2.在古典概型中,每个基本事件发生的可能性都相等,称这 些基本事件为等可能基本事件.
[教材答疑]
1.教材P233思考 在10.1.1节中,我们讨论过彩票摇号试验、抛掷一枚均匀硬币 的试验及掷一枚质地均匀骰子的试验.它们的共同特征有哪些? 提示:共同特征:(1)有限性:样本空间的样本点只有有限 个; (2)等可能性:每个样本点发生的可能性相等.
(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5), (3,6),(4,5),(4,6),(5,6)},共有15个样本点.
(1)从口袋中的6个球中任取2个球,所取的2个球都是白球包含 的样本点共有6个,分别为(1,2),(1,3),(1,4),(2,3),(2,4), (3,4).
(A,B,C,D)共11种,选对的概率为111.
4.教材P236思考 在例8中,为什么要把两枚骰子标上记号?如果不给两枚骰子 标记号,会出现什么情况?你能解释其中的原因吗?
提示:如果不给两枚骰子标记号,则不能区分所抛掷出的两
个点数分别属于哪枚骰子,如抛掷出的结果是1点和2点,有可能 第一枚骰子的结果是1点,也有可能第二枚骰子的结果是1点.这 样,(1,2)和(2,1)的结果将无法区别.
(1)如果小球是不放回的,按抽取顺序记录结果(x,y).则x有 10种可能,y有9种可能,共有可能结果10×9=90种.因此,事件 A的概率是1980=15.
(2)如果小球是有放回的,按抽取顺序记录结果(x,y),则x有 10种可能,y有10种可能,共有可能结果10×10=100种,因此, 事件A的概率是11080=590.
Ω={(1,1,1),(1,1,0),(1,0,1),(1,0,0),(0,1,1),(0,1,0), (0,0,1),(0,0,0)},