江苏省南京市清江花苑2013届高三数学理10月质量抽测 缺答案
- 格式:doc
- 大小:940.00 KB
- 文档页数:5
2013年江苏高考数学最后一卷2013.06.01数学(必试部分)注意事项:1.本试卷总分160分,考试用时120分钟。
2.答题前,考生务必将班级、姓名、学号写在答卷纸的密封线内。
选择题答案填涂在........答题卡对应的题号下,主观题答案写在答卷纸上对应的题号下空格内的横线上..................................。
考试结束后,上交答题卡和答卷纸。
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......1.设复数满足(是虚数单位),则复数的模=___▲____.2.已知,则___▲_____.3.抛物线y2 = 8x的焦点到双曲线x212–y24= 1的渐近线的距离为___▲___.4.阅读下列算法语句:Read S1For I from 1 to 5 step 2 SS+IEnd forPrint SEnd输出的结果是▲.5.设集合,则=____▲_______.6.设等比数列{a n}的公比q = 12,前n项和为S n,则S4a4= ____▲_______.7.在区间内随机地取出一个数,则恰好使1是关于x的不等式的一个解的概率大小为__▲_____.8.已知向量,,则的最大值为▲.9.已知A(2,4),B(–1,2),C(1,0),点P(x,y)在△ABC内部及边界上运动,则z = x–y的最大值与最小值的和为___▲___10.设表示两条直线,表示两个平面,现给出下列命题:①若,则;②若,则;③若,则;④若,则.其中正确的命题是___▲______.(写出所有正确命题的序号)11.设函数,若关于x 的方程恰有三个不同的实数解,则实数的取值范围为___▲_____.12.函数在求导数时,可以运用对数法:在函数解析式两边求对数得,两边求导数,于是 .运用此方法可以探求得知的一个单调增区间为____▲_____.13.已知椭圆的上焦点为,直线和与椭圆相交于点,,,,则 ▲ .14.已知定义在上的函数满足,,则不等式的解集为_▲__.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)如图,点B 在以PA 为直径的圆周上,点C 在线段AB 上,已知,设,均为锐角. (1)求;(2)求两条向量的数量积的值.16. (本小题满分14分)如图,已知AB ⊥平面ACD ,DE //AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点. ⑴求证:AF //平面BCE ;⑵求证:平面BCE ⊥平面CDE .17.(本大题满分14分)2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数(以百人..为计数单位)作了一个模拟预测.为了方便起见,以10分钟为一个计P A C B A BC D EF算单位,上午9点10分作为第一个计数人数的时间,即;9点20分作为第二个计数人数的时间,即;依此类推,把一天内从上午9点到晚上24点分成了90个计数单位.第个时刻进入园区的人数和时间()满足以下关系: ()()()()()24123612436325363216377207390n n n f n n n n -≤≤⎧⎪⎪⎪⋅≤≤=⎨⎪-+≤≤⎪≤≤⎪⎩, 第个时刻离开园区的人数和时间满足以下关系: .(1)试计算在当天下午3点整(即15点整)时,世博园区内共有游客多少百人?(提示:,结果仅保留整数)(2)问:当天什么时刻世博园区内游客总人数最多?18.(本小题满分16分) 设圆,动圆,(1)求证:圆1C 、圆2C 相交于两个定点;(2)设点P 是椭圆上的点,过点P 作圆1C 的一条切线,切点为1T ,过点P 作圆2C 的一条切线,切点为2T ,问:是否存在点P ,使无穷多个圆2C ,满足?如果存在,求出所有这样的点P ;如果不存在,说明理由.19. (本小题满分16分)已知数列{a n }的通项公式为a n = 2⨯3n + 23n – 1(n ∈N *). ⑴求数列{a n }的最大项;⑵设b n = a n + pa n– 2,试确定实常数p,使得{b n}为等比数列;⑶设,问:数列{a n}中是否存在三项,,,使数列,,是等差数列?如果存在,求出这三项;如果不存在,说明理由.20.(本大题满分16分)已知函数,(1)若,且关于的方程有两个不同的正数解,求实数的取值范围;(2)设函数,满足如下性质:若存在最大(小)值,则最大(小)值与无关.试求的取值范围.2013年江苏高考数学最后一卷2013.06.01数学(加试部分)21.【选做题】在A、B、C、D四小题中只能选做两题....,每小题l0分,共计20分.请在答.题卡指定区域......内作答,解答时应写出文字说明、证明过程或演算步骤.A.选修4 – 1几何证明选讲如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.求证:ED2= EB·EC.B.矩阵与变换已知矩阵,,求满足的二阶矩阵.C.选修4 – 4 参数方程与极坐标若两条曲线的极坐标方程分别为ρ = 1与ρ = 2cos(θ + π3),它们相交于A,B两点,求线段ABB C EDA的长.D.选修4 – 5 不等式证明选讲设a ,b ,c 为正实数,求证:a 3 + b 3 + c 3 + 1abc ≥2 3.【必做题】第22题、第23题,每题10分,共20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在四棱锥P – ABCD 中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,点M 是棱PC 的中点,AM ⊥平面PBD . ⑴求PA 的长;⑵求棱PC 与平面AMD 所成角的正弦值.23.(本小题满分10分)用四个不同字母组成一个含个字母的字符串,要求由开始,相邻两个字母不同. 例如时,排出的字符串是;时排出的字符串是,,,,,,,,aba abc abd aca acb acd ada adb adc ,……, 如图所示.记这含个字母的所有字符串中,排在最后一个的字母仍是的字符串的种数为. (1)试用数学归纳法证明:;(2)现从四个字母组成的含个字母的所有字符串中随机抽取一个字符串,字符串最后一个的字母恰好是的概率为,求证:.P B CDA M a b c d n=1 a b c d n=2 a c da b d abc2010届江苏省海安高级中学、南京外国语学校、南京市金陵中学高三调研测试数学参考答案及评分标准题号 1 2 3 4 5答案 2 3 1 10题号 6 7 8 9 10答案15 0.7 6 –2 ④题号11 12 13 14答案815.解(1):因为点B在以PA为直径的圆周上,所以,所以.所以,………………………………………2分cos cos()PBCPBPCαβ∠=-===,所以,………………………………………………………………4分,…………………………6分又,所以.………………………………………………………8分(2)…………………………11分……………………………………………14分16. ⑴解:取CE中点P,连结FP,BP,因为F为CD的中点,所以FP//DE,且FP =12DE,…2分又AB //DE ,且AB =12DE ,所以AB //FP ,且AB = FP ,所以四边形ABPF 为平行四边形,所以AF //BP . ……………4分 又因为AF ⊂/平面BCE ,BP ⊂平面BCE , 所以AF //平面BCE . …7分 (该逻辑段缺1个条件扣1分)⑵因为△ACD 为正三角形,所以AF ⊥CD .因为AB ⊥平面ACD ,DE //AB ,所以DE ⊥平面ACD , 又AF ⊂平面ACD ,所以DE ⊥AF . …………………9分 又AF ⊥CD ,CD ∩DE = D ,所以AF ⊥平面CDE .又BP //AF ,所以BP ⊥平面CDE . ……………………………12分 又因为BP ⊂平面BCE ,所以平面BCE ⊥平面CDE . ………………………………………14分17. 解:(1)当且时,,当且时, 所以…××;…………………………2分另一方面,已经离开的游客总人数是: ×5121152⨯+⨯;………………………4分 所以361216563901266S S T =-=-=(百人)故当天下午3点整(即15点整)时,世博园区内共有游客百人. ……………6分 (2)当时园内游客人数递增;当时园内游客人数递减.(i)当时,园区人数越来越多,人数不是最多的时间;………………………8分 (ii)当时,令,得出,即当时,进入园区人数多于离开人数,总人数越来越多;……………10分 (iii)当时,,进入园区人数多于离开人数,总人数越来越多;……………………………………………………………………………12分 (Ⅳ)当时, 令时,,即在下午点整时,园区人数达到最多.此后离开人数越来越多,故园区内人数最多的时间是下午4点整. ……………………14分 答:(1)当天下午3点整(即15点整)时,世博园区内共有游客百人;(2)在下午点整时,园区人数达到最多. 18.解(1)将方程化为,令得或,所以圆2C 过定点和,……………4分将代入,左边=1644012320+--+==右边,故点在圆1C 上,同理可得点也在圆1C 上,所以圆1C 、圆2C 相交于两个定点和;……………6分(2)设,则,…………………………8分, …………………………………10分 即,整理得(*)………………………………………………12分 存在无穷多个圆2C ,满足的充要条件为有解,解此方程组得ABCDEFP或006545x y ⎧=⎪⎪⎨⎪=-⎪⎩,………………………………………………………………………………14分 故存在点P ,使无穷多个圆2C ,满足,点P 的坐标为.