇒t . 所以433max +=t ,433min -=t . 即12--x y 的最大值为433+,最小值为433-. 此时)cos(52sin 2cos 22φθθθ++-=-+-=-y x . 所以y x 2-的最大值为52+-,最小值为52--. (法2)设k x y =--12,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值. 由11222=++--=k k k d ,得433±=k . 所以12--x y 的最大值为433+,最小值为433-. 令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由152=--=m d ,得52±-=m .所以y x 2-的最大值为52+-,最小值为52--.典型例题二十例20 有一种大型商品,A 、B 两地都有出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地的运费的3倍.已知A 、B 两地距离为10公里,顾客选择A 地或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.分析:该题不论是问题的背景或生活实际的贴近程度上都具有深刻的实际意义和较强的应用意识,启示我们在学习中要注意联系实际,要重视数学在生产、生活以及相关学科的应用.解题时要明确题意,掌握建立数学模型的方法.解:以A 、B 所确定的直线为x 轴,AB 的中点O 为坐标原点,建立如图所示的平面直角坐标系.∵10=AB ,∴)0,5(-A ,)0,5(B .设某地P 的坐标为),(y x ,且P 地居民选择A 地购买商品便宜,并设A 地的运费为a 3元/公里,B 地的运费为a 元/公里.因为P 地居民购货总费用满足条件:价格+A 地运费≤价格+B 地的运费即:2222)5()5(3y x a y x a +-≤++.∵0>a ,∴2222)5()5(3y x y x +-≤++化简整理得:222)415()425(≤++y x ∴以点)0,425(-为圆心415为半径的圆是两地购货的分界线. 圆内的居民从A 地购货便宜,圆外的居民从B 地购货便宜,圆上的居民从A 、B 两地购货的总费用相等.因此可随意从A 、B 两地之一购货.说明:实际应用题要明确题意,建议数学模型.本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。
典型例题一例1 直线l 过点P (-1,3),倾斜角的正弦是54,求直线l 的方程. 分析:根据倾斜角的正弦求出倾斜角的正切,注意有两解. 解:因为倾斜角α的范围是:πα<≤0 又由题意:54sin =α, 所以:34tan ±=α, 直线过点P (-1,3),由直线的点斜式方程得到:()1343+±=-x y 即:01334=+-y x 或0534=-+y x .说明:此题是直接考查直线的点斜式方程,在计算中,要注意当不能判断倾斜角α的正切时,要保留斜率的两个值,从而满足条件的解有两个.典型例题二例2 求经过两点A (2,m )和B (n ,3)的直线方程.分析:本题有两种解法,一是利用直线的两点式;二是利用直线的点斜式.在解答中如果选用点斜式,只涉及到n 与2的分类;如果选用两点式,还要涉及m 与3的分类.解:法一:利用直线的两点式方程∵直线过两点A (2,m )和B (n ,3) (1)当3=m 时,点A 的坐标是A (2,3),与点B (n ,3)的纵坐标相等,则直线AB 的方程是3=y ;(2)当2=n 时,点B 的坐标是B (2,3),与点A (2,m )的横坐标相等,则直线AB 的方程是2=x ;(3)当3≠m ,2≠n 时,由直线的两点式方程121121x x x x y y y y --=--得: 223--=--n x m m y 法二:利用直线的点斜式方程(1)当2=n 时,点B A ,的横坐标相同,直线AB 垂直与x 轴,则直线AB 的2=x ; (2)当2≠n 时,过点B A ,的直线的斜率是23--=n mk , 又∵过点A (2,m )∴由直线的点斜式方程()11x x k y y -=-得过点B A ,的直线的方程是:()223---=-x n mm y 说明:本题的目的在于使学生理解点斜式和两点式的限制条件,并体会分类讨论的思想方法.典型例题三例3 把直线方程()00≠=++ABC c By Ax 化成斜截式______,化成截距式______. 分析:因为0≠ABC ,即0≠A ,0≠B ,0≠C ,按斜截式、截距式的形式要求变形即可.解:斜截式为BC x B A y --=,截距式为A C x -+BC Y -=1说明:此题考查的是直线方程的两种特殊形式:斜截式和截距式.典型例题四例4 直线023cos =++y x θ的倾斜角的取值范围是_____________.分析:将直线的方程化为斜截式,得出直线的斜率,再由斜率和倾斜角的关系,得出关于θ的一个三角不等式即可.解:已知直线的方程为323cos --=x y θ,其斜率3cos θ-=k . 由313cos ≤=θk ,得31tan ≤α,即33tan 33≤≤-α. 由[)πα,0∈,得),65[6,0πππα ⎥⎦⎤⎢⎣⎡∈. 说明:解题易得出错误的结果⎥⎦⎤⎢⎣⎡-∈6,6ππα,其原因是没有注意到倾斜角的取值范围.典型例题五例5 直线l 经过点)2,3(,且在两坐标轴上的截距相等,求直线l 的方程.分析:借助点斜式求解,或利用截距式求解.解法一:由于直线l 在两轴上有截距,因此直线不与x 、y 轴垂直,斜率存在,且0≠k . 设直线方程为)3(2-=-x k y ,令0=x ,则23+-=k y ,令0=y ,则kx 23-=.由题设可得k k 2323-=+-,解得1-=k 或32=k . 所以,l 的方程为)3(2--=-x y 或)3(322-=-x y .故直线l 的方程为05=-+y x 或032=-y x .解法二:由题设,设直线l 在x 、y 轴的截距均为a . 若0=a ,则l 过点)0,0(,又过点)2,3(,∴l 的方程为x y 32=,即l :032=-y x . 若0≠a ,则设l 为1=+a ya x .由l 过点)2,3(,知123=+aa ,故5=a .∴l 的方程05=-+y x .综上可知,直线l 的方程为032=-y x 或05=-+y x .