2017年辽宁省沈阳市高三理科二模数学试卷
- 格式:docx
- 大小:369.54 KB
- 文档页数:9
2017年辽宁省沈阳市高考数学二模试卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2} 3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.5.已知数列{a n}满足a n﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()+1A.9 B.15 C.18 D.306.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]7.某几何体的三视图如图所示,则其体积为()A.4 B.8 C.D.8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4 B.5 C.6 D.79.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.10.运行如图所示的程序框图,则输出结果为()A.B.C.D.11.已知向量,,(m>0,n>0),若m+n ∈[1,2],则的取值范围是()A.B.C.D.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.(,6)B.(,6)C.(,5)D.(,5)二、填空题:本题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.15.等比数列{a n}中各项均为正数,S n是其前n 项和,且满足2S3=8a1+3a2,a4=16,则S4=.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.18.(12分)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数2040805010男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数4575906030(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM ﹣B的余弦值为.20.(12分)已知F1,F2分别是长轴长为2的椭圆C: +=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.21.(12分)已知函数.(1)求f(x)的极值;(2)当0<x<e时,求证:f(e+x)>f(e﹣x);(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.[选修4-5:不等式选讲]23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.2017年辽宁省沈阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i【考点】复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴=|z|2=.故选:A.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2}【考点】交集及其运算.【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.故选:D.【点评】本题考查了解不等式与交集的运算问题,是基础题.3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由p⇒q,反之不成立.即可得出.【解答】解:由p⇒q,反之不成立.∴p是q的充分不必要条件.故选:A.【点评】本题考查了祖暅原理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.【考点】抛物线的简单性质.【分析】根据题意,设P到准线的距离为d,则有|PF|=d,将抛物线的方程为标准方程,求出其准线方程,分析可得d的最小值,即可得答案.【解答】解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=﹣,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.【点评】本题考查抛物线的几何性质,要先将抛物线的方程化为标准方程.5.已知数列{a n}满足a n﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()+1A.9 B.15 C.18 D.30【考点】数列的求和.【分析】利用等差数列的通项公式可得a n.及其数列{a n}的前n项和S n.令a n ≥0,解得n,分类讨论即可得出.﹣a n=2,a1=﹣5,∴数列{a n}是公差为2的等差数列.【解答】解:∵a n+1∴a n=﹣5+2(n﹣1)=2n﹣7.数列{a n}的前n项和S n==n2﹣6n.令a n=2n﹣7≥0,解得.∴n≤3时,|a n|=﹣a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.故选:C.【点评】本题考查了分类讨论方法、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]【考点】简单线性规划.【分析】画出满足约束条件的平面区域,求出可行域各角点的坐标,然后利用角点法,求出目标函数的最大值和最小值,即可得到目标函数的取值范围.【解答】解:满足约束条件的平面区域如下图所示:由图可知解得A(1,2)当x=1,y=2时,目标函数z=2x+y有最大值4.故目标函数z=2x+y的值域为(﹣∞,4]故选:B.【点评】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,利用图象分析目标函数的取值是解答本题的关键.7.某几何体的三视图如图所示,则其体积为()A.4 B.8 C.D.【考点】由三视图求面积、体积.【分析】通过三视图复原的几何体是四棱锥,结合三视图的数据,求出几何体的体积.【解答】解:由题意三视图可知,几何体是四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,所以几何体的体积是:=.故选D.【点评】本题是基础题,考查三视图复原几何体的体积的求法,考查计算能力,空间想象能力.8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4 B.5 C.6 D.7【考点】互斥事件的概率加法公式.【分析】由题意,1﹣≥,即可求出n的最小值.【解答】解:由题意,1﹣≥,∴n≥4,∴n的最小值为4,故选A.【点评】本题考查概率的计算,考查对立事件概率公式的运用,比较基础.9.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.【考点】正弦函数的对称性.【分析】由题意可得2x+∈[,],根据题意可得=,由此求得x1+x2 值.【解答】解:∵x∈[0,],∴2x+∈[,],方程在上有两个不相等的实数解x1,x2,∴=,则x1+x2=,故选:C.【点评】本题主要考查正弦函数的图象的对称性,属于基础题.10.运行如图所示的程序框图,则输出结果为()A.B.C.D.【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的a,b,m的值,当m=时,满足条件|a﹣b|<d,输出m的值为.【解答】解:输入a=1,b=2,m=,f(1)=﹣1<0,f(m)=f(>0,f(1)f(m)<0,a=1,b=,|1﹣|=>,m=,f(1)=﹣1,f(m)=f()<0,f(1)f(m)>0,a=,b=,|﹣|=>,m=,f(a)=f()<0,f(m)=f()<0,f(a)f(m)>0,a=,b=,|﹣|=<,退出循环,输出m=,故选:A.【点评】本题主要考查了程序框图和算法的应用,准确执行循环得到a,b,S,k的值是解题的关键,属于基础题.11.已知向量,,(m>0,n>0),若m+n∈[1,2],则的取值范围是()A.B.C.D.【考点】简单线性规划;简单线性规划的应用;平面向量数量积的运算.【分析】根据题意,由向量的坐标运算公式可得=(3m+n,m﹣3n),再由向量模的计算公式可得=,可以令t=,将m+n∈[1,2]的关系在直角坐标系表示出来,分析可得t=表示区域中任意一点与原点(0,0)的距离,进而可得t的取值范围,又由=t,分析可得答案.【解答】解:根据题意,向量,,=(3m+n,m﹣3n),则==,令t=,则=t,而m+n∈[1,2],即1≤m+n≤2,在直角坐标系表示如图,t=表示区域中任意一点与原点(0,0)的距离,分析可得:≤t<2,又由=t,故≤<2;故选:B.【点评】本题考查简单线性规划问题,涉及向量的模的计算,关键是求出的表达式.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.(,6)B.(,6)C.(,5)D.(,5)【考点】三角函数的化简求值.【分析】当m=2时,f(a)=f(b)=f(c)=1,是等边三角形的三边长;当m>2时,只要2(1+)>m﹣1即可,当m<2时,只要1+<2(m﹣1)即可,由此能求出结果,综合可得结论.【解答】解:函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,当m=2时,f(x)==1,此时f(a)=f(b)=f(c)=1,是等边三角形的三边长,成立.当m>2时,f(x)∈[1+,m﹣1],只要2(1+)>m﹣1即可,解得2<m<5.当m<2时,f(x)∈[m﹣1,1+],只要1+<2(m﹣1)即可,解得<m<2,综上,实数m的取值范围(,5),故选:C.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意分类讨论思想的合理运用,属于中档题.二、填空题:本题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48种不同的分法(用数字作答).【考点】排列、组合的实际应用.【分析】甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,即可得出结论.【解答】解:甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,∴共有8×6=48种不同的分法.故答案为48.【点评】本题考查了分组分配的问题,关键是如何分组,属于基础题.14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是y=x.【考点】利用导数研究曲线上某点切线方程.【分析】先求出f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵f(x)=e x•sinx,f′(x)=e x(sinx+cosx),(2分)f′(0)=1,f(0)=0,∴函数f(x)的图象在点A(0,0)处的切线方程为y﹣0=1×(x﹣0),即y=x(4分).故答案为:y=x.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=30.【考点】等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.【考点】双曲线的简单性质.【分析】方法一、运用两渐近线的对称性和条件,可得A为BF的中点,由垂直平分线的性质和等腰三角形的性质,可得Rt△OAB中,∠AOB=,求得渐近线的斜率,运用离心率公式即可得到;方法二、设过左焦点F作的垂线方程为,联立渐近线方程,求得交点A,B的纵坐标,由条件可得A为BF的中点,进而得到a,b的关系,可得离心率.【解答】解法一:由,可知A为BF的中点,由条件可得,则Rt△OAB中,∠AOB=,渐近线OB的斜率k==tan=,即离心率e===.解法二:设过左焦点F作的垂线方程为联立,解得,,联立,解得,,又,∴y B=﹣2y A∴3b2=a2,所以离心率.故答案为:.【点评】本题考查双曲线的性质和应用,主要是离心率的求法,解题时要认真审题,仔细解答,注意向量共线的合理运用.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)(2017•沈阳二模)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f(x)的最小正周期;(Ⅱ)利用函数的解析式求解A,然后利用余弦定理求解即可,得到bc的范围,然后利用基本不等式求解最值.【解答】解:(Ⅰ)f(x)=•=(,1)•(﹣cosx,1﹣sinx)=﹣cosx﹣sinx+4=﹣2sin(x+)+4,f(x)的最小正周期T==π;(Ⅱ)∵f(A)=4,∴A=,又∵BC=3,∴9=(b+c)2﹣bc.∵bc≤,∴,∴b+c≤2,当且仅当b=c取等号,∴三角形周长最大值为3+2.【点评】本题考查向量的数量积以及两角和与差的三角函数,三角函数的周期,基本不等式以及余弦定理的应用,考查计算能力.18.(12分)(2017•沈阳二模)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数2040805010男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数4575906030(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)画出女性用户和男性用户的频率分布直方图,由图可得女性用户的波动小,男性用户的波动大;(Ⅱ)由分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,根据X的取值计算对应的概率,求出X的分布列和数学期望.【解答】解:(Ⅰ)对于女性用户,各小组的频率分别为:,,,,,其相对应的小长方形的高为,,,,,对于男性用户,各小组的频率分别为:,,,,,其相对应的小长方形的高为,,,,,直方图如图所示:,由直方图可以看出女性用户比男性用户评分的波动大.(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,则X取值为1,2,3,且P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为X123PX的数学期望为EX=1×+2×+3×=2.【点评】本题考查了频率分布直方图以及概率的计算问题,也考查了离散型随机变量的分布列及数学期望的问题,是综合题.19.(12分)(2017•沈阳二模)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM ﹣B的余弦值为.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.