………………16分19. 解 ⑴由题意a n = 2 + 43n – 1,随着n 的增大而减小,所以{a n }中的最大项为a 1 = 4.…4分 ⑵b n = 2 + 43n – 1 + p 43n – 1= (2 + p )(3n – 1) + 44 = (2 + p )3n + (2 – p )4,若{b n }为等比数列, 则b 2n +1 – b n b n +2= 0(n ∈N * )所以 [(2 + p )3n +1 + ( 2 – p )]2 – [{2 + p )3n + (2 – p )][(2 + p )3n +2 + (2 – p )] = 0(n ∈N *),化简得(4 – p 2)(2·3n +1 – 3n +2 – 3n ) = 0即– (4 – p 2)·3n ·4 = 0,解得p = ±2. ………………………7分 反之,当p = 2时,b n = 3n ,{b n }是等比数列;当p = – 2时,b n = 1,{b n }也是等比数列.所以,当且仅当p = ±2时{b n }为等比数列. ………………………………………………………………10分 ⑶因为,,,若存在三项,,,使数列,,是等差数列,则,所以=,……………12分 化简得(*),因为,所以,,所以,,(*)的 左边,右边,所以(*)式不可能成立, 故数列{a n }中不存在三项,,,使数列,,是等差数列. ……………16分 20.解:(1)令,,因为,所以,所以关于的方程有两个不同的正数解等价于关于的方程有相异的且均大于1的两根,即 关于的方程有相异的且均大于1的两根,……………………………………………………2分所以,…………………………………………………………………4分 解得,故实数的取值范围为区间.……………………………6分 (2)①当时, a )时,,,所以 , b )时,,所以 ……8分 ⅰ当即时,对,,所以 在上递增,所以 ,综合a ) b )有最小值为与a 有关,不符合……10分 ⅱ当即时,由得,且当时,,当时,,所以 在上递减,在上递增,所以,综合a ) b ) 有最小值为与a 无关,符合要求.………12分 ②当时, a ) 时,,,所以 b ) 时,,,所以 ,在上递减,所以 ,综合a ) b ) 有最大值为与a 有关,不符合………14分综上所述,实数a 的取值范围是.………………………………………………16分数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选.做两题...,每小题l0分,共计20分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤. A.选修4 – 1几何证明选讲证明: 因为EA 是圆的切线,AC 为过切点A 的弦,所以 ∠CAE = ∠CBA . 又因为AD 是∠BAC 的平分线,所以∠BAD = ∠CAD 所以∠DAE = ∠DAC + ∠EAC = ∠BAD + ∠CBA = ∠ADE所以,△EAD 是等腰三角形,所以EA = ED . ……………………………………………………6分 又EA 2 = EC ·EB ,所以ED 2 = EB ·EC . ……………………………………………………………………………4分 B .矩阵与变换:解:由题意得,…………………………………………………5分 ,………………………………………10分 C.选修4 – 4 参数方程与极坐标若两条曲线的极坐标方程分别为ρ = 1与ρ = 2cos(θ + π3),它们相交于A ,B 两点,求线段AB 的长.解 首先将两曲线的极坐标方程化为直角坐标方程,得 x 2 + y 2 = 1与x 2 + y 2 – x +3y = 0……………………………………………………6分解方程组⎩⎪⎨⎪⎧x 2 + y 2 = 1x 2 + y 2 – x + 3y = 0 得两交点坐标(1,0),(–12, – 32)所以,线段AB 的长为(1 + 12)2 + (0 + 32)2=3即AB = 3.………………………………………………………………………………10分 D.选修4 – 5 不等式证明选讲设a ,b ,c 为正实数,求证:a 3 + b 3 + c 3 + 1abc ≥2 3.证明 因为a ,b ,c 为正实数,所以a 3 + b 3 + c 3≥33a 3b 3c 3 = 3abc >0…………………………5分 又3abc + 1abc ≥23abc ·1abc = 2 3.所以a 3 + b 3 + c 3 + 1abc ≥2 3.…………………………………………………………………10分B C ED A【必做题】第22题、第23题,每题10分,共20分.请在答题..卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤.22.解 如图,以A 为坐标原点,AB ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),P (0,0,a ).因为M 是PC 中点,所以M 点的坐标为(12,12,a 2),所以AM →= (12,12,a 2),BD → = (–1,1,0),BP →= ( – 1,0,a ).⑴因为AM →⊥平面PBD ,所以AM →·BD → = AM →·BP →= 0.即– 12 + a 22 = 0,所以a = 1,即PA = 1. ………………………………………4分 ⑵由AD → = (0,1,0),M →= (12,12,12),可求得平面AMD 的一个法向量n = ( – 1,0,1).又CP → = ( – 1,–1,1).所以cos<n , CP →> = n ·CP →|n |·|CP →|=22·3= 63. 所以,PC 与平面AMD 所成角的正弦值为63.……………………………10分 23.解(1):证明: (ⅰ)当时,因为,33(1)04+-=,所以等式正确. (ⅱ)假设时,等式正确,即, 那么,时,因为, 这说明时等式仍正确.据(ⅰ),(ⅱ)可知,正确. ……………………………5分 (2)易知,①当为奇数()时,,因为,所以,又,所以;②当为偶数()时,,因为,所以,又,所以.综上所述,.……………………………10分温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。
江苏省2013届高三最新数学(精选试题26套)分类汇编6:不等式 一、填空题 1 .(江苏省西亭高级中学2013届高三数学终考卷)已知M是内的一点(不含边界),且·,,若的面积分别为x,y,z,则的最小值是 【答案】 2 .(江苏省启东中学2013届高三综合训练(2))已知函数(其中e为自然对数的底数,且),若,则实数a的取值范围是______________ 【答案】(-3,2) 3 .(江苏省常州市武进高级中学2013年高考数学文科)冲刺模拟试卷doc)点在不等式组 表示的平面区域内,若点到直线的最大距离为,则 【答案】 4 .(江苏省启东中学2013届高三综合训练(1))设,则a,b,c的大小关系是________________. 【答案】.; 5 .(江苏省大港中学2013届高三教学情况调研测试)对任意x>0,≤a恒成立,则a的取值范围是________. 【答案】a≥ 6 .(江苏省常州市华罗庚高级中学2013年高考数学冲刺模拟试卷)定义区间若a、b为实数,且,则满足不等式的x构成的区间长度之和为_________. 【答案】2 7 .(江苏省启东中学2013届高三综合训练(1))已知关于的不等式的解集为,且中共含有个整数,则当最小时实数的值为______________.【答案】;8 .(江苏省大港中学2013届高三教学情况调研测试)若,则下列不等式对一切满足条件的恒成立的是_______(写出所有正确命题的编号). ①; ②; ③ ; ④; ⑤ 【答案】①. ③. 9 .(江苏省常州高级中学2013年高考数学模拟试卷)若不等式对于一切正数恒成立,则实数的最小值为_________. 【答案】; 10.(江苏省启东中学2013届高三综合训练(3))已知正数x,y满足(1+x)(1+2y)=2,则4xy+的最小值是___________. 【答案】 12 11.(江苏省常州高级中学2013年高考数学模拟试卷)定义:{x,y}为实数x,y中较小的数.已知,其中a,b 均为正实数,则h的最大值是_________. 【答案】;易得,所以(当且仅当时取等号); 12.(江苏省常州市金坛市第一中学2013年高考冲刺模拟试卷)已知.若或,则实数m 的取值范围是______________. 【答案】 13.(江苏省大港中学2013届高三教学情况调研测试)若实数x,y满足x2+y2+xy=1,则x+y的最大值是________. 【答案】 14.(江苏省常州市西夏墅中学2013年高考冲刺模拟试卷)若正数满足,则的最大值为__________. 【答案】 15.(江苏省常州市华罗庚高级中学2013年高考数学冲刺模拟试卷)已知f(x)=,.若,则的取值范围是_____. 【答案】 16.(江苏省西亭高级中学2013届高三数学终考卷)设向量=(1,1),O为坐标原点,动点满足,则点构成的图形的面积为 ▲ 【答案】 17.(江苏省常州市金坛市第一中学2013年高考冲刺模拟试卷)已知集合,,若,,则的最小值为__________. 【答案】 18.(江苏省常州市第二中学2013年高考数学(文科)冲刺模拟试卷doc)在腰长为1的等腰直角三角形ABC的腰AB、AC上分别取D、E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上.AD的长度的最小值为________________. 【答案】 19.(江苏省大港中学2013届高三教学情况调研测试)若x≥0,y≥0,且,则的最小值是_________. 【答案】 20.(江苏省启东中学2013届高三综合训练(2))已知函数,若满足,(互不相等),则的取值范围是_____________. 【答案】(2,2012) 21.(江苏省常州市奔牛高级中学2013年高考数学冲刺模拟试卷)设a>0,集合A={(x,y)|},B={(x,y)|}.若点P(x,y)∈A是点P(x,y)∈B的必要不充分条件,则a的取值范围是______________.【答案】0。