说明:对本例,常见有以下两种误解:误解一:如下图,由于直线l 的截距相等,故直线l 的斜率的值为1±.若1=k ,则直线方程为32-=-x y ;若1-=k ,则直线方程为)3(2--=-x y .故直线方程为01=-+y x 或05=-+y x .误解二:由题意,直线在两轴上的截距相等,则可设直线方程为1=+aya x .由直线过点)2,3(,得123=+aa ,即5=a ,也即方程为05=-+y x . 在上述两种误解中,误解一忽视了截距的意义,截距不是距离,它可正可负,也可以为0.显见,当1=k 时,直线01=--y x 的两轴上的截距分别为1和-1,它们不相等.另外,这种解法还漏掉了直线在两轴上的截距均为0的这种特殊情形.误解二中,没有注意到截距式方程的适用范围,同样也产生了漏解.典型例题六例6 已知在第一象限的ABC ∆中,)1,1(A 、)1,5(B ,3π=∠A ,4π=∠B ,求:(1)AB 边的方程;(2)AC 和BC 所在直线的方程. 分析:(1)当直线与x 轴平行时或垂直时,不能用两点式求直线的方程.(2)由图可知AC 、BC 的斜率,根据点斜式方程即可得出结果.解:(1)如图,AB 的方程为1=y )51(≤≤x .(2)由AB ∥x 轴,且ABC ∆在第一象限知AC 的斜率33tan==πAC k ,BC 的斜率1)4tan(-=-=ππBC k . 所以,AC 边所在直线的方程为)1(31-=-x y ,即0313=-+-y x . BC 边所在直线的方程为)5(11--=-x y ,即06=-+y x .说明:(1)AB 边是一条线段,要注意变量x 的取值范围.(2)解题中,要注意画出图形,便于直观地得到所求直线所具备的条件.典型例题七例7 若ABC ∆的顶点)4,3(A ,)0,6(B ,)2,5(--C ,求A ∠的平分线AT 所在的直线的方程.分析:两个条件确定一条直线.要求AT 的方程,已知点A 的坐标,只要再找出AT 的斜率或点T 的坐标就可以了.在三角形中,A ∠的平分线有下列性质:(1)TAB CAT ∠=∠;(2)AT 上任一点到两边AB 、AC 的距离相等;(3)ABCA TBCT =.用其中任何一个性质,都可以确定第二个条件.解法一:∵10)24()53(22=+++=AC ,54)63(22=+-=AB ,∴T 分BC 所成的比为2===ABACTB CT λ. 设T 的坐标为),(y x ,则:3721625=+⨯+-=x ,3221022-=+⨯+-=y ,即)32,37(-T .由两点式得AT 的方程为3733732432--=++x y ,即0177=--y x . 解法二:直线AC 到AT 的角等于AT 到AB 的角,43)5(3)2(4=----=AC k ,346304-=--=AB k .设AT 的斜率为k (34-<k 或34>k ),则有 k k k k )43(14343143-+--=+-. 解得7=k 或71-=k (舍去).∴直线AT 的方程为)3(74-=-x y ,即0177=--y x .解法三:设直线AT 上动点),(y x P ,则P 点到AC 、AB 的距离相等,即:574352434+-=-+y x y x ,∴037=-+y x 或0177=--y x结合图形分析,知037=-+y x 是ABC ∆的角A 的外角平分线,舍去. 所以所求的方程为0177=--y x .说明:(1)确定不同条件下的直线方程是高考的重要内容,其方法主要是待定系数法(如解法一、解法二)和轨迹法(如解法三).要熟练掌握直线方程各种形式间的相互转化.点斜式是直线方程最重要的一种形式,要加强这方面的训练.(2)解法三涉及到后面将要学到的知识.这里先把它列出来,作为方法积累.典型例题八例8 求过点)4,5(--P 且分别满足下列条件的直线方程: (1)与两坐标轴围成的三角形面积为5;(2)与x 轴和y 轴分别交于A 、B 两点,且53∶∶=BP AP .分析:对于(1),既可借助于截距式求解,也可以利用点斜式来求解;对于(2),利用截距式求解较为简便.解法一:设所求的直线方程为1=+b ya x . 由直线过点)4,5(--P ,得145=-+-ba ,即ab b a -=+54.又521=⋅b a ,故10=ab . 联立方程组⎩⎨⎧=-=+,10,54ab ab b a 解得⎪⎩⎪⎨⎧=-=425b a 或⎩⎨⎧-==25b a . 故所求直线方程为1425=+-y x 和125=-+yx ,即: 02058=+-y x 和01052=--y x .解法二:设所求直线方程为)5(4+=+x k y ,它与两坐轴的交点为)0,54(kk-,)45,0(-k .由已知,得5544521=-⋅-kk k ,即k k 10)45(2=-. 当0>k 时,上述方程可变成01650252=+-k k ,解得58=k ,或52=k . 由此便得欲求方程为02058=+-y x 和01052=--y x .(2)解:由P 是AB 的分点,得53±==PB AP λ. 设点A 、B 的坐标分别为)0,(a ,),0(b .当P 是AB 的内分点时,53=λ. 由定比分点公式得8-=a ,332-=b .再由截距式可得所求直线方程为03234=++y x .当点P 是AB 的外分点时,53-=λ.由定比分点公式求得2-=a ,38=b .仿上可得欲求直线方程为0834=+-y x .故所求的直线方程为03234=++y x ,或0834=+-y x .说明:对于(1),应注意对题意的理解,否则,就较易得到ab b a -=+54,且10=ab ,从而遗漏了10-=ab 的情形;对于(2),应当区分内分点与外分点两种不同的情形.必要时,可画出草图直观地加以分析,防止漏解. 求直线的方程时,除应注意恰当地选择方程的形式外,还应注意到不同形式的方程的限制条件.如点斜式的限定条件是直线必须存在斜率;截距式的限定条件为两轴上的截距都存在且不为0;两点式的限定条件是直线不与x 轴垂直,也不与y 轴垂直.除此以外,还应注意直线方程形式之间的相互转化.典型例题九例9 已知两直线0111=++y b x a 和0122=++y b x a 的交点为)3,2(P ,求过两点),(11b a Q 、),(22b a Q 的直线方程.分析:利用点斜式或直线与方程的概念进行解答. 解法一:∵)3,2(P 在已知直线上,∴⎩⎨⎧=++=++0132********b a b a ∴0)(3)(22121=-+-b b a a ,即322121-=--a a b b .