【解答】解:(I)证明:∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB,又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE⊂平面ABE,AB⊂平面ABE,∴PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),,,,M(2λ,2λ,2﹣2λ)设平面PFM的法向量,,即,设平面BFM的法向量,,即,,解得.【点评】本题考查直线与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2017•沈阳二模)已知F1,F2分别是长轴长为2的椭圆C:+=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)利用椭圆Q的长轴长为2,求出a=,设P(x0,y0),通过直线PA与OM的斜率之积恒为,﹣.化简求出b,即可得到椭圆方程;(Ⅱ)将直线方程代入椭圆方程,由此利用韦达定理、中点坐标公式、直线方程、弦长公式,能求出线段AB长的取值范围.【解答】解:(Ⅰ)由题意可知2a=2,则a=,设P(x0,y0),∵直线PA与OM的斜率之积恒为﹣,∴×=﹣,∴+=1,∴b=1,椭圆C的方程;(Ⅱ)设直线l:y=k(x+1),A(x1,y1),B(x2,y2),联立直线与椭圆方程:,得:(2k2+1)x2+4k2x+2k2﹣2=0,则x1+x2=﹣,x1x2=,则y1+y2=k(x1+x2+2)=,∴AB中点Q(﹣,),QN直线方程为:y﹣=﹣(x+)=﹣x﹣,∴N(﹣,0),由已知得﹣<﹣<0,∴0<2k2<1,∴|AB|=•=•=•=(1+),∵<<12k2+1<1,∴|AB|∈(,2),线段AB长的取值范围(,2).【点评】本题考查椭圆方程、线段长的取值范围的求法,考查椭圆、直线与椭圆的位置关系的应用,考查推理论证能力、运算求解能力,考查转化化归思想,解题时要注意韦达定理、中点坐标公式、直线方程、弦长公式的合理运用,属于中档题.21.(12分)(2017•沈阳二模)已知函数.(1)求f(x)的极值;(2)当0<x<e时,求证:f(e+x)>f(e﹣x);(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的极值即可;(2)问题转化为证明(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e ﹣x)ln(e+x)﹣(e+x)ln(e﹣x),根据函数的单调性证明即可.【解答】解:(1)f′(x)=,f(x)的定义域是(0,+∞),x∈(0,e)时,f′(x)>0,f(x)单调递增;x∈(e,+∞)时,f'(x)<0,f(x)单调递减.当x=e时,f(x)取极大值为,无极小值.(2)要证f(e+x)>f(e﹣x),即证:,只需证明:(e﹣x)ln(e+x)>(e+x)ln(e﹣x).设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),,∴F(x)>F(0)=0,故(e﹣x)ln(e+x)>(e+x)ln(e﹣x),即f(e+x)>f(e﹣x),(3)证明:不妨设x1<x2,由(1)知0<x1<e<x2,∴0<e﹣x1<e,由(2)得f[e+(e﹣x1)]>f[e﹣(e﹣x1)]=f(x1)=f(x2),又2e﹣x1>e,x2>e,且f(x)在(e,+∞)上单调递减,∴2e﹣x 1<x2,即x1+x2>2e,∴,∴f'(x0)<0.【点评】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,考查学生解决问题的综合能力.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•长春三模)已知在平面直角坐标系xOy中,以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程.直线l的参数方程为(t为参数),消去参数t可得普通方程.(2),直角坐标为(2,2),,利用点到直线的距离公式及其三角函数的单调性可得最大值.【解答】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程:.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y﹣3=0.(2),直角坐标为(2,2),,∴M到l的距离≤,从而最大值为.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.(2017•长春三模)已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(1)法一:根据绝对值的性质求出f(x)的最小值,得到x=时取等号,证明结论即可;法二:根据f(x)的分段函数的形式,求出f(x)的最小值,证明即可;(2)法一,二:问题转化为≥t恒成立,根据基本不等式的性质求出的最小值,从而求出t的范围即可;法三:根据二次函数的性质判断即可.【解答】解:(1)法一:f(x)=|x+a|+|2x﹣b|=|x+a|+|x﹣|+|x﹣|,∵|x+a|+|x﹣|≥|(x+a)﹣(x﹣)|=a+且|x﹣|≥0,∴f(x)≥a+,当x=时取等号,即f(x)的最小值为a+,∴a+=1,2a+b=2;法二:∵﹣a<,∴f(x)=|x+a|+|2x﹣b|=,显然f(x)在(﹣∞,]上单调递减,f(x)在[,+∞)上单调递增,∴f(x)的最小值为f()=a+,∴a+=1,2a+b=2.(2)方法一:∵a+2b≥tab恒成立,∴≥t恒成立,=+=(+)(2a+b )•=(1+4++),当a=b=时,取得最小值,∴≥t,即实数t的最大值为;方法二:∵a+2b≥tab恒成立,∴≥t恒成立,t≤=+恒成立,+=+≥=,∴≥t,即实数t的最大值为;方法三:∵a+2b≥tab恒成立,∴a+2(2﹣a)≥ta(2﹣a)恒成立,∴2ta2﹣(3+2t)a+4≥0恒成立,∴(3+2t)2﹣326≤0,∴≤t≤,实数t的最大值为.【点评】本题考查了绝对值不等式问题,考查绝对值的性质以及二次函数的性质,考查转化思想,是一道中档题.。
2017年东北三省四市统一考试暨沈阳市高三教学质量监测(二)数 学(理科)命 题:东北三省四市联合命制时间:120分钟 总分:150分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第(22)题~第(24)题为选考题,其它题为必考题.考生作答时,将答案答在答题卡及答题纸上,在本试卷上答题无效.考试结束后,将本试卷和答题卡(纸)一并交回.第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑. (1)已知集合{}1,0,A a =-,{}|01B x x =<<,若AB ≠∅,则实数a 的取值范围是A.{}1B.(,0)-∞C.(1,)+∞D.(0,1)(2)设等比数列{}n a 的公比2q =,前n 项和为n S ,则43S a 的值为 A.154B.152C.74 D.72(3)已知复数1cos23sin 23z i =+和复数2cos37sin37z i =+,则21z z ⋅为A .i 2321+B .i 2123+C .i 2321-D .i 2123-(4)已知命题p :抛物线22x y =的准线方程为21-=y ;命题q :若函数)1(+x f 为偶函数,则)(x f 关于1=x 对称.则下列命题是真命题的是 A .q p ∧B.)q (p ⌝∨C.()()p q ⌝∧⌝D.q p ∨,,(5)等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S .则“1||d a >”是“n S 的最小值为1S ,且n S 无最大值”的A .充分不必要条件B .必要不充分条件C .充要条件 D(6)已知图象不间断的函数)(x f 是区间],[b a 在区间(,)a b 上存在零点.图1是用二分法求方程(f x ①0)()(<m f a f ; ②0)()(>m f a f ;③0)()(<m f b f ; ④0)()(>m f b f 其中能够正确求出近似解的是( )(2)①、③ B .②、③ C .①、④ D .②、④(7)若1(3)nx x-展开式中各项系数之和为32中含3x 的项的系数为A.5-B.5C.405-D.405 (8)设函数()2cos()23f x x ππ=-,若对于任意的x R ∈都有12()()()f x f x f x ≤≤,则12x x -的最小值为 A .4 B .2 C .1 D .12(9)在送医下乡活动中,某医院安排3名男医生和2总数为A .78B .114C .108 D. 120 (10)设3()f x x x =+,x R ∈. 若当02πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是A .(0,1)B .)0,(-∞C .)21,(-∞ D .)1,(-∞(11)已知O 为坐标原点,点M 的坐标为(,1)a (0a >),点(,)N x y 的坐标x 、y 满足不等式组⎪⎩⎪⎨⎧≤≥-+≤-+1033032y y x y x . 若当且仅当30x y =⎧⎨=⎩时,OM ON ⋅取得最大值,则a 的取值范围是A.1(0,)3B.1(,)3+∞C.1(0,)2D.1(,)2+∞图1(12)已知函数321,(,1]12()111,[0,]362x x x f x x x ⎧∈⎪+⎪=⎨⎪⎪-+∈⎩,函数()⎪⎭⎫ ⎝⎛=x πsin a x g 622+-a (a >0),若存在12[0,1]x x ∈、,使得12()()f x g x =成立,则实数a 的取值范围是A .14[,]23B .1(0,]2C .24[,]33D .1[,1]2第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题纸相应的位置上. (13)231dx x--=⎰. (14)已知双曲线12222=-by a x 左、右焦点分别为21F F 、,过点2F 作与x 轴垂直的直线与双曲线一个交点为P ,且621π=∠F PF ,则双曲线的渐近线方程为.(15)对于命题:若O 是线段AB.=⋅+⋅ 将它类比到平面的情形是: 若O 是△ABC 内一点,则有 将它类比到空间的情形应该是: 若O 是四面体ABCD 内一点,则有.(16) 已知一个三棱锥的三视图如图2所示,其中俯视图是顶角为120的等腰三角形,则该三棱锥的外接球体积为. 三、解答题:本大题共70分.(17)(本小题满分12分)如图3,ABC ∆中,,AB ,ABC sin2332==∠ 点D 在线段AC 上,且334,2==BD DC AD (Ⅰ)求BC 的长; (Ⅱ)求DBC ∆的面积.左视图主视图1223.S S S OBAOCA OBC =⋅+⋅+⋅(18)(本小题满分12分) 如图4,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AAAC AC AB BC ====,且A B B C ⊥,O 为AC 中点. (Ⅰ)在1BC 上确定一点E ,使得//OE 平面1A AB ,并说明理由;(Ⅱ)求二面角11A A B C --的大小.(19)(本小题满分12分)某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图5所示,成绩不小于90分为及格. (Ⅰ)甲班10名同学成绩的标准差 乙班10名同学成绩的标准差(填“>”,“<”);(Ⅱ)从两班10名同学中各抽取一人,已知有人及格,求乙班同学不及格的概率;(Ⅲ)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为X ,求X 的分布列和期望.甲 乙 257 368 58 68 7 8 9 10 89 678 1235 1 1A B C A 1B 1C O(20)(本小题满分12分)已知椭圆2222:1x y C a b +=(0)a b >>的离心率为2,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点M (2,0)的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满足t =+(O 为坐标原点)<3时,求实数t 取值范围.(21)(本小题满分12分)已知()ln(1)()xf x e mx x R =+-∈.(Ⅰ)已知对于给定区间(,)a b ,存在0(,)x a b ∈使得)()()(0x f ab a f b f '=--成立,求证:0x 唯一;(Ⅱ)若1212,x x R x x ∈≠,,当1m =时,比较12()2x x f +和12()()2f x f x +大小,并说明理由;(Ⅲ)设A 、B 、C 是函数()ln(1)(,1)xf x e mx x R m =+-∈≥图象上三个不同的点, 求证:△ABC 是钝角三角形.请考生在(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分. 做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图6,直线AB 过圆心O ,交圆O 于A 、B ,直线AF 交圆O 于F (不与B 重合),直线l 与圆O 相切于C ,交AB 于E ,且与AF 垂直,垂足为G ,连接AC .求证:(Ⅰ)CAG BAC ∠=∠; (Ⅱ)AF AE AC ⋅=2.(23)(本小题满分10分)选修4—4:坐标系与参数方程平面直角坐标系中,将曲线⎩⎨⎧==αsin y αcos x 4(α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C . 以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方程为θρsin 4=,求1C 和2C 公共弦的长度.(24)(本小题满分10分)选修4-5:不等式选讲对于任意实数)0(≠a a 和b ,不等式|)2||1(||||2|||-+-≥-++x x a b a b a 恒成立,试求实数x 的取值范围.2017年东北三省四市统一考试暨沈阳市高三教学质量监测(二)数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答末改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题共12小题,每小题5分,共60分.