2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+=x y 的最小正周期为 .【答案】π【解析】T =|2πω |=|2π2 |=π.2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 . 【答案】5【解析】z =3-4i ,i 2=-1,| z |==5.3.双曲线191622=-y x 的两条渐近线的方程为 . 【答案】x y 43±= 【解析】令:091622=-y x ,得x x y 431692±=±=. 4.集合}1,0,1{-共有 个子集.【答案】8【解析】23=8.5.右图是一个算法的流程图,则输出的n 的值是 . 【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4. 6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 . 【答案】6320 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯. 8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .【答案】1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 . 【答案】[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z2 . 画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 . 【答案】12【解析】)(32213221++=+=+= AC AB AC AB 213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12 . 11.已知)(x f 是定义在R 上的奇函数。
2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
.6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 【答案】2 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .63208.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .1:249.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .[—2,12 ]10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .1211.已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .(﹣5,0) ∪(5,﹢∞)12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .3313.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所值为 .1或1014.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 .12二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值. 解:(1)a -b =(cosα-cosβ,sin α-sin β),|a -b |2=(cosα-cosβ)2+(sin α-sin β)2=2-2(cosα·cosβ+sin α·sin β)=2, 所以,cosα·cosβ+sin α·sin β=0,所以,b a ⊥. (2)⎩⎨⎧=+=+②1sin sin ①0cos cos βαβα,①2+②2得:cos(α-β)=-12 .所以,α-β=π32,α=π32+β,带入②得:sin(π32+β)+sin β=23cosβ+12 sin β=sin(3π+β)=1, 所以,3π+β=2π. 所以,α=65π,β=6π.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证: (1)平面//EFG 平面ABC ;(2)SA BC ⊥. 证:(1)因为SA =AB 且AF ⊥SB , 所以F 为SB 的中点. 又E ,G 分别为SA ,SC 的中点, 所以,EF ∥AB ,EG ∥AC .又AB ∩AC =A ,AB ⊂面SBC ,AC ⊂面ABC , 所以,平面//EFG 平面ABC . (2)因为平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =BC ,AF ⊂平面ASB ,AF ⊥SB .所以,AF ⊥平面SBC .又BC ⊂平面SBC , 所以,AF ⊥BC .又AB ⊥BC ,AF ∩AB =A , 所以,BC ⊥平面SAB .又SA ⊂平面SAB , 所以,SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;A BSG F E(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围.解:(1)联立:⎩⎨⎧-=-=421x y x y ,得圆心为:C (3,2).设切线为:3+=kx y ,d =11|233|2==+-+r k k ,得:430-==k or k .故所求切线为:343+-==x y or y .(2)设点M (x ,y ),由MO MA 2=,知:22222)3(y x y x +=-+,化简得:4)1(22=++y x ,即:点M 的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D . 又因为点M 在圆C 上,故圆C 圆D 的关系为相交或相切. 故:1≤|CD |≤3,其中22)32(-+=a a CD .解之得:0≤a ≤125 .18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。
2013年普通高等学校夏季招生全国统一考试数学 (江苏卷)数学I 试题、填空题:本大题共 14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上.n1 • (2013江苏,1)函数y 3sin 2x —的最小正周期为 _______________ •42. (2013江苏,2)设z = (2 — i ) 2(i 为虚数单位),则复数z 的模为 _________ •2 23. (2013江苏,3)双曲线 — 乞=1的两条渐近线的方程为16 94. _________________________________________ (2013江苏,4)集合{ — 1,0,1}共有 ___________________________________________ 个子集.5.(2013江苏,5)下图是一个算法的流程图,则输出的 n 的值是 ___________ .6. (2013江苏,6)抽样统计甲、乙两位射击运动员的 5次训练成绩(单位:环), 结果如下:7. (2013江苏,7)现有某类病毒记作 ,其中正整数 m , n (mc 乙n w 9)可以任意选取,则 m , n 都 取到奇数的概率为 ____________ .8. __________________________________________________________ (2013江苏,8)如图,在三棱柱 ABC — ABC 中, D, E, F 分别是AB, AQ AA 的中点,设三棱锥F —ADE 的体积为 V ,三棱柱 ABC — ABC 勺体积为 V 2,贝U V : \2= __________________ .9. (2013江苏,9)抛物线y = x 2在x = 1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x , y )是区域D 内的任意一点,贝U x + 2y 的取值范围是 __________ .运动员 第1次 第2次 第3次 第4次 第5次 甲87 91 90 8993 乙8990918892工N-1a-2则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ____________x 的解集用区间表示为 _____________ . ■^2 =1 (a > 0, b > 0),右 b焦点为F,右准线为I ,短轴的一个端点为 B 设原点到直线BF 的距离为d 1,F 到I 的距离为d 2.若d 2 . 6d 1 ,则椭圆C 的离心率为 ____________ .一 113. (2013江苏,13)在平面直角坐标系 xOy 中,设定点A (a , a ), P 是函数y (x >0)图象上一动x10. (2013江苏,10)设D, E 分别是△ ABC 的边 AB BC 上的点,ujur uuu DE 1AB 11. (2013 江苏,11)已知 f (x )UULT 2AC (入1,入2为实数),则 是定义在AD 」AB , BE=-BC .