故所求直线方程为)(3211a x b y --=-. ∴0)32(3211=+-+b a y x ,即0132=++y x . 解法二:∵点P 在已知直线上,∴⎩⎨⎧=++=++0132********b a b a 可见),(111b a Q 、),(222b a Q 都满足方程0132=++y x , ∴过1Q 、2Q 两点的直线方程为0132=++y x .说明:解法二充分体现了“点在直线上,则点的坐标满足直线方程;反之,若点的坐标满足方程,则直线一定过这个点”.此解法独特,简化了计算量,能培养学生的思维能力.典型例题十例10 过点)4,1(P 引一条直线,使它在两条坐标轴上的截距为正值,且它们的和最小,求这条直线方程.分析:利用直线方程的点斜式,通过两截距之和最小求出直线的斜率,从而求出直线方程.或借助直线方程的截距式,通过两截距之和最小,求出直线在两轴上的截距,从而求出直线的方程.解法一:设所求的直线方程为)1(4-=-x k y .显见,上述直线在x 轴、y 轴上的截距分别为k41-、k -4. 由于041>-k,且04>-k 可得0<k . 直线在两坐标轴上的截距之和为:945)4()(5)4()41(=+≥-+-+=-+-=k k k k S ,当且仅当kk 4-=-,即2-=k 时,S最小值为9.故所求直线方程为)1(24--=-x y ,即062=-+y x .解法二:设欲求的直线方程为1=+bya x (0>a ,0>b ). 据题设有141=+ba , ① 令b a S +=. ②①×②,有94545)41)((=+≥++=++=ba ab bab a S . 当且仅当b a a b 4=时,即b a =2,且141=+ba ,也即3=a ,6=b 时,取等号.故所求的直线方程为163=+yx ,即062=-+y x .说明:在解法一中,应注意到0<k 这个隐含条件.否则,由)4(5kk S +-=,将很有可能得出错误的结果.如145)4(5=-≥+-=k k S ,145)4(5=-≤+-=kk S 等等. 在解法二中,应注意运算过程中的合理性,即讲究算理,不然,将会使运算过程不胜其繁.如采取下述方法:由①,用a 来表示b ,再代入②中,把S 化归成a 的函数.从解题思维方法上说无可厚非,但这种方法将使运算难度陡然增加.不如保持本质、顺其自然好.典型例题十一例11 已知523=+b a ,其中a 、b 是实常数,求证:直线010=-+by ax 必过一定点.分析与解:观察条件与直线方程的相似之处,可把条件变形为01046=-+b a ,可知6=x ,4=y 即为方程010=-+by ax 的一组解,所以直线010=-+by ax 过定点(6,4).说明:此问题属于直线系过定点问题,此类问题的彻底解决宜待学完两直线位置之后较好,当然现在也可以研究,并且也有一般方法.典型例题十二例12 直线l 过点M (2,1),且分别交x 轴、y 轴的正半轴于点A 、B .点O 是坐标原点,(1)求当ABO ∆面积最小时直线l 的方程;(2)当MA MB 最小时,求直线l 的方程.解:(1)如图,设OA a =,OB b =,ABO ∆的面积为S ,则ab S 21=并且直线l 的截距式方程是a x +by=1 由直线通过点(2,1),得a 2+b1=1 所以:2a =b111-=1-b b因为A 点和B 点在x 轴、y 轴的正半轴上,所以上式右端的分母01>-b .由此得:b b b b a S ⨯-=⨯=121111112-++=-+-=b b b b2111+-+-=b b 422=+≥ 当且仅当=-1b 11-b ,即2=b 时,面积S 取最小值4, 这时4=a ,直线的方程是:4x +2y=1即:042=-+y x(2)设θ=∠BAO ,则MA =θsin 1,MB =θcos 2,如图,所以 MA MB =θsin 1θcos 2=θ2sin 4当θ=45°时MA MB 有最小值4,此时1=k ,直线l 的方程为03=-+y x . 说明:此题与不等式、三角联系紧密,解法很多,有利于培养学生发散思维,综合能力和灵活处理问题能力.动画素材中有关于此题的几何画板演示.典型例题十三例13 一根铁棒在20°时,长10.4025米,在40°时,长10.4050米,已知长度l 和温度t 的关系可以用直线方程来表示,试求出这个方程,并且根据这个方程,求这跟铁棒在25°时的长度.解:这条直线经过两点(20,10.4025)和(20,10.4050),根据直线的两点式方程,得:4025.104050.104025.10--l =204020--t即 l =0.002520t⨯+10.4000当t =25°时 l =0.00252025⨯+10.4000=0.0031+10.4000=10.4031即当t =25°时,铁棒长为10.4031米. 说明:直线方程在实际中应用非常广泛.典型例题十三例13 一根铁棒在20°时,长10.4025米,在40°时,长10.4050米,已知长度l 和温度t 的关系可以用直线方程来表示,试求出这个方程,并且根据这个方程,求这跟铁棒在25°时的长度.解:这条直线经过两点(20,10.4025)和(20,10.4050),根据直线的两点式方程,得:4025.104050.104025.10--l =204020--t即 l =0.002520t⨯+10.4000当t =25°时 l =0.00252025+10.4000=0.0031+10.4000=10.4031 即当t =25°时,铁棒长为10.4031米. 说明:直线方程在实际中应用非常广泛.本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。