(1)D (2)A (3)A (4)D (5) A (6)C (7)C (8)B (9)B (10)D (11)D (12)A 二、填空题:本大题共4小题,每小题5分,共20分. (13)2ln3(14)x y 2±= (15) ·OA + ·OB + ·OC + ·OD =0 (16)π3520 三、解答题:本大题共共70分. (17)(本小题满分12分) 解:(Ⅰ)因为332sin=∠ABC ,所以313121=⨯-=∠ABC cos . ······· 2分 在ABC ∆中,设b AC a BC 3,==, 则由余弦定理可得a a b 344922-+= ① ···············5分 在ABD ∆和DBC ∆中,由余弦定理可得b b ADB 331643164cos 2-+=∠, b a b BDC 338316cos 22-+=∠. ····················· 7分 因为BDC ADB ∠-=∠cos cos ,V ACD O -V BCD O -V ABD O -V ABC O -所以有b a b b b 338316331643164222-+-=-+,所以6322-=-a b ② 由①②可得1,3==b a ,即3=BC . ·················· 9分(Ⅱ)由(Ⅰ)得ABC ∆的面积为223223221=⨯⨯⨯, 所以DBC ∆的面积为322. ···················· 12分 (注:也可以设b BC a BA ==,,所以b a3231+=,用向量法解决;或者以B 为原点,BC 为x 轴建立平面直角坐标系,用坐标法解答;或者过A 作BC 平行线交BD 延长线于E ,用正余弦定理解答.具体过程略)(18)(本小题满分12分)解:(Ⅰ)E 为1BC 中点. ························· 2分证法一:取BC 中点F ,连接EF OF ,. ················ 3分 所以可得1//,//BB EF AB OF ,所以面//OEF 面1A AB . ········· 5分 所以//OE 平面1A AB . ························ 6分 证法二:因为11A A AC =,且O为AC 的中点,所以1AO AC ⊥.又由题意可知, 平面11AAC C ⊥平面ABC ,交线为AC , 且1A O ⊂平面11AA C C ,所以1A O ⊥平面ABC . 以O为原点,1,,OB OC OA 所在直线分别 为x ,y ,z 轴建立空间直角坐标系.…………1分由题意可知,112,A A AC AC ===又,AB BC AB BC =⊥1,1,2OB AC ∴==所以得:11(0,0,0),(0,1,0),(0,1,0),(1,0,0)O A A C C B -则有:11(0,1,3),(0,1,3),(1,1,0)A C AA AB =-==. ············· 2分 设平面1AA B 的一个法向量为(,,)x y z =n ,则有10000AA y x y AB ⎧⎧⋅==⎪⎪⇔⎨⎨+=⎪⋅=⎪⎩⎩n n ,令1y =,得1,x z =-=1所以(1,1,=-n . ························4分 设0001(,,),,E x y z BE BC λ==即000(1,,)(x y z λ-=-,得00012x y z λλ⎧=-⎪=⎨⎪=⎩所以(1,2),E λλ=-得(1,2),OE λλ=-由已知//OE 平面1A AB , 得=0OE ⋅n , 即120,λλλ-++-=得12λ=. 即存在这样的点E ,E 为1BC 的中点. ················· 6分 (Ⅱ)由法二,已知)0,2,0(),3,0,1(111=-=C A A ,设面11BC A 的法向量为),,(c b a=,则00111==C A A ⎩⎨⎧==-⇔0203b c a ,令3=c )3,0,3(. ···················8分 所以cos 371213⋅--=772. ··········· 10分由图可得二面角11A A B C --的大小为arccos(. ·········· 12分 (19)(本小题满分12分) 解:(Ⅰ)>. ······························ 2分 (Ⅱ)甲班有4人及格,乙班有5人及格.事件“从两班10名同学中各抽取一人,已知有人及格”记作A , 事件“从两班10名同学中各抽取一人,乙班同学不及格”记作B ,则7210030110020)()()|(=-==A P B A P A B P . ················ 6分(Ⅲ)X 取值为0,1,2,3152)0(2102511016=⋅==C C C C X P ;4519)1(2102511014210151511016=⋅+⋅==C C C C C C C C C X P ;4516)2(2101515110142102511016=⋅+⋅==C C C C C C C C C X P ;454)3(2102511014=⋅==C C C C X P . · 10分所以X 的分布列为所以545)(==X E . (12)分(20)(本小题满分12分)解:(Ⅰ)由题意知2c e a ==, 所以22222212c a b e a a -===. 即222a b =. ···························· 2分 又因为1b ==,所以22a =,21b =. 故椭圆C 的方程为1222=+y x . ··················· 4分 (Ⅱ)由题意知直线AB 的斜率存在.设AB :(2)y k x =-,11(,)A x y ,22(,)B x y ,(,)P x y ,由22(2),1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=.422644(21)(82)0k k k ∆=-+->,212k <. ··············· 6分 2122812k x x k +=+,21228212k x x k-=+. ∵t =+,∴1212(,)(,)x x y y t x y ++=,21228(12)x x k x t t k +==+, 1212214[()4](12)y y ky k x x k t t t k +-==+-=+. ∵点P 在椭圆上,∴222222222(8)(4)22(12)(12)k k t k t k -+=++, ∴22216(12)k t k =+. ························· 8分-<312x -<,∴22121220(1)[()4]9k x x x x ++-<∴422222648220(1)[4](12)129k k k k k -+-<++, ∴22(41)(1413)0k k -+>,∴214k >. ················ 10分 ∴21142k <<,∵22216(12)k t k =+,∴222216881212k t k k ==-++,∴2t -<<2t <<, ∴实数t 取值范围为)2,362()362,2( --. ·············· 12分 (注意:可设直线方程为2-=x my ,但需要讨论0m =或0m ≠两种情况)(21)(本小题满分12分)解:(Ⅰ)证明:假设存在,使得,且0000),(,x x b a x x ≠'∈' )()()(0x f a b a f b f '=-- ,)'()()(0x f ab a f b f '=-- ,即)()(00x f x f ''=' . · 1分 ∵)()(1)(x f x g m e e x f x x '=-+=',记,∴],[)(,0)1()(2b a x f e e x g x x是'>+='上的单调增函数(或者通过复合函数单调性说明)('x f 的单调性). ······· 3分 ∴0000x x x x ≠''=,这与矛盾,即0x 是唯一的. ············· 4分(Ⅱ) 1212()()(),22x x f x f x f ++<原因如下: (法一)设,,2121x x R x x <∈,且 则1212121221212()()2()ln(1)ln(1)2[ln(1)]22x x x x x x x x f x f x f e e x x e ++++-=+++---+- 121222ln(1)(1)ln(1)x x x x e e e +=++-+121212122ln(1)ln(12)x x x x x x x x e e ee e +++=+++-++. ············· 5分 ∵2212121212122,0,0x x x x x x x x e e e e e x x ee +=>+∴≠>>,且. ······ 6分 ∴1+21212111221x x x x x x x x e e e e e +++++>++,121212121212121222ln(1)ln(12),ln(1)ln(12)0.x x x x x x x x x x x x x x x x e e e e e e e e ee ++++++∴+++>++∴+++-++> 12121212()()()()2(), ()222x x x x f x f x f x f x f f +++∴+>∴<. ······ 8分 (法二)设2)()()2()(22x f x f x x f x F +-+=,则2)(')2('21)('2x f x x f x F -+=. 由(Ⅰ)知)('x f 单调增.所以当2x x >即x x x <+22时,有02)(')2('21)('2<-+=x f x x f x F 所以2x x >时,)(x F 单调减. ···················· 5分 当2x x <即x x x >+22时,有02)(')2('21)('2>-+=x f x x f x F 所以2x x <时,)(x F 单调增. ···················· 6分 所以0)()(2=<x F x F ,所以2)()()2(2121x f x f x x f +<+. ······· 8分 (Ⅲ)证明:设321332211),(),,(),,(x x x y x C y x B y x A <<,且,因为1≥m ∵R x x f e m m e e x f x x x ∈∴<+--=-+='是,)(01111)(上的单调减函数. · 9分 ∴123()()()f x f x f x >>.∵)),()(,()),()(,(23232121x f x f x x x f x f x x --=--= ∴))()())(()(())((23212321x f x f x f x f x x x x --+--=⋅. ··· 10分 ∵,0)()(,0)()(,0,023212321<->->-<-x f x f x f x f x x x x ∴B B BC BA ∠<∴<⋅,0cos ,0为钝角. 故△ABC 为钝角三角形. ···· 12分(22)(本小题满分10分)选修4-1:几何证明选讲证明:(Ⅰ)连结BC , AB 是直径,∴ 90=∠ACB ,∴90ACB AGC ∠=∠=. …2分GC 切圆O 于C ,∴GCA ABC ∠=∠. …4分 ∴BAC CAG ∠=∠. …………………………5分(Ⅱ)连结CF , EC 切圆O 于C ,∴AFC ACE ∠=∠. ……………………………6分又,CAG BAC ∠=∠∴ACF ∆∽AEC ∆. …8分 ∴AF AE AC ACAF AE AC ⋅=∴=2,. …………10分(23)(本小题满分10分)选修4—4:坐标系与参数方程解:曲线⎩⎨⎧==αsin y αcos x 4(α为参数)上的每一点纵坐标不变,横坐标变为原来的一半得到⎩⎨⎧==αy αx sin cos 2, ················ 1分然后整个图象向右平移1个单位得到⎩⎨⎧=+=αy αx sin 1cos 2,………………………………2分 最后横坐标不变,纵坐标变为原来的2倍得到⎩⎨⎧=+=αy αx sin 21cos 2, ······· 3分 所以1C 为4)1(22=+-y x , ······················ 4分 又2C 为θρsin 4=,即y y x 422=+, ················· 5分 所以1C 和2C 公共弦所在直线为0342=+-y x , ·············· 7分 所以)0,1(到0342=+-y x 距离为25, 所以公共弦长为114542=-. ··················· 10分(24)(本小题满分10分)选修4-5:不等式选讲 解:原式等价于|212-+-≥-++|x ||x |a|b||a b||a ,设t ab =, 则原式变为|2||1||12||1|-+-≥-++x x t t 对任意t 恒成立. ······· 2分因为⎪⎪⎪⎩⎪⎪⎪⎨⎧-≤-<<-+-≥=-++132112213121t ,t t ,t t ,t |t ||t |,最小值为21=t 时取到,为23. ·· 6分 所以有23≥=-+-21x x ⎪⎩⎪⎨⎧≤-≥-1232<<11232x,x ,x ,,x x 解得]49,43[x ∈. ········ 10分。
2017年沈阳市高中三年级教学质量监测(二)数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 三、只给整数分数,选择题和填空题不给中间分. 一、选择题(本大题共12小题,每小题5分,共60分)1. B2. D3. A4. D5.C6.B7. D8. A9. C 10. A 11. A 12. C简答与提示:1. 【命题意图】本题考查复数的共轭复数及复数运算.【试题解析】B (12)(12)5z z i i ⋅=+-=. 故选B.2. 【命题意图】本题考查集合运算.【试题解析】D 由{|13},{|0,A x x B x x =-<<=<或1}x >,故{|10,A B xx =-<< 或13}x <<. 故选D.3. 【命题意图】本题考查祖暅原理及简易逻辑等知识.【试题解析】A 根据祖暅原理容易判断q ⌝是p ⌝的充分不必要条件,再利用命题的等价性, 故p 是q 的充分不必要条件. 故选A. 4. 【命题意图】本题考查抛物线的相关知识.【试题解析】D 抛物线22y x =上的点到焦点的最小距离是2p ,即18. 故选D.5. 【命题意图】本题主要考查等差数列.【试题解析】 C {}n a 是以2为公差的等差数列,12627,||||||n a n a a a =-+++53113518=+++++=. 故选C.6. 【命题意图】本题主要考查线性规划问题.【试题解析】B 不等式组所表示的平面区域位于直线03=-+y x 的上方区域和直线10x y -+=的上方区域,根据目标函数的几何意义确定4≤z . 故选B.7. 【命题意图】本题考查三视图.【试题解析】D 四棱锥的体积为. 382431=⨯⨯=V . 故选D. 8. 【命题意图】本题考查概率相关问题.【试题解析】A 由已知1151(),4216nn -≥≥. 故选A. 9. 【命题意图】本题主要考查三角函数的相关知识.【试题解析】C令26t x π=+,从而7[,]66t ππ∈,由于方程有两个解,所以12122()3t t x x ππ+=++=,进而123x x π+=. 故选C.10. 【命题意图】本题主要考查程序框图.【试题解析】A 第一次执行循环体有,33,,1,||0.522m b a a b ===-=;第二次执行循环 体有,535,,,||0.25424m b a a b ===-=;第三次执行循环体有, 11311,,,||0.125828m b a a b d ===-=<. 故选A.11. 【命题意图】本题考查平面向量的相关知识.