若2 3入 1 +入2的值为 __________ .R 上的奇函数,当x >0时,f (x ) = x 2 — 4x ,则不等式f (x ) > 2x xOy 中,椭圆C 的标准方程为 —a12. (2013江苏,12)在平面直角坐标系点•若点P, A之间的最短距离为2罷,则满足条件的实数a的所有值为 __________ .114. (2013江苏,14)在正项等比数列{a n}中,a5, a6 + a?= 3.则满足a i + a? +•••+a n>a©…a n的2最大正整数n的值为____________ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.内作答,解答时应写出文字说明、证明过程或演算步骤.15. (2013 江苏,15)(本小题满分14 分)已知a= (cos a, sin a ), b= (cos 卩,sin 卩),0 v 卩V a Vn.(1)若| a-b| =72,求证:a±b;(2)设c= (0,1),若a-b= c,求 a ,卩的值.16. (2013江苏,16)(本小题满分14分)如图,在三棱锥S- ABC中,平面SABL平面SBC AB± BC AS= AB过A作AF丄SB,垂足为F,点E, G分别是棱SA SC的中点. 求证:(1)平面EFG/平面ABC (2)BCL SAC17. (2013江苏,17)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3)设圆C的半径为1,圆心在I上.(1) 若圆心C也在直线y= x-1上,过点A作圆C的切线,求切线的方程;(2) 若圆C上存在点M使MA F 2MO求圆心C的横坐标a的取值范围.18. (2013江苏,18)(本小题满分16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径•一种是从A沿直线步行到C另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C假设缆车匀速直线运动的速度为130 m/min,山路AC12 3长为 1 260 m,经测量,cos A= , cos C=-.13 5(1) 求索道AB的长;(2) 问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过19. (2013江苏,19)(本小题满分16分)设{刘是首项为a,公差为d的等差数列(d^0) ,S是其前n项和.记b n,n€ N*,其中c为实数.n c(1)若c= 0,且b1, b, b4成等比数列,证明:$k= n2$(k, n€N*);⑵若{b n}是等差数列,证明:c= 0.20. (2013江苏,20)(本小题满分16分)设函数f(x) = ln x—ax, g(x) = e x-ax,其中a为实数.(1)若f (x)在(1 ,+s)上是单调减函数,且g(x)在(1 ,+^)上有最小值,求a的取值范围;⑵若g(x)在(—1 ,+8)上是单调增函数,试求 f (x)的零点个数,并证明你的结论.数学n (附加题)【选做题】本题包括 A 、 B 、 C 、D 四小题,请.选.定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答.. 若多做,则 按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. 21. (2013江苏,21)A .[选修4 — 1:几何证明选讲](本小题满分10分) 如图,AB 和 BC 分别与圆O 相切于点D, C, AC 经过圆心 Q 且BC= 2OC3 3 2 2B.[选修4— 2 :矩阵与变换](本小题满分10分)已知矩阵A =1 0,B =0 2,求矩阵 A —1B .C . [ 选修 4— 4:坐标系与参数方程 ]( 本小题满分x t 1, x'(t 为参数),曲线C 的参数方程为y 2ty10分)在平面直角坐标系 xQy 中,直线I 的参数方程为2tan 22tan(e 为参数).试求直线I 和曲线C 的普通方程,D.[选修4—5:不等式选讲](本小题满分10分)已知a>b>0,求证:2a—b >2ab —a b.【必做题】第22题、第23题,每题10分,共计20分•请在答题卡指定区 说明、证明过程或演算步骤.22. (2013江苏,22)(本小题满分10分)如图,在直三棱柱 点D 是BC 的中点.(1) 求异面直线 AB 与CD 所成角的余弦值;(2) 求平面ADC 与平面ABA 所成二面角的正弦值.23. (2013 江苏,23)(本小题满分 10 分)设数列{a n } : 1,— 2, — 2,3,3,3 , — 4,— 4, — 4, — 4,…,6 4 4 4 7个 4 4 48 k k (1)k 1k,L ,( 1)k 1k ,…,即当 ------------ n -------------- (k € N *)时,a n = ( — 1)k — 1k .记 S= a 1+ a 2+-+ a n ( n2 2 € N).对于I € N ,定义集合 R = {n |S 是a n 的整数倍,n €N *,且1< n w l }.(1) 求集合P 11中元素的个数; (2) 求集合P 2 000中元素的个数.域内作答,解答时应写出文字ABC — ABC 中,2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学I试题、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上.解析:|z| =1(2 —i) 2| = |4 —4i + i2| = |3 —4i| = , 32 4 2 5 = 5.33.答案:y —x4解析:由题意可知所求双曲线的渐近线方程为4.答案:8解析:由于集合{—1,0,1}有3个兀素,故其子集个数为23= 8.5.答案:3解析:第一次循环后:a—8, n^2;第二次循环后:a—26, n—3;由于26> 20,跳出循环, 输出n= 3.6.答案:2解析:由题中数据可得x甲=90 , x乙=90 .2 1 2 2 2 2 2 2 1 2于是S甲= — [(87 —90) + (91 —90) + (90 —90) + (89 —90) + (93 —90) ] = 4, s乙=—[(89 —90) + (90 552 2 2 2—90) + (91 —90) + (88 —90) + (92 —90) ] = 2,2 2由S甲>S z,可知乙运动员成绩稳定.故应填 2.解析:由题意知m的可能取值为1,2,3,…,7;n的可能取值为1,2,3,…,9.由于是任取m n:若m= 1时,n可取1,2,3,…,9,共9种情况;同理m取2,3,…,7时,n也各有9种情况,故m n的取值情况共有7X 9= 63种.若m, n都取奇数,则m的取值为1,3,5,7 , n的取值为1,3,5,7,9&答案:1 : 24解由题意可知点F到面ABC勺距离与点A到面ABC勺距离之比为1 : 2 , S MDE:S MBC= 1 : 4.2AF SABC1 9.答案:2,丄2解析:由题意可知抛物线y= x2在x= 1处的切线方程为y= 2x— 1.该切线与两坐标轴围成的区域如图中阴解析:函数y 3sin 2x 2.答案:5n的最小正周期T42 n—— n.7.答案: 2063,因此满足条件的情形有4X 5= 20种.故所求概率为20 63因此V : V2= £A F S AED3=1 : 24.影部分所示:1 1当直线x + 2y = 0平移到过点 A —,o 时,x + 2y 取得最大值—.2 2当直线x + 2y = 0平移到过点B (0,- 1)时,x + 2y 取得最小值—2.1因此所求的x + 2y 的取值范围为2寸1 uuu2 uuur uuu ABAC 1 AB 6 31 故入1 +入2=.2uuur122AC— e ,入2=11.答案:(—5,0) U (5 ,+^)2x 4x,x 0,解析:•函数f (x )为奇函数,且 x > 0时,f (x ) = x — 4x ,贝U f (x )=0,x 0, •••原不等式等价于2x4x, x 0,110.答案:一 2 解析:由题意作图如图. uuur uuur •••在△ ABC 中, DE DB uuu 1 uuu 2 uuuBE - AB BC 2 31 uuu2 UULT 2AB严uuuAB)x 0, 或 x 0,2或 2x 4x x, x 4x x, 由此可解得x > 5或一5v x v 0. 故应填(—5,0) U (5 ,+s ).12.答案:3解析:设椭圆C 的半焦距为 c ,由题意可设直线 BF 的方程为- 结合题意可知 (1)当 a w 2, t = 2 时,I PA 2取得最小值.此时(2 — a )2 + a 2— 2 = 8,解得a =— 1, a = 3(舍去).⑵ 当a > 2, t = a 时,|PA 2取得最小值.此时 a 2— 2= 8,解得a =、、10 , a = .10(舍去).故满足条件 的实数a 的所有值为,10 , — 1. 14. 答案:12解析:设正项等比数列{a n }的公比为q ,则由 ,a 6 + a= a 5(q + q 2) = 3可得q = 2,于是a n = 2n —6,—(1 2n ) 1则 a ’+ a 2+・・・+ a n = 322n 5 —.1 2321门'a5— , q = 2 , 2.A2--a 6= 1, a 1a 11 =a 6 = 1.11.7I611.•- aa 2…an = 1.当 n 取 12 时,a 1 + a 2+ …+ a 12= 2 —> aa 2…a 11a 12= a 12= 2 成立;当 n 取 13 时,a 1+ a 232A8I6713+ …+ a 13= 2 —v a 1a 2…a 11a 12a 13= a 12a 13= 2 ・2 = 2 .