典型例题一例1.根据叙述作图,指出二面角的平面角并证明.(1)如图1,已知l A l ∈=⋂,βα.在α内作l PA ⊥于A ,在β内作l QA ⊥于A .(2)如图2,已知l A A l ∉∈=⋂,,αβα.作β⊥AP 于P ,在α内作l AQ ⊥于Q ,连结PQ .(3)已知βαβα∉∉=⋂A A l ,,.作α⊥AP 于P ,β⊥AQ 于Q ,⋂l 平面H PAQ =,连结PH 、QH .作图与证明在此省略.说明:本题介绍了作二面角的平面角的三种常用方法,其中用三垂线定理及逆定理的方法最常用,还需补充这种方法的其他典型图形.典型例题二例2. 如图,在立体图形ABC D -中,若E CD AD CB AB ,,==是AC 的中点,则下列命题中正确的是( ).(A )平面ABC ⊥平面ABD(B )平面ABD ⊥平面BDC(C )平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDE(D )平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE分析:要判断两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.解:因为,CB AB =且E 是AC 的中点,所以,AC BE ⊥同理有AC DE ⊥,于是⊥AC 平面BDE .因为⊂A C 平面ABC ,所以平面ABC ⊥平面BDE .又由于⊂AC 平面ACD ,所以平面ACD ⊥平面BDE .所以选C.说明:本题意图是训练学生观察图形,发现低级位置关系以便得到高级位置关系.在某一个平面内,得到线线垂直的重要途径是出现等腰三角形底边的中线,由线线垂直得到线面垂直,由线面垂直可得到面面垂直.典型例题三例3.如图,P 是ABC ∆所在平面外的一点,且⊥PA 平面ABC ,平面⊥PAC 平面PBC .求证AC BC ⊥.分析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直..证明:在平面PAC 内作PC AD ⊥,交PC 于D .因为平面⊥PAC 平面PBC 于PC ,⊂AD 平面PAC ,且PC AD ⊥,所以PBC AD 平面⊥.又因为⊂BC 平面PBC ,于是有BC AD ⊥①.另外⊥PA 平面ABC ,⊂BC 平面ABC ,所以BC PA ⊥.由①②及A PA AD = ,可知⊥BC 平面PAC .因为⊂AC 平面PAC ,所以AC BC ⊥.说明:在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.典型例题四例4.如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面PAC ⊥平面PBC .分析:证明面面垂直的有两个依据,一是证明二面角的平面角为直角,二是利用两个平面垂直的判定定理.由于C 点的任意性,用方法一的可能性不大,所以要寻求线面垂直.证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有AC BC ⊥①.因为⊥PA 平面ABC ,⊂BC 平面ABC ,则BC PA ⊥②.由①②及A PA AC = ,得⊥BC 平面PAC .因为⊂BC 平面PBC ,有平面PAC ⊥平面PBC .说明:低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直⇒线面垂直⇒面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.典型例题五例5.如图,点A 在锐二面角βα--MN 的棱MN 上,在面α内引射线AP ,使AP 与MN 所成的角PAM ∠为 45,与面β所成的角大小为30,求二面角βα--MN 的大小.分析:首先根据条件作出二面角的平面角,然后将平面角放入一个可解的三角形中(最好是直角三角形),通过解三角形使问题得解.解:在射线AP 上取一点B ,作β⊥BH 于H ,连结AH ,则BAH ∠为射线AP 与平面β所成的角,30=∠∴BAH .再作MN BQ ⊥,交MN 于Q ,连结HQ ,则HQ 为BQ 在平面β内的射影.由三垂线定理的逆定理,MN HQ ⊥,BQH ∠∴为二面角βα--MN 的平面角.设a BQ =,在B A Q Rt ∆中,a AB BAM BQA 2,45,90=∴=∠=∠ ,在Rt △BHQ 中,,22,,90a BH a BQ BHQ ===∠ 2222sin ===∠a a BQ BH BQH , BQH ∠ 是锐角, 45=∠∴BQH ,即二面角βα--MN 等于 45.说明:本题综合性较强,在一个图形中出现了两条直线所称的角,斜线与平面所称的角,二面角等空间角,这些空间角都要转化为平面角,而且还要彼此联系相互依存,要根据各个平面角的定义添加适当的辅助线.典型例题六例6.如图,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --'.(1)指出这个二面角的面、棱、平面角;(2)若二面角C AD C --'是直二面角,求C C '的长;(3)求C A '与平面CD C '所成的角;(4)若二面角C AD C --'的平面角为 120,求二面角D C C A -'-的平面角的正切值.分析:根据问题及图形依次解决.解:(1)∴'⊥⊥∴⊥,,,C D AD DC AD BC AD 二面角C AD C --'的面为ADC 和面C AD ',棱为AD ,二面角的平面角为C CD '∠.(2)若 90='∠C CD ,a C C a C D DC a AC 22,21,='∴='=∴= .(3)⊥∴⊥'⊥AD DC AD C D AD ,, 平面C C D ',D C A '∠∴为C A '与平面CD C '所成的角.在直角三角形C AD '中, 30,21='∠∴='=C DA AC C D DC ,于是 60='∠D C A .(4)取C C '的中点E ,连结AE 、DE ,C C DE C C AE AC C A DC CD '⊥'⊥∴='=',,, ,AED ∠∴为二面角D C C A -'-的平面角.,41,21,120a DE a CD D C DC C =∴=='='∠ 在直角三角形AED 中,,23a AD =DE AD AED =∠∴tan 324123==a a . 说明:这是一个折叠问题,要不断地将折叠前后的图形加以比较,抓住折叠前后的变与不变量.典型例题七例7 正方体1111D C B A ABCD -的棱长为1,P 是AD 的中点.求二面角P BD A --1的大小.分析:求二面角关键是确定它的平面角,按定义在二面角的棱上任取了点,在二个半平面上分别作棱的垂线,方法虽简便,但因与其他条件没有联系,要求这个平面角一般是很不容易的,所以在解题中不大应用.在解题中应用得较多的是“三垂线定理”的方法,如图考虑到AB 垂直于平面1AD ,1BD 在平面1AD 上的射影就是1AD .再过P 作1AD 的垂线PF ,则PF ⊥面1ABD ,过F 作B D 1的垂线FE ,PEF ∠即为所求二面角的平面角了.解:过P 作1BD 及1AD 的垂线,垂足分别是E 、F ,连结EF .