【试题解析】A 由已知22(3,3),||(3)(3)OC m n m n OC m n m n =+-=++-2210m n =+,由0,0,12m n m n >>≤+≤,有22222m n ≤+<,则5||210OC ≤<. 故选A.12. 【命题意图】本题是考查函数的应用.【试题解析】C ①当2m =时显然成立;②当2m >时,2()[1,1]3m f x m -∈+-,只要 22(1)13m m -+>-即可,有25m <<,;③当2m <时,2()[1,1]3m f x m -∈-+,只要 21213m m -+<-即可,有725m <<. 故选C.二、填空题(本大题共4小题,每小题5分,共20分)13. 4814. x y =15. 30 16.233简答与提示:13. 【命题意图】本题考查排列组合相关知识.【试题解析】甲乙二人的票要连号,故424248A A =. 14. 【命题意图】本题考查导数的几何意义.【试题解析】()(sin cos ),(0)1,xf x e x x f ''=+=切线方程为x y =. 15. 【命题意图】本题考查等比数列.【试题解析】由条件可求得12,2,q a ==所以430S =.16. 【命题意图】本题考查双曲线问题.【试题解析】法一:由||1||2AF BF =可知,||1||2OA OB =,则Rt OAB ∆中,3AOB π∠=,渐近线OA 的斜率3tan 63b k a π===,即离心率2231()3b e a =+=. 法二:设过左焦点F 作x a b y -=的垂线方程为)(c x bay +=联立⎪⎩⎪⎨⎧-=+=x a b y c x b a y )(,解得,c ab y A =联立⎪⎩⎪⎨⎧=+=x a b y c x b a y )(,解得,22a b abc y B -= 又||1||2AF BF = A B y y 2-=∴ 223a b =∴所以离心率2231()3be a=+=. 三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数性质及正弦定理等. 【试题解析】(Ⅰ)(3,1),(3cos ,1sin )OP QP x x ==--, (2分)()33cos 1sin 42sin()3f x x x x π=-+-=-+, (4分))(x f 的周期为π2. (5分)(Ⅱ)因为()4f A =,所以23A π=, (6分)又因为3BC =,由正弦定理,23sin ,23sin AC B AB C ==, (8分)所以三角形周长为323sin 23sin 323sin()3B C B π++=++ (10分)因为03B π<<,所以3sin()(,1]32B π+∈, 所以三角形周长最大值为323+. (12分)18. (本小题满分12分)【命题意图】本小题主要考查学生对概率统计知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】(Ⅰ)解:女性用户和男性用户的频率分布表分别如下左、右图:(3分)由图可得女性用户的波动小,男性用户的波动大. (4分)(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于 90分的人数为4,从6人中任取3人,记评分小于90分的人数为X ,则X 取值为1,2,3,12423641(1)205C C P X C ====;214236123(2)205C C P X C ====; 评分频率组距100908070600.0350.0250.020.0150.010.0050.030.04O 50评分频率组距100908070600.0350.0250.020.0150.010.0050.030.04O 5032423641(3)205C C P X C ====. (9分)所以X 的分布列为X1 2 3 P1535151632555EX =++=.(12分)19. (本小题满分12分)【命题意图】本题以四棱锥为载体,考查直线与平面垂直,以及二面角问题等. 【试题解析】(Ⅰ)⊥PA 平面ABCD ,⊂AB 平面ABCD ,AB PA ⊥∴,平面ABCD 为矩形,AD AB ⊥∴ , A AD PA = ,⊥∴AB 平面PAD , (2分)⊂PD 平面PAD , PD AB ⊥∴, AD PA = , E 为PD 中点⊥∴=⊥∴PD A AB AE AE PD ,平面ADE (4分) (Ⅱ)以A 为原点,以,,AB AD AP 为,,x y z 轴正方向,建立空间直角坐标系A BDP -,令||2AB =,则(0,0,0)A ,(2,0,0)B ,(0,0,2)P ,(2,2,0)C ,(0,1,1)E ,(1,0,0)F ,(1,0,2)PF =-,(2,2,2)PM λλλ=-,(2,2,22)M λλλ- (6分)设平面PFM 的法向量111(,,)m x y z =,=0=0m PF m PM ⎧⋅⎪⎨⋅⎪⎩,即202220x z x y z λλλ-+=⎧⎨+-=⎩,(2,1,1)m =- (8分)设平面BFM 的法向量222(,,)n x y z =,=0=0n BF n FM ⎧⋅⎪⎨⋅⎪⎩,即()()0212220x x y z λλλ=⎧⎪⎨-++-=⎪⎩,(0,1,)n λλ=- (10分) ()2213|cos ,|3||||61m nm n m n λλλλ⋅-+<>===+-,解得12λ=. (12分)20. (本小题满分12分)【命题意图】本小题考查椭圆的标准方程及直线与椭圆的的位置关系,考查学生的逻辑思维 能力和运算求解能力.【试题解析】(Ⅰ)由已知222=a ,2=a ,记点)(0,0y x P ,1PA OM k k = ,2202000000122ax ya x y a x y k k k k PA PA M PA -=-⨯+=⨯=⨯∴, (2分) 又)(0,0y x P 在椭圆上,故1220220=+by a x ,212202-=-=⨯∴a b k k M PA ,2122=∴a b ,∴12=b ,∴椭圆的方程为1222=+y x . (4分)(Ⅱ)设直线)1(:+=x k y l ,联立直线与椭圆方程⎪⎩⎪⎨⎧=++=12)1(22y x x k y 得0224)12(2222=-+++k x k x k ,记),(),,(2211y x B y x A由韦达定理可得⎪⎪⎩⎪⎪⎨⎧+-=⨯+-=+122212422212221k k x x k k x x ,可得122)2(22121+=++=+k kx x k y y , (6分) 故AB 中点)12,122(222++-k kk k Q , QN 直线方程:121)122(1122222+--=++-=+-k k x k k k x k k ky (8分) )0,12(22+-∴k k N ,已知条件得:<-4101222<+-k k ,∴ 1202<<k , (10分) )1211(212122112224)124(12222222222++=+++=+--+-+=∴k k k k k k k k kAB , 1121212<+<k,)22,223(∈∴AB . ( 12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函 数的单调性等,考查学生解决问题的综合能力.【试题解析】(Ⅰ)21ln ()xf x x -'=, (0,)x e ∈时,()0f x '>,()f x 单调递增;(,)x e ∈+∞时,()0f x '<,()f x 单调递减. 当x e =时,()f x 取极大值为1e,无极小值. (3分)(Ⅱ)要证)()(x e f x e f ->+,即证:xe x e x e x e -->++)ln()ln(,只需证明:)ln()()ln()(x e x e x e x e -+>+-.(5分)设)ln()()ln()()(x e x e x e x e x F -+-+-=,222222222222()4()l n ()[2l n ()]0e x x F x e x e xe xe x+'=--=--+>--, (7分)0)0()(=>∴F x F .故)ln()()ln()(x e x e x e x e -+>+-,即)()(x e f x e f ->+. (8分) (III )不妨设21x x <,由(Ⅰ)知210x e x <<<,e x e <-<∴10,由(Ⅱ)得)()()]([)]([2111xf x f x e e f x e e f ==-->-+, (10分) 又e x e >-12,e x >2,且)(x f 在),(+∞e 上单调递减, 122e x x ∴-<,即e x x 221>+,e x x x >+=∴2210,0)(0<'∴x f . (12分) 22. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化.【试题解析】 (I) 由221:40,C x y x +-=:230l x y +-=.(5分)(II )(,22),4P π直角坐标为(2,2),1(2cos ,sin ),(1cos ,1sin )2Q M αααα++, M 到l 的距离|1cos 2sin 3|10|sin()|545d ααπα+++-==+,从而最大值为105. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】(I)因为2b a -<,所以3,()|||2|=,23,2x a b x a b f x x a x b x a b a x b x a b x ⎧⎪--+<-⎪⎪=++--++-≤<⎨⎪⎪+-≥⎪⎩,显然()f x 在(,]2b -∞上单调递减,()f x 在[,)2b+∞上单调递增,所以()f x 的最小值为()22b b f a =+,所以12ba +=,22ab +=. (5分)(II)因为2a b tab +≥恒成立,所以2a bt ab+≥恒成立, 212121122()(2)(14)22a b a b a b ab b a b a b a +=+=++=+++1229(142)22a b b a ≥++⋅= 当23a b ==时,2a b ab +取得最小值92,所以92t ≥,即实数t 的最大值为92. (10分)。
2017年辽宁省沈阳市高考数学模拟试卷(理科)一、选择题(共12小题,每小题5分,共计60分)1.全集U={1,2,3,4,5,6},集合A={x|x2﹣3x+2=0},B={x|x=2a,a∈A},则集合∁U(A ∪B)的子集个数为()A.1 B.3 C.8 D.42.已知复数z=﹣2+i,则复数的模为()A.1 B.C.D.23.已知点A(2,0),B(3,2),向量,若,则为()A.B.C. D.44.执行如图的程序框图(N∈N*),那么输出的p是()A.B.C.D.5.下列说法正确的个数是()①若f(x)=+a为奇函数,则a=;②“在△ABC中,若sinA>sinB,则A>B”的逆命题是假命题;③“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件;④命题“∀x∈R,x3﹣x2+1≤0”的否定是“∃x0∈R,x03﹣x02+1>0”.A.0 B.1 C.2 D.36.若(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2+…+a n(x﹣1)n,且a0+a1+…+a n=243,则(n﹣x)n 展开式的二次项系数和为()A.16 B.32 C.64 D.10247.设等比数列{a n}的公比为q,前n项和为S n,则“|q|=1”是“S6=3S2”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知焦点为F的抛物线y2=2px(p>0)上有一点,以A为圆心,|AF|为半径的圆被y轴截得的弦长为,则m=()A.B.C.D.9.函数与的图象关于直线x=a对称,则a可能是()A.B.C.D.10.设正实数a,b,c分别满足2a2+a=1,blog2b=1,clog5c=1,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.a>c>b11.已知实数x,y满足,若目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,则实数m的取值范围是()A. B. C. D.12.过双曲线x2﹣=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x﹣4)2+y2=1作切线,切点分别为M,N,则|PM|2﹣|PN|2的最小值为()A.10 B.13 C.16 D.19二、填空题(共4小题,每小题5分,共计20分)13.等差数列{a n},{b n}的前n项和分别为S n,T n,且,则= .14.函数f(x)=x3﹣x2+x+1在点(1,2)处的切线与函数g(x)=x2围成的图形的面积等于.15.一个几何体的三视图如图所示,则这个几何体的体积与其外接球体积之比为16.已知O是△ABC外接圆的圆心,已知△ABC外接圆半径为2,若,则边长AB= .三、解答题(共6题,总计70分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,满足.(Ⅰ)求∠C的大小;(Ⅱ)求sin2A+sin2B的取值范围.18.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区2016年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)(Ⅰ)从这15天的数据中任取一天,求这天空气质量达到一级的概率;(Ⅱ)从这15天的数据中任取3天的数据,记ξ表示其中空气质量达到一级的天数,求ξ的分布列;(Ⅲ)以这15天的PM2.5的日均值来估计一年的空气质量情况,(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.19.如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=AA1=1,D是棱AA1上的点,DC1⊥BD (Ⅰ)求证:D为AA1中点;(Ⅱ)求直线BC1与平面BDC所成角正弦值大小;(Ⅲ)在△ABC边界及内部是否存在点M,使得B1M⊥面BDC,存在,说明M位置,不存在,说明理由.20.设椭圆C: =1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2倍.(Ⅰ)求C的离心率;(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得?若存在,求出点M的坐标;若不存在,说明理由.21.已知函数f(x)=(x﹣2)lnx﹣ax+1.(1)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;(2)若存在唯一整数x0,使得f(x0)<0成立,求实数a的取值范围.22.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.23.已知a>0,b>0,c>0,函数f(x)=|x+a|﹣|x﹣b|+c的最大值为10.