当 n > 13 时,随着 n 增大 a 1+ a 2+・・・+ &将恒小于32…a n .因此所求n 的最大值为12.二、解答题:本大题共 6小题,共计90分•请在答题卡指定区域.内作答,解答时应写出文字说明、证明 过程或演算步骤.、. 2 2 2 215. (1)证明:由题意得 |a — b | = 2,即(a — b ) = a — 2a ・b + b = 2.y=1,即bx + cy — bc = 0.于是可知 bd ibc一 b2c 2竺,d 2a2 2 2 ,2a a cb ccc cd 2一 6d i ,-业,即ab 飞c 2. c a3•- e3 .13. 答案:—1, 0解析1 :设P 点的坐标为 x,-,贝UxI PA22 21 2 1 =(x a)a = x2xx1 2a x -x1=2a 2.令 t x 2,则 |PA 2= t 2— 2at + 2a 2— 2 x22 2 4 4 2 21••• a (a — c ) = 6c . /• 6e + e — 1= 0. /• e =.2 2=(t — a ) + a — 2 (t >2).又因为a2= b2= |a| 2= |b| 2= 1, 所以 2 —2a -b = 2,即a -b = 0.故a丄b.⑵解: 因为3) = (0,1),所以cos cos 0, a + b = (cosa + cos (3 , sina + sinsinsin1,由此得 cos a = cos( n — 卩).由0<3Vn :,得 0V n — 3Vn,又 0 V a Vn , 故a=n — 3 .代入 sina + sin=1,得 sina = sin 3 =1 而a >3 ,所以5 n,n26616•证明:⑴因为AS= AB AF 丄SB 垂足为F ,所以F 是SB 的中点•又因为 E 是SA 的中点,所以EF//AB因为EF]平面ABC AB 平面ABC 所以EF /平面ABC同理EG/平面ABC 又EF A EG= E , 所以平面EF(/平面ABC⑵因为平面 SABL 平面SBC 且交线为 SB 又AF 平面SAB AF 丄SB 所以AF 丄平面SBC 因为BC 平面SBC 所以AF 丄BC又因为 ABL BC , AF n AB= A, AF, AB 平面 SAB 所以 BCL 平面 SAB 因为SA 平面SAB 所以BC L SA17.解:(1)由题设,圆心C 是直线y = 2x — 4和y = x — 1的交点,解得点C (3,2),于是切线的斜率必存在. 设过A (0,3)的圆C 的切线方程为y = kx + 3 , 由题意,1 3^11= 1,解得k = 0或3, 賦14故所求切线方程为 y = 3或3x + 4y — 12= 0.⑵ 因为圆心在直线 y = 2x — 4上,所以圆C 的方程为(x —a )2+ [y — 2(a — 2)] 2= 1. 设点Mx , y ),因为MA= 2MO 所以x 2 y 3 2 =2 x 2 y 2 ,化简得x 2+ y 2+ 2y — 3= 0,即 x 2+ (y + 1)2= 4,所以点 M 在以 Q0 , — 1)为圆心,2为半径的圆上.由题意,点 Mx , y )在圆C 上,所以圆C 与圆D 有公共点,贝U |2 —1| w CDc 2+ 1, 即 1, a 2 2a 3 2 3.由 5a — 12a + 8>0,得 a € R ; , 2 / 冃 12 由 5a — 12a w 0,得 0w a w .5所以点C 的横坐标a 的取值范围为 18 .解:⑴在厶ABC 中 ,因为cosc 120,. 5 12A =二,13cos从而 sin B= sin[ n — (A + C )] = sin( A + C = sin35C =-,所以 sin A = 一 , 5 13 5 A DOS C + cos A sin C =—13sinC =仝512 4 13 563 65AR 由正弦定理倍- sin C匹,得ABsin BAC. c 1260 4 sinC= 1 040(m).sin B 6- 565所以索道AB 的长为 ⑵假设乙出发t min 后,甲、乙两游客距离为 d ,此时,甲行走了 (100 + 50t ) m ,乙距离12所以由余弦定理得 d 2= (100 + 50t )2+ (130t )2-2X 130t X (100 + 50t ) X = 200(37 t 2- 70t + 50),131 040 m.A 处 130t m ,104035 因0W t w,即0W t w 8,故当t(min)时,甲、乙两游客距离最短.13037⑶由正弦定理-BC 竺,得BC=竺 sin A 譬 -=500(m).si nA sin B sinB 631365乙从B 出发时,甲已走了 50X (2 + 8 + 1) = 550(m),还需走 710 m 才能到达 C.1 20 .解:⑴令 f '(x )=-x—1,即f (x )在(a —1, +8)上是单调减函数.上是单调减函数, 故(1 , +8) x v ln a 时,g '(x ) v 0;当 x > In a 时,g '(x ) >0.又 g (x )在(1 , +m )上有最小值,所以 In a > 1,即 a > e.综上,有 a € (e , +8).⑵ 当a <0时,g (x )必为单调增函数;当 a >0时,令g '(x ) = e x — a >0,解得a v e x ,即卩x >In a . 因为g (x )在(—1, +8)上是单调增函数,类似 ⑴有In a w — 1,即0v a <e — 1. 结合上述两种情况,有 a we 1.1① 当a = 0时,由f ⑴=0以及f '(x ) =>0,得f (x )存在唯一的零点;x② 当a v 0时,由于f (e a ) = a — a e a = a (1 — e a ) v 0, f (1) =— a > 0,且函数f (x )在[e a,1]上的图象不间断, 所以f19. 证明:由题设,S nn(n na - 21)d . (1) 由c = 0,得b nS nn J a d .又因为b, b 2, b 4成等比数列,所以2n 2即d a - =a a 3d ,化简得d 2 __—2ad = 0.因为0,所以 d = 2a .22C 处互相等待的时间不超过 3 min ,乙步行的速度应控制在 因此,对于所有的 肚N ,有S m = ma ._ * 2 2 2 2 从而对于所有的 k , n € N ,有 &= (n k ) a = nka = n S.,2b = bb .设乙步行的速度为 v m/min ,由题意得3 500710 503,解得125043625,所以为使两位游客在14竺,625(单位: 43 14 m/min)范围内.(2)设数列{b n }的公差是d 1,则b n = b 1+ ( n — 1)d 1,即即2 n nS n理得,对于所有的 * 1 n € N ,有 d 1 -d 2 1 B = b 1 — d 1 — a + d ,2 t h d 1 a —=b + (n — 1)d 1, n € N ,代入S n 的表达式,整c1 2d n cd 1n = c (d 1 — b ).2D = c (d 1— b",则对于所有的 n € N ,有 An 3 + Bn 2+ cdn = D.(*)n = 1,2,3,4,得 A + B + cd 1 = 8A + 4B + 2cd 1 = 27A + 9B + 3cd 1 = 64A + 16B + 4cd 1,7A 3B cd 1 0,①从而有19A 5B cd 1 0,②21A 5B cd 1 0,③由②,③得A =0, cd 1 = —5B,代入方程①, 得 即d 11d = 0, b 1 —d 1 — 1 -a + d = 0, cd ==0 22d = 0,与题设矛盾,所以d& 0.1 ax v 0,考虑到f (x )的定义域为(0,+s ),故a > 0,进而解得 x 同理,f (x )在(0 , a —1)上是单调增函数.由于f (x )在(1 , (a — 1, +m ),从而 a —1w 1,即 a > 1.令 g '( x ) = e x — a = 0, 得 x = In + ^) a .当 得 B = 0,从而 cd 1 = 0. 令 A = d 1〔d ,2 在(*)式中分别取 1 若 d 1= 0,则由 d 1 d = 0, 2又因为cd 1 = 0,所以c = 0.1(x)在(e a,1)上存在零点.另外,当x> 0时,f'(x) = - —a> 0,故f(x)在(0,+^)上是单调增函数,所以f(x)只有一个零点.x③当0v a we —1时,令f'( x) = ——a= 0,解得x= a—-当0< x v a—1时,f '(x) > 0,当x>a—1时,f'(x)x—1 ——1< 0,所以,x = a是f (x)的最大值点,且最大值为f (a ) = —In a— 1. 当一In a— 1 = 0,即a= e—1时,f (x)有一个零点x = e.一1当一In a— 1 > 0,即0< a< e时,f (x)有两个零点.实际上,对于0 < a< e—1,由于f(e —1) =—1 —a e—1< 0, f (a—1) > 0,且函数f(x)在[e 一1, a—1]上的图象不—1 — 1 间断,所以f(x)在(e , a )上存在零点.另外,当x€ (0 , a—1)时,f ' (x) = 一—a> 0,故f(x)在(0 , a一1)上是单调增函数,所以 f (x)在(0 , a—1)x上只有一个零点.下面考虑f(x)在(a一1,+^)上的情况.先证f(e a—1) = a(a—2—e a—1) < 0.为此,我们要证明:当x>e 时,e x>x2.设h(x) = e x—x2,则h' (x) = e x—2x,再设I (x) = h ' (x) = e x—2x, 则I ' (x) = e— 2.