∵AB ⊥面1AD ,PF ⊂面1AD ,∴PF AB ⊥,又1AD PF ⊥,∴PF ⊥面1ABD .又∵1BD PE ⊥,∴1BD EF ⊥,∴PEF ∠为所求二面角的平面角.∵D AD Rt 1∆∽PFA ∆,∴11AD AP DD PF =. 而21=AP ,11=DD ,21=AD ,∴42=PF . 在1PBD ∆中,251==PB PD . ∵1BD PE ⊥,∴2321==BD BE . 在PEB Rt ∆中,2222=-=BE PB PE , 在PEF Rt ∆中,21sin ==∠PE PF PEF , ∴︒=∠30PEF . 典型例题八例8 在ABC ∆所在平面外有一点S ,已知AB SC ⊥,SC 与底面ABC 所成角为θ,二面角C AB S --的大小为ϕ,且︒=+90ϕθ.求二面角A SB C --的大小.分析:由题设易证SD SC ⊥,由已知得SC ⊥平面SAB ,显然所求的二面角是直二面角,此时只需证明二面有的两个面垂直即可.在解这种类型题时,如果去作二面角A SB C --的平面角,那么可能会走弯路.解:如图所示,作SO ⊥平面ABC 于O ,连结CO 并延长交AB 于D ,连结SD . ∵SO ⊥平面ABC ,∴SCO ∠是SC 与平面ABC 所成角,θ=∠SCO .∵SO ⊥平面ABC ,AB SC ⊥,∴CD AB ⊥,SD AB ⊥.∴SDO ∠是二面角C AB S --的平面角,ϕ=∠SDO .∵︒=+90ϕθ,∴SD SC ⊥.又∵AB SC ⊥,∴SC ⊥平面SAB ,∴平面SBC ⊥平面SAB ,∴二面角A SB C --的大小为︒90.说明:二面角的平面角满足三个条件:(1)顶点在棱上,(2)两边在面内,(3)两边与棱垂直.应注意CSB ∠不满足第(3)条,不是二面角A SB C --的平面角.在求二面角大小时,若其平面角不易作出时,则可考虑判定两平面是否垂直,如果两平面垂直,则其二面角为︒90,反之亦然.典型例题九例9 如果αβ⊥,αγ⊥,a =γβ ,那么α⊥a .分析:(1)本题是一道高考题,考查线面垂直和面面垂直的性质和逻辑推理能力.要证α⊥a ,只要证明直线a 与平面α内的两条相交直线垂直就可以了,从而借助平面与平面垂直的性质达到证明α⊥a 的目的;(2)要证α⊥a ,只要证明a 平行于平面α的一条垂线就可以了,这也可以借助面面垂直的性质加以考虑;(3)可以用“同一法”来证明.证法一:如图所示,设b =βα ,c =γα ,过平面α内一点P 作b PA ⊥于A ,作c PB ⊥于B .∵αβ⊥,∴β⊥PA .又a =γβ ,∴a PA ⊥,同理可证a PB ⊥.∵P PB PA = 且α⊂PB PA 、,∴α⊥a .证法二:如图所示,设b =βα ,在平面β内作直线b l ⊥1.∵βα⊥,∴α⊥1l .设c =γα ,在平面γ内作直线c l ⊥2.同理可证a l ⊥2,因此21//l l .由于β⊂1l ,β⊄2l ,∴β//2l .而γ⊂2l ,γβ =a ,∴a l //2.故由a l //2知,α⊥a .证法三:如图所示过直线a 上一点P 作直线α⊥'a .∵γβ =a ,a P ∈,∴β∈P ,根据课本第37页例2(如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内),∴β⊂'a .同理可证γ⊂'a ,故γβ ='a . 椐公理2可知,直线'a 与直线a 重合.∴α⊥a说明:(1)本例实际上可作为两个平面垂直的性质定理,主要用于判断直线和平面的垂直,在很多习题中都可以用到本例的结论.(2)本例的三种证明方法其思维角度不同,但都是围绕“面面垂直”、“线面面垂直”的判定与性质定理来进行思考的,希望同学们今后在解题中多进行这方面的训练,这对提高数学思维能力是大有裨益的.典型例题十例10 设由一点S 发出三条射线SA 、SB 、SC ,α=∠ASB ,β=∠BSC ,θ=∠ASC ,α、β、θ均为锐角,且θβαcos cos cos =⋅.求证:平面ASB ⊥平面BSC . 分析:欲证两平面垂直,只需证明其中一平面内有一直线垂直于另一平面即可,此题设法通过线段关系过渡.证明:如图,任取点A ,作SB AB ⊥于B ,过B 作SC BC ⊥于C ,连结AC . ∵αcos ⋅=AS SB ,βcos ⋅=SB SC ,故βαcos cos ⋅⋅=AS SC .又由θβαcos cos cos =⋅,则θcos ⋅=AS SC ,从而可得︒=∠90ACS ,即SC AC ⊥,已作SC BC ⊥,故SC ⊥平面ACB ,即有SC AB ⊥,已作SB AB ⊥,从而AB ⊥平面BSC ,故平面ASB ⊥平面BSC .说明:本题易犯错误是:作SB AB ⊥于B ,作SC BC ⊥于C ,连结AC ,由三垂线定理得AC SC ⊥,∴SC ⊥平面ACB ,∴SC AB ⊥,∴AB ⊥平面SBC .其错误原因是作SB AB ⊥后,将AB 误认为是平面SBC 的垂线.此题的证明也可以作SB AB ⊥于B ,SC AC ⊥于C ,连结BC .在SBC ∆中,由余弦定理及条件θβαcos cos cos =⋅,证明222SC BC SB +=,从而BC SC ⊥,∴SC ⊥面ABC ,∴SC AB ⊥.由此进一步证明,平面ASB ⊥平面BSC .典型例题十一例11 如果二面角βα--l 的平面角是锐角,点P 到α、β和棱l 的距离分别为22、4、24,求二面角的大小.分析:如果二面角βα--l 内部,也可能在外部,应区别处理.解:如图甲是点P 在二面角βα--l 的内部时,乙是点P 在二面角βα--l 的外部时.∵α⊥PA ,∴l PA ⊥.∵l AC ⊥,∴面l PAC ⊥.同理,面l PBC ⊥,而面PAC 面PBC PC =∴面PAC 与面PBC 应重合,即A 、C 、B 、P 在同一平面内,ACB ∠是二面角的平面角.在APC Rt ∆中,212422sin ===∠PB PA ACP , ∴︒=∠30ACP .在BPC Rt ∆中,22244sin ===∠PC PB BCP , ∴︒=∠45BCP ,故︒=︒+︒=∠754530ACB (图甲)或︒=︒-︒=∠153045ACB (图乙).说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角.这是本题得到二面平面角的方法,即所谓垂面法.典型例题十二例12 P 为︒120的二面角βα--a 内一点,P 到α和β的距离均为10,求点P 到棱a 的距离.