(1)求a+b+c的值;(2)求(a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此时a、b、c的值.2017年辽宁省沈阳市铁路实验中学高考数学模拟试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,共计60分)1.全集U={1,2,3,4,5,6},集合A={x|x2﹣3x+2=0},B={x|x=2a,a∈A},则集合∁U(A ∪B)的子集个数为()A.1 B.3 C.8 D.4【考点】1H:交、并、补集的混合运算.【分析】根据题意,分析可得集合A、B,由集合并集的定义可得A∪B,进而由补集的定义可得∁U(A∪B),分析集合∁U(A∪B)元素数目,由集合子集与元素数目的关系分析可得答案.【解答】解:根据题意,A={x|x2﹣3x+2=0}={1,2},B={x|x=2a,a∈A}={2,4},则A∪B={1,2,4},∁U(A∪B)={3,5,6},有3个元素,其子集个数为23=8,故选C.2.已知复数z=﹣2+i,则复数的模为()A.1 B.C.D.2【考点】A5:复数代数形式的乘除运算.【分析】把z=﹣2+i代入,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解答】解:∵z=﹣2+i,∴,则复数的模,故选:B.3.已知点A(2,0),B(3,2),向量,若,则为()A.B.C.D.4【考点】9R:平面向量数量积的运算.【分析】根据向量的数量积求出λ的值,再求其模即可.【解答】解:,,故选A.4.执行如图的程序框图(N∈N*),那么输出的p是()A.B.C.D.【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量p的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体,k=1,p=A11,满足继续循环的条件,k=2;第二次执行循环体,k=2,p=A22,满足继续循环的条件,k=3;第三次执行循环体,k=3,p=A33,满足继续循环的条件,k=4;…第N次执行循环体,k=N,p=A N N,满足继续循环的条件,k=N+1;第N+1次执行循环体,k=N+1,p=A N+1N+1,不满足继续循环的条件,故输出的p值为A N+1N+1,故选:C5.下列说法正确的个数是()①若f(x)=+a为奇函数,则a=;②“在△ABC中,若sinA>sinB,则A>B”的逆命题是假命题;③“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件;④命题“∀x∈R,x3﹣x2+1≤0”的否定是“∃x0∈R,x03﹣x02+1>0”.A.0 B.1 C.2 D.3【考点】2K:命题的真假判断与应用.【分析】利用函数的奇偶性判断①的正误;利用三角形中正弦定理判断②的正误,利用充要条件判断③的正误,命题的否定判断④的正误.【解答】解:对于①,若f(x)=+a为奇函数,则f(0)=0,解得a=﹣,所以①不正确;对于②,“在△ABC中,若sinA>sinB,由正弦定理可得a>b,则A>B”,的逆命题是真命题;所以②不正确;对于③,“三个数a,b,c成等比数列”则b2=ac,∴b=±,若a=b=c=0,满足b=,但三个数a,b,c成等比数列不成立,∴“三个数a,b,c成等比数列”是“b=”的既不充分也不必要条件,所以③正确.对于④,命题“∀x∈R,x3﹣x2+1≤0”的否定是“∃x0∈R,x03﹣x02+1>0”.满足命题的否定形式,所以④正确.故选:C.6.若(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2+…+a n(x﹣1)n,且a0+a1+…+a n=243,则(n﹣x)n展开式的二次项系数和为()A.16 B.32 C.64 D.1024【考点】DC:二项式定理的应用.【分析】令x=2,可得a0+a1+…+a n=3n,再根据a0+a1+…+a n=243,求得n=5,可得(n﹣x)n展开式的二次项系数和.【解答】解:∵(x+1)n =n=a0+a1(x﹣1)+a2(x﹣1)2+…+a n(x﹣1)n,令x=2,可得a0+a1+…+a n=3n,再根据 a0+a1+…+a n =243,可得3n=243,求得n=5,故(n﹣x)n=(5﹣x)5展的开式的二次项系数和为2n=25=32,故选:B.7.设等比数列{a n}的公比为q,前n项和为S n,则“|q|=1”是“S6=3S2”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据等比数列的前n项和为S n.结合充分条件和必要条件的定义进行判断.【解答】解:若q=1时,S6=6a1=3S2=3•2a1=6a1,q=﹣1时,S6=3S2=0,符合题意,是充分条件;反之也成立,故“|q|=1”是“S6=3S2”的充要条件,故选:C.8.已知焦点为F的抛物线y2=2px(p>0)上有一点,以A为圆心,|AF|为半径的圆被y轴截得的弦长为,则m=()A.B.C.D.【考点】K8:抛物线的简单性质.【分析】运用点满足抛物线的方程可得p(由m表示),运用抛物线的定义可得|AF|,即圆的半径,运用圆的弦长公式,解方程可得m的值.【解答】解:由在抛物线y2=2px上,∴2pm=8,∴,∴抛物线的焦点,即,准线方程为x=﹣,由抛物线的定义可知,即圆A 的半径.∵A 到y 轴的距离d=m ,∴,即,解得,故选D .9.函数与的图象关于直线x=a 对称,则a 可能是( )A .B .C .D .【考点】HB :余弦函数的对称性.【分析】根据函数关于x=a 的对称函数为,利用诱导公式将其化为余弦表达式,根据它与一样,求得a 的值.【解答】解:由题意,设两个函数关于x=a 对称,则函数关于x=a 的对称函数为,利用诱导公式将其化为余弦表达式为,令,则.故选:A .10.设正实数a,b,c分别满足2a2+a=1,blog2b=1,clog5c=1,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.a>c>b【考点】4H:对数的运算性质.【分析】令f(x)=2x2+x﹣1,则f(x)=﹣在x>0时单调递增,即可得出a∈(0,1),在同一坐标系中作出的图象,由图象得1<b<c,即可得出大小关系.【解答】解:令f(x)=2x2+x﹣1,则f(x)=﹣在x>0时单调递增,且f(0)•f(1)=﹣1×2=﹣2<0,即a∈(0,1),在同一坐标系中作出的图象,由图象,得1<b<c,即c>b>a;故选:C.11.已知实数x,y满足,若目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,则实数m的取值范围是()A. B. C. D.【考点】7D:简单线性规划的应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,由z=﹣mx+y的最大值为﹣2m+10,即当目标函数经过点(2,10)时,取得最大,当经过点(2,﹣2)时,取得最小值,利用数形结合确定m的取值范围.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由目标函数z=﹣mx+y得y=mx+z,则直线的截距最大,z最大,直线的截距最小,z最小.∵目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,∴当目标函数经过点(2,10)时,取得最大,当经过点(2,﹣2)时,取得最小值,∴目标函数z=﹣mx+y的目标函数的斜率m满足比x+y=0的斜率大,比2x﹣y+6=0的斜率小,即﹣1≤m≤2,故选:A.12.过双曲线x2﹣=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x﹣4)2+y2=1作切线,切点分别为M,N,则|PM|2﹣|PN|2的最小值为()A.10 B.13 C.16 D.19【考点】KC:双曲线的简单性质.【分析】求得两圆的圆心和半径,设双曲线x2﹣=1的左右焦点为F1(﹣4,0),F2(4,0),连接PF1,PF2,F1M,F2N,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【解答】解:圆C1:(x+4)2+y2=4的圆心为(﹣4,0),半径为r1=2;圆C2:(x﹣4)2+y2=1的圆心为(4,0),半径为r2=1,设双曲线x2﹣=1的左右焦点为F1(﹣4,0),F2(4,0),连接PF1,PF2,F1M,F2N,可得|PM|2﹣|PN|2=(|PF1|2﹣r12)﹣(|PF2|2﹣r22)=(|PF1|2﹣4)﹣(|PF2|2﹣1)=|PF1|2﹣|PF2|2﹣3=(|PF1|﹣|PF2|)(|PF1|+|PF2|)﹣3=2a(|PF1|+|PF2|﹣3=2(|PF1|+|PF2|)﹣3≥2•2c﹣3=2•8﹣3=13.当且仅当P为右顶点时,取得等号,即最小值13.故选B.二、填空题(共4小题,每小题5分,共计20分)13.等差数列{a n},{b n}的前n项和分别为S n,T n,且,则= .【考点】8F:等差数列的性质.【分析】利用等差数列的前n项和把S n,T n与a7和b7建立关系可得答案.【解答】解:由等差数列的前n项和,可知:,可得:.同理:,可得:.那么:则=.故答案为:.14.函数f(x)=x3﹣x2+x+1在点(1,2)处的切线与函数g(x)=x2围成的图形的面积等于.【考点】6H:利用导数研究曲线上某点切线方程;6G:定积分在求面积中的应用.【分析】由题意利用导数可求得过点(1,2)处的切线方程,利用定积分即可求得切线与函数g(x)=x2围成的图形的面积.【解答】解:∵(1,2)为曲线f(x)=x3﹣x2+x+1上的点,设过点(1,2)处的切线的斜率为k,则k=f′(1)=(3x2﹣2x+1)|x=1=2,∴过点(1,2)处的切线方程为:y﹣2=2(x﹣1),即y=2x.∴y=2x与函数g(x)=x2围成的图形如图:由得二曲线交点A(2,4),又S△AOB=×2×4=4,g(x)=x2围与直线x=2,x轴围成的区域的面积S=x2dx==,∴y=2x与函数g(x)=x2围成的图形的面积为:S′=S△AOB﹣S=4﹣=.故答案为:.15.一个几何体的三视图如图所示,则这个几何体的体积与其外接球体积之比为【考点】L!:由三视图求面积、体积.【分析】由题意,得到几何体是两个相同的四棱锥对底的几何体,计算其体积以及外接球体积即可.【解答】解:由已知三视图得到几何体是两个底面边长为1的正方形的四棱锥对底放置的几何体,所以其几何体体积为,其外接球的半径为,所以体积为,因此体积之比为;故答案为:.16.已知O是△ABC外接圆的圆心,已知△ABC外接圆半径为2,若,则边长AB= 3 .【考点】9F:向量的线性运算性质及几何意义.【分析】由,得16R2+25R2+40R2cos∠AOB=36R2,即8cos ∠AOB=﹣1,由2∠ACB=∠AOB,得cosC=⇒sin∠ACB=由⇒AB=4sin∠ACB=3【解答】解:设△ABC的外接圆的半径为R,因为,所以,则16R2+25R2+40R2cos∠AOB=36R2,即8cos∠AOB=﹣1,解得:cos∠AOB=﹣.由2∠ACB=∠AOB,2cos2∠ACB﹣1=cos∠AOB=﹣,则cosC=⇒sin∠ACB=由⇒AB=4sin∠ACB=3故答案为:3三、解答题(共6题,总计70分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,满足.(Ⅰ)求∠C的大小;(Ⅱ)求sin2A+sin2B的取值范围.【考点】HP:正弦定理;HR:余弦定理.【分析】(Ⅰ)利用正弦定理将边化角,结合和与差的公式可得∠C的大小.(Ⅱ)降次后利用辅助角公式转化为三角函数,利用三角函数的有界限即可得取值范围.【解答】解:(Ⅰ)在△ABC中,∵,∴由正弦定理可得:,∴sinCcosB+sinBcosC+2sinAcosC=0,∴sinA+2sinAcosC=0,∵sinA≠0,∴,∵0<C<π.∴.(Ⅱ)∵,又∵,∴,∴,即.故得sin2A+sin2B的取值范围是[,).18.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区2016年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)(Ⅰ)从这15天的数据中任取一天,求这天空气质量达到一级的概率;(Ⅱ)从这15天的数据中任取3天的数据,记ξ表示其中空气质量达到一级的天数,求ξ的分布列;(Ⅲ)以这15天的PM2.5的日均值来估计一年的空气质量情况,(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.【考点】CG:离散型随机变量及其分布列;BA:茎叶图;CH:离散型随机变量的期望与方差.【分析】(Ⅰ)用频率估计概率,求出“从这15天的数据中任取一天,这天空气质量达到一级”的概率;(Ⅱ)依据条件,ξ服从超几何分布,ξ的可能值为0,1,2,3,且P(ξ=k)=,写出分布列;(Ⅲ)依题意知一年中每天空气质量达到一级的概率P,一年中空气质量达到一级的天数η,η~B,计算Eη即可.【解答】解:(Ⅰ)记“从这15天的数据中任取一天,这天空气质量达到一级”为事件A,则P(A)==;(Ⅱ)依据条件,ξ服从超几何分布,其中N=15,M=5,n=3,ξ的可能值为0,1,2,3,其分布列为:P(ξ=k)=,其中k=0,1,2,3;…(Ⅲ)依题意可知,一年中每天空气质量达到一级的概率为P==,一年中空气质量达到一级的天数为η,则η~B;∴Eη=360×=120(天),∴一年中平均有120天的空气质量达到一级.19.如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=AA1=1,D是棱AA1上的点,DC1⊥BD (Ⅰ)求证:D为AA1中点;(Ⅱ)求直线BC1与平面BDC所成角正弦值大小;(Ⅲ)在△ABC边界及内部是否存在点M,使得B1M⊥面BDC,存在,说明M位置,不存在,说明理由.【考点】MI:直线与平面所成的角;LW:直线与平面垂直的判定.【分析】(Ⅰ)根据题意以CA、CB、CC1所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能证明D为AA1的中点.(Ⅱ)求出面BDC的法向量,利用向量法能求出直线BC1与平面BDC所成角正弦值.(Ⅲ)设M(x,y,0),0≤x≤1,0≤y≤1,x+y≤1,利用向量法推导出在△ABC边界及内部是不存在点M,使得B1M⊥面BDC.【解答】证明:(Ⅰ)根据题意以CA、CB、CC1所在直线为x,y,z轴,建立空间直角坐标系,∴D(1,0,h),C1(0,0,2),B(0,1,0),B1(0,1,2),∴=(﹣1,0,2﹣h),=(1,﹣1,h),∴﹣1+h(2﹣h)=0,解得h=1,∴D为AA1的中点.(Ⅱ)=(0,﹣1,2),设面BDC的法向量=(x,y,z),则,设x=1,得=(1,0,﹣1),设直线BC1与平面BDC所成角为θ,则sinθ===.∴直线BC1与平面BDC所成角正弦值大小为.