直线与方程有什么联系?
-1
y .
. Q
k2
1
3– P
–
o
x
上一页
y
(过点P(0,3)斜率为2确定的)方程 y-3=2(x-0)是直线 l 的方程,且 l 称为直线 l 的点斜式方程。
.
. Q
k2
1
3– P –
-1
o
xHale Waihona Puke 一般的,设直线l经过点 P ( x1 , y1 ),斜 1 率为 k 则方程 y y1 k ( x x1 )叫做直线 的点斜式方程。 局限性:只适用于斜率存在的情形。 上一页
返回
2. 已知直线 l 过点P(1,4),且与两坐标轴在第一象 限围成的三角形面积为8,求直线 l 的方程。
解: 设直线的方程为y-4=k(x-1)
则它与两坐标轴的交点分别为(1-4/k,0)和(0,4-k) 由题意知k<0且有 1/2(1-4/k)(4-k)=8 整理得
(k 4) 2 0
直线的点斜式方程
复习
1.倾斜角 的定义及其取值范围;
2. 已知直线上两点 ( x1 , y1 ), Q( x2 , y2 ),如果x2 x1 , P 那么直线PQ的斜率.
当x2 x1 , 那么直线 的斜率不存在。 PQ
练习
问题:确定一条直线需要知道哪些条件?
例如:一个点 P(0,3) 和斜率为k=2就能确定 一条直线 l . 思考:取这条直线上不同于点P的任意 一点 Q( x, y) ,它的横坐标x与纵坐标y满 足什么关系? l y 3 2 y 3 2(x 0) x0
(3)斜率为3,与y轴交点的纵坐标为-1;y=3x-1 (4)过点(3,1),垂直于x轴; x-3=0