分析:本题已知二面角的大小而求点到直线的距离,须做出二面角的平面角,然后将条件揉和在一起,便可解决问题.解:如图,过点P 作α⊥PA 于A ,β⊥PB 于B ,设相交直线PA 、PB 确定的平面为γ,O a =γ ,则OA =αγ ,OB =βγ 连结PO ,则10==BP AP∵α⊥PA ,β⊥PB ,∴γ⊥a ,而⊂PO 平面γ,∴PO a ⊥,∴PO 的长即为点P 到直线a 的距离.又∵γ⊥a ,γ⊂OA ,γ⊂OB∴AOB ∠是二面角βα--a 的平面角,即︒=∠120AOB .而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径.∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用APB ∆.在APB ∆中,10==BP AP ,︒=∠60APB ,∴10=AB . 由正弦定理:332060sin 2=︒==AB R PO . 说明:(1)该题寻找︒120的二面角的平面角,所采取的方法即为垂面法,由此可见,若题目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.(2)充分借助于四边形PAOB 为一圆内接四边形,∵OA PA ⊥,OB PB ⊥,∵PO 即为其外接圆直径,然后借助于四边有的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.典型例题十三例13 如图,正方体的棱长为1,O BC C B =11 ,求:(1)AO 与11C A 所成的角;(2)AO 与平面AC 所成角的正切值;(3)平面AOB 与平面AOC 所成的角.解:(1)∵AC C A //11,∴AO 与11C A 所成的角就是OAC ∠.∵OB OC ⊥,⊥AB 平面1BC ,∴OA OC ⊥(三垂线定理).在AOC Rt ∆中,22=OC ,2=AC ,∴︒=∠30OAC .(2)作BC OE ⊥,平面1BC ⊥平面AC .∴OE ⊥平面AC ,OAE ∠为OA 与平面AC 所成的角.在OAE Rt ∆中,21=OE ,25)21(122=+=AE . ∴55tan ==∠AE OE OAE . (3)∵OA OC ⊥,OB OC ⊥,∴⊥OC 平面AOB .又∵⊂OC 平面AOC ,∴平面AOB ⊥平面AOC .说明:本题包含了线线角、线面角和面面角三类问题.求角度问题主要是求两条异面直线所成角⎥⎦⎤ ⎝⎛2,0π,直线和平面所成角⎥⎦⎤⎢⎣⎡2,0π,二面角(]π,0三种. 典型例题十四例14 如图,矩形ABCD ,PD ⊥平面ABCD ,若2=PB ,PB 与平面PCD 所成的角为︒45,PB 与平面ABD 成︒30角,求:(1)CD 的长;(2)求PB 与CD 所在的角;(3)求二面角D PB C --的余弦值.分析:从图中可以看出,四面体BCD P -是一个基础四面体,前面已推导出平面PBC 与平面BCD 所成的二面角的余弦值为333221=⨯⨯=⋅⋅BD PC BC PD ,可见,基础四面体作为一部分,经常出现在某些几何体中.解:(1)∵⊥PD 平面ABCD ,∴BC PD ⊥.又⊥BC 平面PDC ,∴BPC ∠为PB 与平面PCD 所在的角,即︒=∠45BPC .同理:PBD ∠即为PB 与平面ABD 所成的角,∴︒=∠30PBD ,在PBC Rt ∆中,∵2=PB ,∴2==PC BC .在PBD Rt ∆中,︒=∠30PBD ,∴1=PD ,3=BD .在BCD Rt ∆中,2=BC ,3=BD ,∴1=CD .(2)∵CD AB //,∴PB 与CD 所成的角,即为PB 与AB 所成的角,PBA ∠即为PB 与AB 所成的角∵⊥PD 平面ABCD ,AB AD ⊥,∴AB PA ⊥(三垂线定理).在PAB Rt ∆中,1==CD AB ,2=PB ,∴︒=∠60PBA .(3)由点C 向BD 作垂线,垂足为E ,由点E 向PB 作垂线,垂足为F ,连结CF . ∵⊥PD 平面ABCD ,∴CE PD ⊥.又BD CE ⊥,∴⊥CE 平面PBD ,CF 为平面PBD 的斜线,由于PB EF ⊥,∴由三垂线定理:CF PB ⊥.∴CEF ∠为二面角D PB C --的平面角在BCD Rt ∆中,2=BC ,1=DC ,3=BD , ∴36=⋅=BD CD BC CE . 在PCB Rt ∆中,2=BC ,2=PC ,2=PB , ∴1=⋅=PBCP BC CF , ∴36sin ==∠CF CB CFE . ∴33cos =∠CFE , ∴二面角D PB C --的余弦值为33. 说明:解空间几何计算问题,一般要做两件事:一件是根据问题的需要作必要证明,如本题中的线线所成的角、面面所成的角从理认上都必须说清楚究竟是谁;另一件事才是计算,这两件事是根据问题解答逻辑上的需要有机的结合在一起的.典型例题十五例15 过点S 引三条不共面的直线SA 、SB 、SC ,如图,︒=∠90BSC ,︒=∠=∠60ASB ASC ,若截取a SC SB SA ===(1)求证:平面ABC ⊥平面BSC ;(2)求S 到平面ABC 的距离.分析:要证明平面ABC ⊥平面BSC ,根据面面垂直的判定定理,须在平面ABC 或平面BSC 内找到一条与另一个平面垂直的直线.(1)证明:∵a SC SB SA ===,又︒=∠=∠60ASB ASC ,∴ASB ∆和ASC ∆都是等边三角形,∴a AC AB ==,取BC 的中点H ,连结AH ,∴BC AH ⊥.在BSC Rt ∆中,a CS BS ==,∴BC SH ⊥,a BC 2=, ∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在SHA ∆中,∴222a AH =,222a SH =,22a SA =, ∴222HA SH SA +=,∴SH AH ⊥,∴⊥AH 平面SBC .∵⊂AH 平面ABC ,∴平面ABC ⊥平面BSC .或:∵AB AC SA ==,∴顶点A 在平面BSC 内的射影H 为BSC ∆的外心,又BSC ∆为∆Rt ,∴H 在斜边BC 上,又BSC ∆为等腰直角三角形,∴H 为BC 的中点,∴⊥AH 平面BSC .∵⊂AH 平面ABC ,∴平面ABC ⊥平面BSC .