(Ⅲ)设M(x,y,0),0≤x≤1,0≤y≤1,x+y≤1,∴,∵B1M⊥面BDC,∴,∴,解得,∵x>1,∴在△ABC边界及内部是不存在点M,使得B1M⊥面BDC.20.设椭圆C: =1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2倍.(Ⅰ)求C的离心率;(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得?若存在,求出点M的坐标;若不存在,说明理由.【考点】K4:椭圆的简单性质.【分析】(Ⅰ)由椭圆的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,△PQF1的周长为短轴长的2倍,得到,由此能求出椭圆C的离心率.(Ⅱ)设椭圆方程为,直线的方程为y=x﹣c,代入椭圆方程得,由此利用韦达定理、椭圆性质、向量知识,结合已知条件能求出不存在点M,使成立.【解答】解:(Ⅰ)∵椭圆C: =1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,△PQF1的周长为短轴长的2倍,△PQF1的周长为4a…∴依题意知,即…∴C的离心率…(Ⅱ)设椭圆方程为,直线的方程为y=x﹣c,代入椭圆方程得…设P(x1,y1),Q(x2,y2),则,…设M(x0,y0),则①…由得…代入①得…因为,,所以②…而…从而②式不成立.故不存在点M,使成立…21.已知函数f(x)=(x﹣2)lnx﹣ax+1.(1)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;(2)若存在唯一整数x0,使得f(x0)<0成立,求实数a的取值范围.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为在(1,+∞)上恒成立即可,根据函数的单调性求出a的范围即可;(2)令g(x)=(x﹣2)lnx,x>0,h(x)=ax﹣1,根据函数的单调性结合函数的图象求出a的范围即可.【解答】解:(1)函数f(x)的定义域为(0,+∞),,要使f(x)在区间(1,+∞)上单调递增,只需f'(x)≥0,即在(1,+∞)上恒成立即可,易知在(1,+∞)上单调递增,所以只需a≤y min即可,易知当x=1时,y取最小值,,∴实数a的取值范围是(﹣∞,﹣1].(2)不等式f(x0)<0即(x0﹣2)lnx0<ax0﹣1,令g(x)=(x﹣2)lnx,x>0,h(x)=ax﹣1,则,g'(x)在(0,+∞)上单调递增,而g'(1)=﹣1<0,g'(2)=ln2>0,∴存在实数m∈(1,2),使得g'(m)=0,当x∈(1,m)时,g'(x)<0,g(x)在(1,m)上单调递减;当x∈(m,+∞)时,g'(x)>0,g(x)在(m,+∞)上单调递增,∴g(x)min=g(m).g(1)=g(2)=0,画出函数g(x)和h(x)的大致图象如下,h(x)的图象是过定点C(0,﹣1)的直线,由图可知若存在唯一整数x0,使得f(x0)<0成立,则需k BC<a≤min{k AC,k DC},而,∴k AC>k DC.∵,∴.于是实数a的取值范围是.22.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化.【分析】解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,联立即可解得.设(ρ2,θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.【解答】解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.23.已知a>0,b>0,c>0,函数f(x)=|x+a|﹣|x﹣b|+c的最大值为10.(1)求a+b+c的值;(2)求(a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此时a、b、c的值.【考点】RA:二维形式的柯西不等式;R4:绝对值三角不等式.【分析】(1)利用绝对值不等式,求出f(x)的最大值为a+b+c,即可求a+b+c的值;(2)利用柯西不等式,即可得出结论.【解答】解:(1)f(x)=|x+a|﹣|x﹣b|+c≤|b+a|+c,当且仅当x≥b时等号成立,∵a>0,b>0,∴f(x)的最大值为a+b+c.又已知f(x)的最大值为10,所以a+b+c=10.(2)由(1)知a+b+c=10,由柯西不等式得[(a﹣1)2+(b﹣2)2+(c﹣3)2](22+12+12)≥(a+b+c﹣6)2=16,即(a﹣1)2+(b﹣2)2+(c﹣3)2≥当且仅当(a﹣1)=b﹣2=c﹣3,即a=,b=,c=时等号成立.。
沈阳市数学高考理数二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)(2017·银川模拟) 若全集U=R,集合A={x|﹣1≤x<1},B={x|x≤0或x>2},则集合A∪∁UB=()A . {x|0<x<1}B . {x|﹣1≤x≤2}C . {x|﹣1<x<2}D . {x|0≤x≤1}2. (2分)(2017·衡阳模拟) 记复数z的共轭复数为,若(1﹣i)=2i(i为虚数单位),则复数z的模|z|=()A .B . 1C . 2D . 23. (2分)已知正△ABC的边长为1,且 = , = ,则| ﹣ |=()A .B . 3C .D . .14. (2分)已知,则的值是()A .B .C .D .5. (2分) (2017高一上·邢台期末) 对变量x,y有观测数据(xi , yi)(i=1,2,3,…,8),得散点图如图①所示,对变量u,v有观测数据(ui , vi)(i=1,2,3,…,8),得散点图如图②所示,由这两个散点图可以判断()A . 变量x与y正相关;u与v正相关B . 变量x与y正相关;u与v负相关C . 变量x与y负相关;u与v正相关D . 变量x与y负相关;u与v负相关6. (2分) (2019高二上·开封期中) 下列命题是真命题的是()A . ,B . ,C . ,D . ,7. (2分) (2018高一下·濮阳期末) 一程序框图如图所示,如果输出的函数值在区间上,那么输入的实数的取值范围是()A .B .C .D .8. (2分)(2018·大新模拟) 已知双曲线的渐近线为,则等于()A .B .C . 6D . 99. (2分)有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为()正视图侧视图俯视图A .B .C .D .10. (2分) (2016高一上·赣州期中) 若函数f(x)= ,则f(f())=()A . ﹣1B . 0C . 1D . 3二、填空题 (共5题;共5分)11. (1分) (2017高一上·沙坪坝期中) 若关于x的不等式的解集不是空集,则实数k的取值范围是________.12. (1分) (2018高一下·合肥期末) 如图,曲线把边长为4的正方形分成黑色部分和白色部分.在正方形内随机取一点,则此点取自黑色部分的概率是________.13. (1分)(2020·晋城模拟) 设满足约束条件,则的最小值为________.14. (1分)(2018·滨海模拟) 个男生和个女生排成一列,若男生甲与另外两个男同学都不相邻,则不同的排法共有________种(用数字作答).15. (1分) (2019高二下·安徽期中) 如图,有一矩形钢板ABCD缺损了一角(如图所示),边缘线OM上每一点到点D的距离都等于它到边AB的距离.工人师傅要将缺损的一角切割下来使剩余部分成一个五边形,若AB=1m,AD=0.5m,则五边形ABCEF的面积最大值为________m2.三、解答题 (共6题;共55分)16. (10分) (2020高二上·吉林期末) 在中,,,已知,是方程的两个根,且.(1)求角的大小;(2)求的长.17. (5分) (2017高一下·滨海期末) 已知数列{an}的首项a1=1,且an+1=2an+1(n∈N*)(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;(Ⅱ)设bn= ,求数列{bn}的前n项和Sn;(Ⅲ)在条件(Ⅱ)下对任意正整数n,不等式Sn+ ﹣1>(﹣1)n•a恒成立,求实数a的取值范围.18. (15分) (2019高二下·上海月考) 在三棱柱中,是正三角形,,点在底面上的射影恰好是中点,侧棱和底面成角.(1)求证:;(2)求二面角的大小;(3)求直线与平面所成角的大小.19. (5分) (2015高二下·黑龙江期中) 某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:周需求量n1819202122频数12331以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.20. (10分)(2019·长沙模拟) 设函数 .(1)求函数的极值点个数;(2)若,证明 .21. (10分) (2017高二下·濮阳期末) 过椭圆 =1的右焦点F作斜率k=﹣1的直线交椭圆于A,B 两点,且共线.(1)求椭圆的离心率;(2)当三角形AOB的面积S△AOB= 时,求椭圆的方程.参考答案一、选择题. (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共55分) 16-1、16-2、17-1、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、。
2017年辽宁省沈阳市高考数学二模试卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2} 3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.5.已知数列{a n}满足a n﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()+1A.9 B.15 C.18 D.306.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]7.某几何体的三视图如图所示,则其体积为()A.4 B.8 C.D.8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4 B.5 C.6 D.79.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.10.运行如图所示的程序框图,则输出结果为()A.B.C.D.11.已知向量,,(m>0,n>0),若m+n∈[1,2],则的取值范围是()A.B.C.D.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.(,6)B.(,6)C.(,5)D.(,5)二、填空题:本题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.18.(12分)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.20.(12分)已知F1,F2分别是长轴长为2的椭圆C: +=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.21.(12分)已知函数.(1)求f(x)的极值;(2)当0<x<e时,求证:f(e+x)>f(e﹣x);(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.[选修4-5:不等式选讲]23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.2017年辽宁省沈阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i【考点】复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴=|z|2=.故选:A.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2}【考点】交集及其运算.【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.故选:D.【点评】本题考查了解不等式与交集的运算问题,是基础题.3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由p⇒q,反之不成立.即可得出.【解答】解:由p⇒q,反之不成立.∴p是q的充分不必要条件.故选:A.【点评】本题考查了祖暅原理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.【考点】抛物线的简单性质.【分析】根据题意,设P到准线的距离为d,则有|PF|=d,将抛物线的方程为标准方程,求出其准线方程,分析可得d的最小值,即可得答案.【解答】解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=﹣,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.【点评】本题考查抛物线的几何性质,要先将抛物线的方程化为标准方程.5.已知数列{a n}满足a n﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()+1A.9 B.15 C.18 D.30【考点】数列的求和.【分析】利用等差数列的通项公式可得a n.及其数列{a n}的前n项和S n.令a n ≥0,解得n,分类讨论即可得出.﹣a n=2,a1=﹣5,∴数列{a n}是公差为2的等差数列.【解答】解:∵a n+1∴a n=﹣5+2(n﹣1)=2n﹣7.数列{a n}的前n项和S n==n2﹣6n.令a n=2n﹣7≥0,解得.∴n≤3时,|a n|=﹣a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.故选:C.【点评】本题考查了分类讨论方法、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]【考点】简单线性规划.【分析】画出满足约束条件的平面区域,求出可行域各角点的坐标,然后利用角点法,求出目标函数的最大值和最小值,即可得到目标函数的取值范围.【解答】解:满足约束条件的平面区域如下图所示:由图可知解得A(1,2)当x=1,y=2时,目标函数z=2x+y有最大值4.故目标函数z=2x+y的值域为(﹣∞,4]故选:B.【点评】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,利用图象分析目标函数的取值是解答本题的关键.7.某几何体的三视图如图所示,则其体积为()A.4 B.8 C.D.【考点】由三视图求面积、体积.【分析】通过三视图复原的几何体是四棱锥,结合三视图的数据,求出几何体的体积.【解答】解:由题意三视图可知,几何体是四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,所以几何体的体积是:=.