当x> 1 时,1' (x) = e x—2>e—2>0,所以I (x) = h' ( x)在(1 , +^)上是单调增函数.故当x>2 时,h ' ( x) x . , 2=e —2x > h (2) = e —4> 0,从而h(x)在(2 ,+s)上是单调增函数,进而当x>e时,h( x) = e x—x2> h(e) = e e—e2> 0.即当x > e 时,e x> x2.当0< a< e—1,即卩a—1> e 时,f (e a—1) = a—1—a e a—1= a(a—2—e a—1) < 0,又f ( a—1) > 0,且函数f( x)在[a一1,一一一一1e a一1]上的图象不间断,所以f (x)在(a一1, e a—1)上存在零点.又当x > a—1时,f' (x)= —a< 0,故f (x)x在(a—1,+g)上是单调减函数,所以f (x)在(a—1,+g)上只有一个零点. 综合①,②,③,当a<0或a=訂时,f (x)的零点个数为1, 当0 <a<e—1时,f(x)的零点个数为2.数学n (附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答. 若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.证明:连结OD因为AB和BC分别与圆O相切于点D, C,所以/ AD(=Z ACB= 90°.又因为/ A=Z A,所以Rt △ AD® Rt△ ACB 所以BC JAC1 OD AD又BC= 2OC= 2OD 故AC= 2ADB.[选修4— 2:矩阵与变换]解:设矩阵A 的逆矩阵为 a bc d所以A —1B=线I 的普通方程为 同理得到曲线 C 的普通方程为y 2 = 2x .y 2x11联立方程组 %解得公共点的坐标为(2,2),丄,1 .y 2x,23322222222D.证明:2a — b — (2 ab — a b ) = 2a (a — b ) + b ( a — b ) = (a — b )(2 a + b ) = (a — b )( a + b )(2 a + b ). 因为a >b > 0,所以 a — b >0, a + b > 0,2 a + b >0,从而(a — b )( a + b )(2 a + b )》0,即卩 2a — b 》2ab — a b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区 域内作答,解答时应写出文字 说明、证明过程或演算步骤. 22.解:(1)以A 为坐标原点,建立如图所示的空间直角坐标系A — xyz ,则 A (0,0,0) , 02,0,0) , C (0,2,0), D (1,1,0) , A(0,0,4) , C (0,2,4),unr uuuu所以 A ] B = (2,0 , — 4) , G D = (1 , — 1 , — 4).uuir uuuuuur uuuD A I B C I D因为 cos 〈 AB , C 1D 〉= uuur||uuuu 「A B ||GD=18 3怖1 0 ab 1°,即 a b 0 1 2c 2d故 a =— 1, b = 0, c = 0,1,从而A 的逆矩阵为A 1 =2C.解:因为直线l 的参数方程为x = t +1, y = 2t(t 为参数),由 x =t + 1得t = x — 1,代入y = 2t ,得到直2x — y — 2 = 0.20 18 10 '所以异面直线AB与CD所成角的余弦值为璧0.10uuir umu uuir uuun⑵设平面ADC的法向量为n i= (x,y,z),因为AD = (1,1,0) , AC1= (0,2,4),所以n i • AD = 0,n i • AC1=0,即卩x+ y= 0 且y+ 2z = 0,取z= 1,得x= 2, y=- 2,所以,m = (2 , - 2,1)是平面ADC的一个法向量.取平面AAB的一个法向量为n2= (0,1,0),设平面ADC与平面ABA所成二面角的大小为0 .由|cos 0 | = 门1门 2 2—,得sin 0 = 2^.|门1 ||门2 | s/9 V1 3 3因此,平面ADC与平面ABA所成二面角的正弦值为.323.解:(1)由数列{a n}的定义得a1 = 1, a2=- 2, a3=- 2, a4= 3, a s = 3, a6 = 3, a?=—4, a8=- 4, a o =—4, a10=- 4 , an = 5,所以S= 1 , S2 =- 1, S3=-3 , S= 0 , S5= 3 , S6 = 6 , S= 2 , S3=- 2 , S o=- 6 , S o = - 10 , S11 = - 5 ,从而S= a1 , S= 0x a4 , S s= a s , S e= 2a6 , S1 = - an ,所以集合P1 中元素的个数为5.*(2)先证:S(2i+1)= - i (2i + 1)( i € N).事实上,①当i = 1时,S(2i +1) = S B=- 3, —i (2 i + 1) = - 3,故原等式成立;②假设i = m时成立,即Si(2m+1)= —m(2 m+ 1),贝V i = m+ 1 时,S(m+1)(2 m+3)= Sn<2m+1)+ (2 m+ 1) —(2 m+ 2)=—2n(2 1) -4m- 3=- (2 m+ 5m+ 3) =- (m+ 1)(2 m+ 3).综合①②可得S(2i +1) = —i (2 i + 1).于是S i +1)(2 i +1) = S(2i +1) + (2 i + 1) = —i (2 i + 1) + (2 i + 1) = (2 i + 1)( i + 1).由上可知S(2i +1)是2i + 1 的倍数,而a (2i +1)+j = 2i + 1( j = 1,2 ,…,2i + 1),所以S ⑵ +1)+j = S ⑵ +1)+ j (2 i + 1)是a i(2i+1)+j (j = 1,2 ,…,2i + 1)的倍数.又S(i+1)(2i+1) = (i + 1)(2 i + 1)不是2i + 2 的倍数,而a(i+1)(2i +1) + j = - (2i + 2)( j = 1,2 ,…,2i + 2),所以S(i+1)(2i +1) +j = S i+1)(2 i +1) - j (2 i + 2) = (2 i + 1)( i + 1) - j (2 i + 2)不是a(i +1)(2 i+1)+j(j = 1,2 ,…,2i + 2)的倍数,故当l = i (2i + 1)时,集合P中元素的个数为1+ 3 +… + (2i - 1) = i2,于是,当I = i(2i + 1) + j (1 < j W2i + 1)时,集合P 中元素的个数为i2+ j.又 2 000 = 31 X (2 X 31 + 1) + 47 ,故集合F2 000 中元素的个数为31 + 47= 1 008.。
高三10月月考数学试卷说明:本卷考试时间120分钟,满分160分,一、填空题:本大题共14小题,每小题5分,共70分,不需写出解答过程,请把答案直接填写在答题纸相应位置上........。
1.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =__________2.已知i R b a i ibia ,,(32∈+=-+为虚数单位),则b a += . 3.在△ABC 中,sin cos A Ba b=,则∠B= . 4.执行右边的程序框图,若15p =,则输出的n = .5.若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3,则|→a +2→b |=6.函数)2||,0,0()sin(πϕωϕω<>>++=A k x A y 的图象如上,则y 的表达式是7. 已知3sin(-)45x π=,则sin 2x 的值为 8. 设数列{}n a 中,112,-1n n a a a n +==+,则通项n a = _______。
9.双曲线2214y x -=的渐进线被圆226210x y x y +--+=所截得的弦长为 . 10.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为_____ ___ 11.函数+2sin [,]22y x x ππ=-在区间上的最大值为12.若函数f (x)满足(1)-()f x f x +=,且(1,1]时,(),x f x x ∈-=则函数y=f(x)的图象与函数3log y x =的图象的交点的个数为 。
13.如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅=14.若关于x 的方程222(1)10x x k ---+=,有5个解,则k= 二、解答题(本大题共6道题,计90分,解答应写出文字说明,证明过程或演算步骤). 15.(本小题满分14分)在ABC △中,已知2AC =,3BC =,4cos 5A =-. (Ⅰ)求sinB 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值16.(本小题满分14分)ABDC设等差数列{}n a 的前n 项和为n S ,且5133349a a S +==,. (1)求数列{}n a 的通项公式及前n 项和公式; (2)设数列{}n b 的通项公式为nn n a b a t=+,问: 是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.17.(本小题满分14分)多面体ABCDE 中,1====AE AC BC AB ,2=CD ,ABC AE 面⊥,CD AE //。