(2)解:由前所证:AH SH ⊥,BC SH ⊥,∴⊥SH 平面ABC ,∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==, ∴点S 到平面ABC 的距离为a 22. 典型例题十六例16 判断下列命题的真假(1)两个平面垂直,过其中一个平面内一点作与它们交线垂直的直线,必垂直于另一个平面.(2)两个平面垂直,分别在两个平面内且互相垂直的两直线,一定分别与另一平面垂直;(3)两平面垂直,分别在这两个平面内的两直线互相垂直.分析:(1)若该点在两个平面的交线上,则命题是错误的,如图,正方体C A 1中,平面AC ⊥平面1AD ,平面 AC 平面1AD AD =,在AD 上取点A ,连结1AB ,则AD AB ⊥1,即过棱上一点A 的直线1AB 与棱垂直,但1AB 与平面ABCD 不垂直,其错误的原因是1AB 没有保证在平面11A ADD 内.可以看出:线在面内这一条件的重要性;(2)该命题注意了直线在平面内,但不能保证这两条直线都与棱垂直,如图,在正方体C A 1中,平面1AD ⊥平面AC ,1AD ⊂平面11A ADD ,AB ⊂平面ABCD ,且1AD AB ⊥,即AB 与1AD 相互垂直,但1AD 与平面ABCD 不垂直;(3)如上图,正方体C A 1中,平面11A ADD ⊥平面ABCD ,1AD ⊂平面11A ADD ,⊂AC 平面ABCD ,1AD 与AC 所成的角为︒60,即1AD 与AC 不垂直.说明:必须注意两个平面垂直的性质定理成立的条件:(1)线在面内,(2)线垂直于交线,从而可得出线面垂直.典型例题十七例17 如图,在︒60二面角βα--a 内有一点P ,P 到α、β的距离分别为3和5,求P 到交线a 的距离.解:作α⊥PA 于A ,β⊥PB 于B ,设PA ,PB 所确定的平面为γ,Q a = γ,连AQ ,BQ ,∵α⊥PA ,∴a PA ⊥.同理a PB ⊥,∴⊥a 平面γ,∴PQ a ⊥,则PQ 是P 到a 的距离.在四边形PAQB 中,︒=∠=∠90B A ,∴PAQB 是圆的内接四边形,且R PQ 2=.又∵︒=∠60BQA ,︒=∠120BPA , ∴7120cos 53253=︒⋅⋅-+=AB ,331432760sin 2=⨯=︒==AB R PQ . 说明:本例作二面角的平面角用作垂面法,避免了再证明P 、B 、A 、Q 四点共面,同时用到正弦定理和余弦定理.典型例题十八例18 如图,四面体SABC 中,A B C ∆是等腰三角形,a BC AB 2==,︒=∠120ABC ,且⊥SA 平面ABC ,a SA 3=.求点A 到平面SBC 的距离.分析:考虑利用两个平面垂直的性质定理作出点A 到SBC 的垂线,先确定一个过点A 和平面SBC 垂直的平面,∵⊥SA 平面ABC ,故作BC AD ⊥于D ,连结SD ,则平面SAD ⊥平面SBC ,平面SAD 实际上就是二面角A BC S --的平面角SDA 所在的平面,因此,它的作图过程和用三垂线法作二面角A BC S --的平面角的作图过程完全相同.解:作BC AD ⊥交BC 于D ,连结SD ,∵⊥SA 平面ABC ,根据三垂线定理有BC SD ⊥,又D AD SD = ,∴BC ⊥平面SAD ,又BC ⊂平面SBC ,∴平面SBC ⊥平面ADS ,且平面SBC 平面ADS SD =,∴过点A 作SD AH ⊥于H ,由平面与平面垂直的性质定理可知:⊥AH 平面SBC . 在SAD Rt ∆中,a SA 3=,a AB AD 360sin =︒⋅=, ∴23)3()3(332222a a a a a AD SA ADSA AH =+⋅=+⋅=, 即点A 到平面SBC 的距离为23a . 说明:二面角的平面角所在的平面垂直于二面角的棱,同时垂直于二面角的两个两.从本例可以看出:要求点到平面的距离,只要过该点找到与已知平面垂直的平面,则点面距即可根据面面垂直的性质作出.本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。
通州中学5月19日课本基础知识回归(必修4)命题者:徐建良姓名 得分一、填空题(每题8分)1.=-00020cos 20sin 10cos 2 .2.已知tan α=11cos()14αβ+=-,α、β都是锐角,则=βcos .3.已知向量a =(cos sin )αα,,b =(cos sin )ββ,,且≠±a b ,那么+a b 与-a b 的夹角的大小是 . 4.函数)2sin(x y -=π的单调递减区间是 .=α 时,扇形面积S 最大的 条②横坐标变为原来的21,再④向左平移8π,再将横坐标)42π+x 的图像的是 .)0,),0(a 其中常数0>a ,点P 在线段AB 上,且=t (0≤t ≤1),则⋅的最大值为 .9.已知定义在R 上的奇函数)(x f 在区间),0(+∞上单调递增,若0)1(=f ,△ABC 的内角A 满足0)(cos <A f ,则A 范围是 .10.已知△ABC 所在平面内一点P ,满足:AP 中点为Q ,BQ 的中点为R ,CR 的中点为P b a==,,如图,向量= .二、解答题(每题20分)11.设两个非零向量1e 和2e 不共线.(1)如果21e e AB +=,2182e e BC +=,21CD =D 三点共线;(2)若2||1=e ,3||2=e ,1e 与2e 的夹角为60,是否存在实数m ,使得21e e m +与21e e -垂直?并说明理由.5月19日答案:1.3 2.21 3.π24.Z k k k ∈+-],125,12[ππππ5.2,L 2166.必要不充分 7.①和② 8.2a 9.),32()2,3(ππππ 10.b a7472+=11.解: AD =++=(1e +2e )+(128e +2e )+(133e -2e )=6(1e +2e )=6∴ //AD AB 且AD 与AB 有共同起点 ∴ A 、B 、D 三点共线m e 2与1e -2e 垂直,则 (m 1e 2e +)⋅(1e -2e )=0222(1)0me m e e e +-⋅-=|=3,1e 与2e 的夹角为60224e e ==22229e e ==,cos cos603e e e e θ⋅==90-= ∴ m故存在实数6m =,使得4.125.±27.①和③ 8.79- 9.(11)-,(只要满足0a b +=的一组数字即可)10.311.解:a x x f +++=1)62sin(2)(,a =1通州中学5月20日课本基础知识回归(必修4)命题者:徐建良姓名 得分一、填空题(每题8分) 1.