故选D.【点评】本题是基础题,考查三视图复原几何体的体积的求法,考查计算能力,空间想象能力.8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4 B.5 C.6 D.7【考点】互斥事件的概率加法公式.【分析】由题意,1﹣≥,即可求出n的最小值.【解答】解:由题意,1﹣≥,∴n≥4,∴n的最小值为4,故选A.【点评】本题考查概率的计算,考查对立事件概率公式的运用,比较基础.9.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.【考点】正弦函数的对称性.【分析】由题意可得2x+∈[,],根据题意可得=,由此求得x1+x2 值.【解答】解:∵x∈[0,],∴2x+∈[,],方程在上有两个不相等的实数解x1,x2,∴=,则x1+x2=,故选:C.【点评】本题主要考查正弦函数的图象的对称性,属于基础题.10.运行如图所示的程序框图,则输出结果为()A.B.C.D.【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的a,b,m的值,当m=时,满足条件|a﹣b|<d,输出m的值为.【解答】解:输入a=1,b=2,m=,f(1)=﹣1<0,f(m)=f(>0,f(1)f(m)<0,a=1,b=,|1﹣|=>,m=,f(1)=﹣1,f(m)=f()<0,f(1)f(m)>0,a=,b=,|﹣|=>,m=,f(a)=f()<0,f(m)=f()<0,f(a)f(m)>0,a=,b=,|﹣|=<0.2,退出循环,输出m=,故选:A.【点评】本题主要考查了程序框图和算法的应用,准确执行循环得到a,b,S,k的值是解题的关键,属于基础题.11.已知向量,,(m>0,n>0),若m+n∈[1,2],则的取值范围是( )A .B .C .D .【考点】简单线性规划;简单线性规划的应用;平面向量数量积的运算.【分析】根据题意,由向量的坐标运算公式可得=(3m +n ,m ﹣3n ),再由向量模的计算公式可得=,可以令t=,将m +n ∈[1,2]的关系在直角坐标系表示出来,分析可得t=表示区域中任意一点与原点(0,0)的距离,进而可得t 的取值范围,又由=t ,分析可得答案.【解答】解:根据题意,向量,,=(3m +n ,m ﹣3n ),则==,令t=,则=t ,而m +n ∈[1,2],即1≤m +n ≤2,在直角坐标系表示如图,t=表示区域中任意一点与原点(0,0)的距离,分析可得:≤t <2,又由=t ,故≤<2;故选:B .【点评】本题考查简单线性规划问题,涉及向量的模的计算,关键是求出的表达式.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.(,6)B.(,6)C.(,5)D.(,5)【考点】三角函数的化简求值.【分析】当m=2时,f(a)=f(b)=f(c)=1,是等边三角形的三边长;当m>2时,只要2(1+)>m﹣1即可,当m<2时,只要1+<2(m﹣1)即可,由此能求出结果,综合可得结论.【解答】解:函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,当m=2时,f(x)==1,此时f(a)=f(b)=f(c)=1,是等边三角形的三边长,成立.当m>2时,f(x)∈[1+,m﹣1],只要2(1+)>m﹣1即可,解得2<m<5.当m<2时,f(x)∈[m﹣1,1+],只要1+<2(m﹣1)即可,解得<m<2,综上,实数m的取值范围(,5),故选:C.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意分类讨论思想的合理运用,属于中档题.二、填空题:本题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48种不同的分法(用数字作答).【考点】排列、组合的实际应用.【分析】甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,即可得出结论.【解答】解:甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,∴共有8×6=48种不同的分法.故答案为48.【点评】本题考查了分组分配的问题,关键是如何分组,属于基础题.14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是y=x.【考点】利用导数研究曲线上某点切线方程.【分析】先求出f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵f(x)=e x•sinx,f′(x)=e x(sinx+cosx),(2分)f′(0)=1,f(0)=0,∴函数f(x)的图象在点A(0,0)处的切线方程为y﹣0=1×(x﹣0),即y=x(4分).故答案为:y=x.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=30.【考点】等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.【考点】双曲线的简单性质.【分析】方法一、运用两渐近线的对称性和条件,可得A为BF的中点,由垂直平分线的性质和等腰三角形的性质,可得Rt△OAB中,∠AOB=,求得渐近线的斜率,运用离心率公式即可得到;方法二、设过左焦点F作的垂线方程为,联立渐近线方程,求得交点A,B的纵坐标,由条件可得A为BF的中点,进而得到a,b的关系,可得离心率.【解答】解法一:由,可知A为BF的中点,由条件可得,则Rt△OAB中,∠AOB=,渐近线OB的斜率k==tan=,即离心率e===.解法二:设过左焦点F作的垂线方程为联立,解得,,联立,解得,,又,∴y B=﹣2y A∴3b2=a2,所以离心率.故答案为:.【点评】本题考查双曲线的性质和应用,主要是离心率的求法,解题时要认真审题,仔细解答,注意向量共线的合理运用.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)(2017•沈阳二模)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f(x)的最小正周期;(Ⅱ)利用函数的解析式求解A,然后利用余弦定理求解即可,得到bc的范围,然后利用基本不等式求解最值.【解答】解:(Ⅰ)f(x)=•=(,1)•(﹣cosx,1﹣sinx)=﹣cosx﹣sinx+4=﹣2sin(x+)+4,f(x)的最小正周期T==π;(Ⅱ)∵f(A)=4,∴A=,又∵BC=3,∴9=(b+c)2﹣bc.∵bc≤,∴,∴b+c≤2,当且仅当b=c取等号,∴三角形周长最大值为3+2.【点评】本题考查向量的数量积以及两角和与差的三角函数,三角函数的周期,基本不等式以及余弦定理的应用,考查计算能力.18.(12分)(2017•沈阳二模)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)画出女性用户和男性用户的频率分布直方图,由图可得女性用户的波动小,男性用户的波动大;(Ⅱ)由分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,根据X的取值计算对应的概率,求出X的分布列和数学期望.【解答】解:(Ⅰ)对于女性用户,各小组的频率分别为:0.1,0.2,0.4,0.25,0.05,其相对应的小长方形的高为0.01,0.02,0.04,0.025,0.005,对于男性用户,各小组的频率分别为:0.15,0.25,0.30,0.20,0.10,其相对应的小长方形的高为0.015,0.025,0.03,0.02,0.01,直方图如图所示:,由直方图可以看出女性用户比男性用户评分的波动大.(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,则X取值为1,2,3,且P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为X的数学期望为EX=1×+2×+3×=2.【点评】本题考查了频率分布直方图以及概率的计算问题,也考查了离散型随机变量的分布列及数学期望的问题,是综合题.19.(12分)(2017•沈阳二模)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.【解答】解:(I)证明:∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB,又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE⊂平面ABE,AB⊂平面ABE,∴PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),,,,M (2λ,2λ,2﹣2λ)设平面PFM的法向量,,即,设平面BFM的法向量,,即,,解得.【点评】本题考查直线与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2017•沈阳二模)已知F1,F2分别是长轴长为2的椭圆C:+=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)利用椭圆Q的长轴长为2,求出a=,设P(x0,y0),通过直线PA与OM的斜率之积恒为,﹣.化简求出b,即可得到椭圆方程;(Ⅱ)将直线方程代入椭圆方程,由此利用韦达定理、中点坐标公式、直线方程、弦长公式,能求出线段AB长的取值范围.【解答】解:(Ⅰ)由题意可知2a=2,则a=,设P(x0,y0),∵直线PA与OM的斜率之积恒为﹣,∴×=﹣,∴+=1,∴b=1,椭圆C的方程;(Ⅱ)设直线l:y=k(x+1),A(x1,y1),B(x2,y2),联立直线与椭圆方程:,得:(2k2+1)x2+4k2x+2k2﹣2=0,则x1+x2=﹣,x1x2=,则y1+y2=k(x1+x2+2)=,∴AB中点Q(﹣,),QN直线方程为:y﹣=﹣(x+)=﹣x﹣,∴N(﹣,0),由已知得﹣<﹣<0,∴0<2k2<1,∴|AB|=•=•=•=(1+),∵<<12k2+1<1,∴|AB|∈(,2),线段AB长的取值范围(,2).【点评】本题考查椭圆方程、线段长的取值范围的求法,考查椭圆、直线与椭圆的位置关系的应用,考查推理论证能力、运算求解能力,考查转化化归思想,解题时要注意韦达定理、中点坐标公式、直线方程、弦长公式的合理运用,属于中档题.21.(12分)(2017•沈阳二模)已知函数.(1)求f(x)的极值;(2)当0<x<e时,求证:f(e+x)>f(e﹣x);(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的极值即可;(2)问题转化为证明(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e ﹣x)ln(e+x)﹣(e+x)ln(e﹣x),根据函数的单调性证明即可.【解答】解:(1)f′(x)=,f(x)的定义域是(0,+∞),x∈(0,e)时,f′(x)>0,f(x)单调递增;x∈(e,+∞)时,f'(x)<0,f(x)单调递减.当x=e时,f(x)取极大值为,无极小值.(2)要证f(e+x)>f(e﹣x),即证:,只需证明:(e﹣x)ln(e+x)>(e+x)ln(e﹣x).设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),,∴F(x)>F(0)=0,故(e﹣x)ln(e+x)>(e+x)ln(e﹣x),即f(e+x)>f(e﹣x),(3)证明:不妨设x1<x2,由(1)知0<x1<e<x2,∴0<e﹣x1<e,由(2)得f[e+(e﹣x1)]>f[e﹣(e﹣x1)]=f(x1)=f(x2),又2e﹣x1>e,x2>e,且f(x)在(e,+∞)上单调递减,∴2e﹣x1<x2,即x1+x2>2e,∴,∴f'(x0)<0.【点评】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,考查学生解决问题的综合能力.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•长春三模)已知在平面直角坐标系xOy中,以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程.直线l的参数方程为(t为参数),消去参数t可得普通方程.(2),直角坐标为(2,2),,利用点到直线的距离公式及其三角函数的单调性可得最大值.【解答】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程:.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y﹣3=0.(2),直角坐标为(2,2),,∴M到l的距离≤,从而最大值为.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.(2017•长春三模)已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(1)法一:根据绝对值的性质求出f(x)的最小值,得到x=时取等号,证明结论即可;法二:根据f(x)的分段函数的形式,求出f(x)的最小值,证明即可;(2)法一,二:问题转化为≥t恒成立,根据基本不等式的性质求出的最小值,从而求出t的范围即可;法三:根据二次函数的性质判断即可.【解答】解:(1)法一:f(x)=|x+a|+|2x﹣b|=|x+a|+|x﹣|+|x﹣|,∵|x+a|+|x﹣|≥|(x+a)﹣(x﹣)|=a+且|x﹣|≥0,∴f (x )≥a +,当x=时取等号,即f (x )的最小值为a +,∴a +=1,2a +b=2;法二:∵﹣a <,∴f (x )=|x +a |+|2x ﹣b |=,显然f (x )在(﹣∞,]上单调递减,f (x )在[,+∞)上单调递增,∴f (x )的最小值为f ()=a +,∴a +=1,2a +b=2.(2)方法一:∵a +2b ≥tab 恒成立,∴≥t 恒成立,=+=(+)(2a +b )•=(1+4++),当a=b=时,取得最小值,∴≥t ,即实数t 的最大值为; 方法二:∵a +2b ≥tab 恒成立,∴≥t 恒成立,t ≤=+恒成立,+=+≥=,∴≥t ,即实数t 的最大值为; 方法三:∵a +2b ≥tab 恒成立, ∴a +2(2﹣a )≥ta (2﹣a )恒成立, ∴2ta 2﹣(3+2t )a +4≥0恒成立, ∴(3+2t )2﹣326≤0,∴≤t ≤,实数t 的最大值为.【点评】本题考查了绝对值不等式问题,考查绝对值的性质以及二次函数的性质,考查转化思想,是一道中档题.。