江苏省江浦高级中学 2012—2013 学年第一学期高三年级十月考数 学 试 卷命题人:滕宏银 2012 年 10 月一、填空题: 本大题共 14 小题 , 每题 5 分, 计 70 分 . 不需写出解答过程 , 请把答案写在答题纸的指定地点上 .1. 已知全集 U 1,2,3,4 ,会合 P1,2 ,Q2,3 ,则 C U ( p Q ) 等于 ____▲ ____.2. 已知复数 z 知足 (3 i ) z 10i ( i为虚数单位 ), 则 z 的模为 ____▲ ____.3.函数 ylog 0.5 (3x 2) 的定义域是 ____▲ ____.4.已知 510°角的始边在 x 轴的非负半轴上,终边经过点 P(m,2) ,则 m =____▲ ____.5.已知 A(2, 3), B ( 4, 5) ,则与向量 AB 方向相反的单位向量坐标为 ____▲ ____.6. 已知 tan() 2 ,则 tan____▲ ____.47. 已知函数 f ( x)axx 是偶函数,则常数 a 的值为 ____ ▲ ____.4x18. 已知 log x y 2 ,则 y x 的取值范围为 ____▲ ____.9. 在 ABC 中 , 角 A, B,C 的 对 边 分 别 为 a, b, c , 若 a cos Bb cos A3c , 则tan A5=____▲ ____.tan B10. 若函数 f ( x)sin x (0) 在区间 0,上单一递加,在区间, 上单一递减,33 2则= ____ ▲____.A11. 如图,在△ ABC 中,BAC120o , ABAC 2 , D 为 BC 边上的点,且AD BC0,CE2EB ,则 AD AE ____▲ ____.BED C12.已知 f ( x ) ax3bx 2 ycx (a 0) 有极大值 5 ,其导函数y f ' ( x ) 的图象如下图,则f ( x) 的分析式为 ____▲ ____.O 1 2xlog 2 x , x 0, 则 实 数 a 的 取 值 范 围 是13. 设 函 数 f ( x)log 1 (x ) , x0 , 若 f (a)f ( a)2____▲ ____.14. 已 知 定 义 在 R 上 的 可 导 函 数 yf ( x) 的 导 函 数 为 f / ( x) , 满 足 f / (x)f (x) 且y f ( x 1) 为偶函数, f (2) 1,则不等式 f (x)e x 的解集为 ____▲ ____.二、解答题:本大题共 6 题,共 90 分 . 请在答题卡规定地区写出文字说明、证明过程或演算步骤.15.(本小题满分 14 分)在△ ABC 中,a, b,c 分别是角 A,B,C 所对的边,且 a5, b 3,sin C 2 sin A .( 1)求边 c 的值;( 2)求 sin 2A的值.316. (本小题满分 14 分 )如图,四棱锥 P ABCD 的底面为矩形, 且 AB 2, BC 1, E , F 分别为 AB ,PC 中点 .( 1)求证: EF ∥平面 PAD ;P( 2)若平面PAC ⊥平面 ABCD ,求证:平面 PAC ⊥平面 PDE.FD CAEB(第 16 题)17.(本小题满分 14 分)已知向量 a (cos 3 x, sin 3 x ), b(cos x, sin x) ,且 x[ , ] ,求:222 22( 1) a b 及 a b ;( 2)若 f ( x ) a b 2 a b 的最小值是3的值 .,求218.(本小题满分 16分)如图:某污水办理厂要在一个矩形污水办理池ABCD 的池底水平铺设污水净化管道(Rt FHE ,H是直角极点)来办理污水,管道越长,污水净化成效越好.设计要求管道的接口 H 是 AB 的中点,E, F分别落在线段BC, AD 上.已知AB 20米, AD 10 3 米,记BHE.L 表示为( 1)试将污水净化管道的长度的函数 ,并写出定义域;( 2)若sincos 2 ,求此时管道的长度 L ;(3)问:当取何值时,污水净化成效最好?并求出此时管道的长度 .19.(本小题满分 16 分)已知函数 f ( x)ln x 2a , aR .x( 1)若函数 f ( x)在 [2,) 上是增函数,务实数 a 的取值范围;( 2)若函数 f ( x)在 [1,e] 上的最小值为3,务实数 a 的值.20. ( 本小题满分 16 分)若函数 f (x) 为定义域 D 上单一函数,且存在区间 a ,b D (此中 a b ),使适当x a ,b 时, f (x) 的取值范围恰为 a ,b ,则称函数 f (x) 是 D 上的正函数,区间a ,b 叫做等域区间.1( 1)已知 f ( x)x 2是 [ 0,) 上的正函数,求 f (x) 的等域区间;( 2)尝试究能否存在实数m ,使得函数( ) x 2 m 是 ( , 0)上的正函数?若存在,g x恳求出实数 m 的取值范围;若不存在,请说明原因.江苏省江浦高级中学 2012—2013 学年第一学期高三年级十月考数学参照答案及评分标准14570.1. { 4 }2.10 3. (2 4.2 35. 3 1010,1](,)310106.137.1 8. [1 ( 0,)9. 410.3 11. 12,0)2412. f ( x)2 x39x212x13. ( 1,0) (1, ) 14. (0, )690 .15.141c a sin C sin Cca 2a 2 55sin A sin A2cos Ac2b 2 a 22 572bc 5sin A1 cos 2A585sin 2 A2sin A cos A4 10cos 2Acos 2 A sin 2 A3 1255sin( 2A) sin 2 A coscos2A sin43 31410333P16. 141PDMFMAMF1 FPC FM CD FM2CDABCDE AB1EACD EA 2CDFMEAFMEADCAEBNPFAEFMEF AM5 AMPAD EFPADEFPAD7CEDANPNABCDAD BCBCEANECBENAEAE EBCEBNEACE NEFPC EFNP5NPPAD EFPADEFPAD7CDQFQEQABCDE ABAE DQAE DQAEQDEQ ADADPAD EQPADEQPAD2QFCDCPFQPDPDPAD FQPADFQPADFQ EQEQF FQ ∩EQ Q EQFPAD5 EFEQFEFPAD72ACDEGABCDAB2BC EAB.DA CD2AE DADAECDADAECDAADEDCAADECDEADC 90° DCACDE 90°DGC180° DGC 90° DE AC9PACABCDDEABCDDEPAC12DEPDEPACPDE1417. 14(1) a bcos 3 x cosxsin 3 x sinxcos 2x 2222 2| a b |(cos 3x cos 3)2(sin 3xsin x)22 2 cos2x 2 cos 2 x 52 222x[0,], cos x [ 0,1], | a b | 2 cos x72)2 1 2 2f ( x) cos 2 x 4 cos x, f (x)2(cos x9x [0,], 0 cos x1.20cosx0f (x)11时,当且仅当 cosxf ( x)1 2 21 223,解得122f (x)1 41 ,cos x114325 11 14.82218. 16EH10FH10 101cos sinEFsin cos 4103 3[ , ]BE10 tan10 3AFtan10 3tan536 3L1010 10[ , ]cossinsincos66 3 .sin cos1(2) sincos2 ,82L20( 21) ;10L10101010(sincos 1)cossin3sin cos = sincossincost 2 1sincost212[ , ] t sincos2 sin() [ 3 1, 2] 146 342L20 [3 1t3 1,t 1 2, 2]263L20(3 1) .156320(31).1619.161f (x)2a12a ln x f ( x)x21 x xf ( x) [2,)f ( x)12a 0 [2,)a ≤x[2,)4x x22g(x)xa ≤g( x)min, x [2, 2g(x)x) [2,a 12a()g( x) min g(2) 1,1]721f( x)x2a[1, e] x2x2a1x2a0f( x)0 [1,e] f (x) [1,e]f x f (1)310 2a 3amin21≤ 2a ≤ ef (x)0x2a1x2a f ( x)0f ( x) (1,2a)2a xf( x)0f ( x) (2a, e) ef xmin f2a ln(2 a)13a e21322a ex2a0f( x)0 [1,e] f (x) [1,e]f x f e12a3a emin ea e1620.161f (x)x0 f ( x)x0f aax a b a3f bb ba 0,b 1 f x“”0 152g ( x)x2m0g a2x a b a m b7g b2b m aa2b2b ab a192m b 2m 1 0a a aa b0b a11a111211aa 2a m 1 0132h a a 2h1013a m 1h1m04162。