已知34παβ+=,则(1tan )(1tan )αβ--的值是________. 2.=+)10tan 31(50sin 00________.3.△ABC 中=,=,=,a c c b ⋅=⋅=⋅,则△ABC 的形状为 .4.定义一种新运算:θsin ||||b a b a =⊗,其中θ为a 与b 的夹角.已知(3,1)a =-(,0)2b =,则5.在△ABC ,则⋅的值2-,的有向线84 ④将函数)32cos(π-=x y 的图象向左平移3π单位,得到函数x y 2cos =的图象;其中正确的命题的序号是 .8.若31)6sin(=-απ,则=+)232cos(απ .9.若ππ()sin()sin()(0)44f x a x b x ab =++-≠是偶函数,则有序实数对()a b ,可以是 .10.已知1||=,3||=,0=⋅,点C 在AOB ∠内,且30AOC ∠=︒,设()OC mOA nOB m n =+∈R , 二、解答题(每题20分)11.已知)2sin 3,1(),1,2cos 1(a x N x M ++x (y ⋅=(O 为坐标原点).; 4,求a 的值;x y sin =的图象如何。
通州中学5月13日数学基础练习
命题者: 朱 振 新
姓名 得分
一、填空题(每小题8分)
1.已知M ={y |y =x 2},N ={y |x 2+y 2=2},则M N =
2.已知2{|1},{|42}A x x a B x x a =->=-<,若A B φ⋂≠,则实数a 的取值范围是
3.任意两正整数m 、n 之间定义某种运算⊕,m ⊕n = ⎝
⎛+异奇偶)与同奇偶)与n m mn n m n m ((,则集合M={(a ,b )|a ⊕b =36,a 、b ∈N +}中元素的个数是___________
4.函数212
log (2)y x x =-的单调递减区间是___________.
5.方程4log x +x =7的解所在区间是(n ,n+1)*()n N ∈,则n =
6.已知函数12()log f x =1()x x
+,给出以下四个命题: ①()f x 的定义域为(0,)+∞;
②()f x 的值域为[)1,-+∞ ; ③()f x 是奇函数; ④()f x 在(0,1)上单调递增 . 其中所有真命题的序号是
7.已知函数22()1(,)f x x ax b b a R b R =-++-+∈∈,对任意实数x 都有(1)(1)
f x f x -=+成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是
8.已知函数2()21f x x x =++,若存在实数t ,当[]1,x m ∈时,()f x t x +≤恒成立,则实数m 的最大值是
9.已知函数①x x f ln 3)(=;②x e x f cos 3)(=;③x e x f 3)(=;④x x f cos 3)(=.
其中对于)(x f 定义域内的任意一个自变量1x 都存在唯一个个自变量)()(,212x f x f x 使 =3成立的函数序号是
10.已知函数x x f x
2log )31()(-=,正实数a 、b 、c 成公差为正数的等差数列,且满
足0)()()(<c f b f a f ,若实数d 是方程0)(=x f 的一个解,那么下列四个判断: ①a d <;②b d >;③c d <;④c d >中,有可能成立的个数为
二、解答题(20分)
11.已知函数)(x f y =是R 上的奇函数,当0≤x 时,2
1193)(-+=x x x f , (1)判断并证明)(x f y =在)0,(-∞上的单调性;
(2)求)(x f y =的值域; (3)求不等式3
1)(>x f 的解集。
参考答案
一、填空题:
1、[0,2];
2、(-1,3);
3、41 ;
4、(2,)+∞;
5、5;
6、①④;
7、1b <-或 2b >
8、4;
9、③;10、3
三、解答题:
11、解:(1)设021<<x x ,则2133
x x <,1321<+x x
∵()()()()()()
()()019193133191933331931932121212122112122112221<++--=++--+=+-+=-+++x x x x x x x x x x x x x x x x x x x f x f , ∴()()21x f x f <,即)(x f y =在)0,(-∞上是增函数。
(2)∵213131
1930≤+=+<x x x x
,∴当0≤x 时,()⎥⎦⎤ ⎝⎛-∈-+=0,2121193x x x f ; ∵当0>x 时,19321)(+-=x x x f ⎪⎭
⎫ ⎝⎛∈21,0。
综上得 )(x f y =的值域为 ⎪⎭⎫ ⎝
⎛-21,21 。
(3)∵()⎪⎭⎫ ⎝⎛-∈21,21x f ,又∵31)(>x f ,∴()⎪⎭
⎫ ⎝⎛∈21,31x f , 此时1
9321)(+-=x x
x f 单调递增, ∵()31511<=f , ∴()⎪⎭
⎫ ⎝⎛∈21,31x f 时,331>⇒>x x 。
令3119321>+-x x , 即()
223log 2233013636119332+>⇒+>⇒>+⋅-⇒<+x x x x x x ,
∴不等式31)(>x f 的解集是()()
+∞+,223log 3。
=========================================================== 适用版本:
人教版,苏教版, 鲁教版,北京版,语文A 版,语文S 版,冀教版,沪教版,北大师大版,人教
版新版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版
适用学科:
语文,数学,英语,科学,物理,化学,生物,政治,历史,地理
适用年级:
一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初
适用领域及关键字:
100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷
=========================================================== 本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。