2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.......... 1.(2013江苏,1)函数π3sin 24y x ⎛⎫=+⎪⎝⎭的最小正周期为__________. 2.(2013江苏,2)设z =(2-i)2(i 为虚数单位),则复数z 的模为__________.3.(2013江苏,3)双曲线22=1169x y -的两条渐近线的方程为__________. 4.(2013江苏,4)集合{-1,0,1}共有__________个子集.5.(2013江苏,5)下图是一个算法的流程图,则输出的n 的值是__________.6.(2013江苏,6)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:7.(2013江苏,7)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________.8.(2013江苏,8)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=__________.9.(2013江苏,9)抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是__________.10.(2013江苏,10)设D ,E 分别是△ABC 的边AB ,BC 上的点,1=2AD AB ,2=3BE BC .若12DE AB AC λλ=+(λ1,λ2为实数),则λ1+λ2的值为__________.11.(2013江苏,11)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________.12.(2013江苏,12)在平面直角坐标系xOy 中,椭圆C 的标准方程为2222=1x y a b+(a >0,b >0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2.若21d =,则椭圆C 的离心率为__________.13.(2013江苏,13)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数1y x=(x >0)图象上一动点.若点P ,A 之间的最短距离为a 的所有值为__________.14.(2013江苏,14)在正项等比数列{a n }中,512a =,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为__________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(2013江苏,15)(本小题满分14分)已知a=(cos α,sin α),b=(cos β,sin β),0<β<α<π.(1)若|a-b|a⊥b;(2)设c=(0,1),若a-b=c,求α,β的值.16.(2013江苏,16)(本小题满分14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(2013江苏,17)(本小题满分14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(2013江苏,18)(本小题满分16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(2013江苏,19)(本小题满分16分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项和.记2n n nS b n c=+,n ∈N *,其中c 为实数. (1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0.20.(2013江苏,20)(本小题满分16分)设函数f (x )=ln x -ax ,g (x )=e x-ax ,其中a 为实数. (1)若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围; (2)若g (x )在(-1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. 21.(2013江苏,21)A .[选修4-1:几何证明选讲](本小题满分10分) 如图,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC .B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = 1 00 2-⎡⎤⎢⎥⎣⎦,B =1 20 6⎡⎤⎢⎥⎣⎦,求矩阵A -1B .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为1,2x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.D .[选修4-5:不等式选讲](本小题满分10分)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区......域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(2013江苏,22)(本小题满分10分)如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.23.(2013江苏,23)(本小题满分10分)设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,11(1),,(1)k k k k k ----个,…,即当1122k k k k n (-)(+)<≤(k ∈N *)时,a n =(-1)k -1k .记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }.(1)求集合P 11中元素的个数; (2)求集合P 2 000中元素的个数.。
高三10月月考数学试卷
说明:本卷考试时间120分钟,满分160分,
一、填空题:本大题共14小题,每小题5分,共70分,不需写出解答过程,请把答案直接填写在答题纸相应位置上........。
1.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =__________
2.已知
i R b a i i
bi
a ,,(32∈+=-+为虚数单位),则
b a += . 3.在△ABC 中,sin cos A B
a b
=,则∠B= . 4.执行右边的程序框图,若15p =,则输出的n = .
5.若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3,则|→a +2→
b |=
6.函数)2
||,0,0()sin(π
ϕωϕω<>>++=A k x A y 的图象如上,则y 的表达式是
7. 已知3
sin(-)45
x π
=,则sin 2x 的值为 8. 设数列{}n a 中,112,-1n n a a a n +==+,则通项n a = _______。
9.双曲线2
2
14
y x -=的渐进线被圆226210x y x y +--+=所截得的弦长为 . 10.设直线x t =与函数2
(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最
小时t 的值为_____ ___ 11.函数+2sin [,]22
y x x ππ
=-在区间上的最大值为
12.若函数f (x)满足(1)-()f x f x +=,且(1,1]时,(),x f x x ∈-=则函数y=f(x)
的图象与函
数3log y x =的图象的交点的个数为 。
13.如图,在ABC △中,
12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅=
14.若关于x 的方程222
(1)10x x k ---+=,有5个解,则k=
二、解答题(本大题共6道题,计90分,解答应写出文字说明,证明过程或演算步骤). 15.(本小题满分14分)在ABC △中,已知2AC =,3BC =,4cos 5
A =-. (Ⅰ)求sin
B 的值;(Ⅱ)求sin 26B π⎛⎫
+ ⎪⎝⎭
的值
16.(本小题满分14分)
A
B
D
C
设等差数列{}n a 的前n 项和为n S ,且5133349a a S +==,. (1)求数列{}n a 的通项公式及前n 项和公式; (2)设数列{}n b 的通项公式为n
n n a b a t
=
+,问: 是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.
17.(本小题满分14分)
多面体ABCDE 中,1====AE AC BC AB ,2=CD ,ABC AE 面⊥,CD AE //。
(1)在BC 上找一点N,使得AN ∥面BED (2)求证:面BED ⊥面BCD
E
D
A
B
C
18.(本题满分16分)
O A 1
A 2
B 1
B 2
x
y
(第19)
开口向下的抛物线2(0,0)y ax bx a b =+<>在第一象限内与直线4x y +=相切.此抛物线与x 轴所围成的图形的面积记为3
26b S a
=.
(1)求a 与b 的关系式,并用b 表示()S b 的表达式; (2)求使()S b 达到最大值的a 、b 值,并求max S
19.(本小题满分16分)
在平面直角坐标系xOy 中,如图,已知椭圆E :22
221(0)y x a b a b
+=>>的左、右顶点分别
为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 的倾斜角的正弦值为13,圆C 与以线段
2OA 为直径的圆关于直线11A B 对称.
(1)求椭圆E 的离心率;
(2)判断直线11A B 与圆C 的位置关系,并说明理由; (3)若圆C 的面积为π,求圆C 的方程.
20. (本小题满分16分)已知()()2,ln 2
3
+-+==x ax x x g x x x f .
x
y
(1)求函数()x f 的单调区间;
(2)求函数()x f 在 [],2t t + ()0t >上的最小值;
(3)对一切的()+∞∈,0x ,()()22'+≤x g x f 恒成立,求实数a 的取值范围.。