2017年辽宁省沈阳市高考数学二模试卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2} 3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.5.已知数列{a n}满足a n﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()+1A.9 B.15 C.18 D.306.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]7.某几何体的三视图如图所示,则其体积为()A.4 B.8 C.D.8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4 B.5 C.6 D.79.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.10.运行如图所示的程序框图,则输出结果为()A.B.C.D.11.已知向量,,(m>0,n>0),若m+n∈[1,2],则的取值范围是()A.B.C.D.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.(,6)B.(,6)C.(,5)D.(,5)二、填空题:本题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.18.(12分)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.20.(12分)已知F1,F2分别是长轴长为2的椭圆C: +=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.21.(12分)已知函数.(1)求f(x)的极值;(2)当0<x<e时,求证:f(e+x)>f(e﹣x);(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.[选修4-5:不等式选讲]23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.2017年辽宁省沈阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i【考点】复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴=|z|2=.故选:A.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2}则A∩B=()A.{x|﹣2<x<2}B.{x|﹣2<x<3}C.{x|﹣1<x<3}D.{x|﹣1<x<2}【考点】交集及其运算.【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.故选:D.【点评】本题考查了解不等式与交集的运算问题,是基础题.3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由p⇒q,反之不成立.即可得出.【解答】解:由p⇒q,反之不成立.∴p是q的充分不必要条件.故选:A.【点评】本题考查了祖暅原理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.【考点】抛物线的简单性质.【分析】根据题意,设P到准线的距离为d,则有|PF|=d,将抛物线的方程为标准方程,求出其准线方程,分析可得d的最小值,即可得答案.【解答】解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=﹣,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.【点评】本题考查抛物线的几何性质,要先将抛物线的方程化为标准方程.5.已知数列{a n}满足a n﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()+1A.9 B.15 C.18 D.30【考点】数列的求和.【分析】利用等差数列的通项公式可得a n.及其数列{a n}的前n项和S n.令a n ≥0,解得n,分类讨论即可得出.﹣a n=2,a1=﹣5,∴数列{a n}是公差为2的等差数列.【解答】解:∵a n+1∴a n=﹣5+2(n﹣1)=2n﹣7.数列{a n}的前n项和S n==n2﹣6n.令a n=2n﹣7≥0,解得.∴n≤3时,|a n|=﹣a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.故选:C.【点评】本题考查了分类讨论方法、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞)B.(﹣∞,4] C.[4,+∞)D.[﹣2,2]【考点】简单线性规划.【分析】画出满足约束条件的平面区域,求出可行域各角点的坐标,然后利用角点法,求出目标函数的最大值和最小值,即可得到目标函数的取值范围.【解答】解:满足约束条件的平面区域如下图所示:由图可知解得A(1,2)当x=1,y=2时,目标函数z=2x+y有最大值4.故目标函数z=2x+y的值域为(﹣∞,4]故选:B.【点评】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,利用图象分析目标函数的取值是解答本题的关键.7.某几何体的三视图如图所示,则其体积为()A.4 B.8 C.D.【考点】由三视图求面积、体积.【分析】通过三视图复原的几何体是四棱锥,结合三视图的数据,求出几何体的体积.【解答】解:由题意三视图可知,几何体是四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,所以几何体的体积是:=.故选D.【点评】本题是基础题,考查三视图复原几何体的体积的求法,考查计算能力,空间想象能力.8.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4 B.5 C.6 D.7【考点】互斥事件的概率加法公式.【分析】由题意,1﹣≥,即可求出n的最小值.【解答】解:由题意,1﹣≥,∴n≥4,∴n的最小值为4,故选A.【点评】本题考查概率的计算,考查对立事件概率公式的运用,比较基础.9.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.【考点】正弦函数的对称性.【分析】由题意可得2x+∈[,],根据题意可得=,由此求得x1+x2 值.【解答】解:∵x∈[0,],∴2x+∈[,],方程在上有两个不相等的实数解x1,x2,∴=,则x1+x2=,故选:C.【点评】本题主要考查正弦函数的图象的对称性,属于基础题.10.运行如图所示的程序框图,则输出结果为()A.B.C.D.【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的a,b,m的值,当m=时,满足条件|a﹣b|<d,输出m的值为.【解答】解:输入a=1,b=2,m=,f(1)=﹣1<0,f(m)=f(>0,f(1)f(m)<0,a=1,b=,|1﹣|=>,m=,f(1)=﹣1,f(m)=f()<0,f(1)f(m)>0,a=,b=,|﹣|=>,m=,f(a)=f()<0,f(m)=f()<0,f(a)f(m)>0,a=,b=,|﹣|=<0.2,退出循环,输出m=,故选:A.【点评】本题主要考查了程序框图和算法的应用,准确执行循环得到a,b,S,k的值是解题的关键,属于基础题.11.已知向量,,(m>0,n>0),若m+n∈[1,2],则的取值范围是()A.B.C.D.【考点】简单线性规划;简单线性规划的应用;平面向量数量积的运算.【分析】根据题意,由向量的坐标运算公式可得=(3m+n,m﹣3n),再由向量模的计算公式可得=,可以令t=,将m+n∈[1,2]的关系在直角坐标系表示出来,分析可得t=表示区域中任意一点与原点(0,0)的距离,进而可得t的取值范围,又由=t,分析可得答案.【解答】解:根据题意,向量,,=(3m+n,m﹣3n),则==,令t=,则=t,而m+n∈[1,2],即1≤m+n≤2,在直角坐标系表示如图,t=表示区域中任意一点与原点(0,0)的距离,分析可得:≤t<2,又由=t,故≤<2;故选:B.【点评】本题考查简单线性规划问题,涉及向量的模的计算,关键是求出的表达式.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.(,6)B.(,6)C.(,5)D.(,5)【考点】三角函数的化简求值.【分析】当m=2时,f(a)=f(b)=f(c)=1,是等边三角形的三边长;当m>2时,只要2(1+)>m﹣1即可,当m<2时,只要1+<2(m﹣1)即可,由此能求出结果,综合可得结论.【解答】解:函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,当m=2时,f(x)==1,此时f(a)=f(b)=f(c)=1,是等边三角形的三边长,成立.当m>2时,f(x)∈[1+,m﹣1],只要2(1+)>m﹣1即可,解得2<m<5.当m<2时,f(x)∈[m﹣1,1+],只要1+<2(m﹣1)即可,解得<m<2,综上,实数m的取值范围(,5),故选:C.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意分类讨论思想的合理运用,属于中档题.二、填空题:本题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48种不同的分法(用数字作答).【考点】排列、组合的实际应用.【分析】甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,即可得出结论.【解答】解:甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,∴共有8×6=48种不同的分法.故答案为48.【点评】本题考查了分组分配的问题,关键是如何分组,属于基础题.14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是y=x.【考点】利用导数研究曲线上某点切线方程.【分析】先求出f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵f(x)=e x•sinx,f′(x)=e x(sinx+cosx),(2分)f′(0)=1,f(0)=0,∴函数f(x)的图象在点A(0,0)处的切线方程为y﹣0=1×(x﹣0),即y=x(4分).故答案为:y=x.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=30.【考点】等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.【考点】双曲线的简单性质.【分析】方法一、运用两渐近线的对称性和条件,可得A为BF的中点,由垂直平分线的性质和等腰三角形的性质,可得Rt△OAB中,∠AOB=,求得渐近线的斜率,运用离心率公式即可得到;方法二、设过左焦点F作的垂线方程为,联立渐近线方程,求得交点A,B的纵坐标,由条件可得A为BF的中点,进而得到a,b的关系,可得离心率.【解答】解法一:由,可知A为BF的中点,由条件可得,则Rt△OAB中,∠AOB=,渐近线OB的斜率k==tan=,即离心率e===.解法二:设过左焦点F作的垂线方程为联立,解得,,联立,解得,,又,∴y B=﹣2y A∴3b2=a2,所以离心率.故答案为:.【点评】本题考查双曲线的性质和应用,主要是离心率的求法,解题时要认真审题,仔细解答,注意向量共线的合理运用.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)(2017•沈阳二模)已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f(x)的最小正周期;(Ⅱ)利用函数的解析式求解A,然后利用余弦定理求解即可,得到bc的范围,然后利用基本不等式求解最值.【解答】解:(Ⅰ)f(x)=•=(,1)•(﹣cosx,1﹣sinx)=﹣cosx﹣sinx+4=﹣2sin(x+)+4,f(x)的最小正周期T==π;(Ⅱ)∵f(A)=4,∴A=,又∵BC=3,∴9=(b+c)2﹣bc.∵bc≤,∴,∴b+c≤2,当且仅当b=c取等号,∴三角形周长最大值为3+2.【点评】本题考查向量的数量积以及两角和与差的三角函数,三角函数的周期,基本不等式以及余弦定理的应用,考查计算能力.18.(12分)(2017•沈阳二模)某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)画出女性用户和男性用户的频率分布直方图,由图可得女性用户的波动小,男性用户的波动大;(Ⅱ)由分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,根据X的取值计算对应的概率,求出X的分布列和数学期望.【解答】解:(Ⅰ)对于女性用户,各小组的频率分别为:0.1,0.2,0.4,0.25,0.05,其相对应的小长方形的高为0.01,0.02,0.04,0.025,0.005,对于男性用户,各小组的频率分别为:0.15,0.25,0.30,0.20,0.10,其相对应的小长方形的高为0.015,0.025,0.03,0.02,0.01,直方图如图所示:,由直方图可以看出女性用户比男性用户评分的波动大.(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,则X取值为1,2,3,且P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为X的数学期望为EX=1×+2×+3×=2.【点评】本题考查了频率分布直方图以及概率的计算问题,也考查了离散型随机变量的分布列及数学期望的问题,是综合题.19.(12分)(2017•沈阳二模)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.【解答】解:(I)证明:∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB,又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE⊂平面ABE,AB⊂平面ABE,∴PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),,,,M (2λ,2λ,2﹣2λ)设平面PFM的法向量,,即,设平面BFM的法向量,,即,,解得.【点评】本题考查直线与平面垂直的判定定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.20.(12分)(2017•沈阳二模)已知F1,F2分别是长轴长为2的椭圆C:+=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)利用椭圆Q的长轴长为2,求出a=,设P(x0,y0),通过直线PA与OM的斜率之积恒为,﹣.化简求出b,即可得到椭圆方程;(Ⅱ)将直线方程代入椭圆方程,由此利用韦达定理、中点坐标公式、直线方程、弦长公式,能求出线段AB长的取值范围.【解答】解:(Ⅰ)由题意可知2a=2,则a=,设P(x0,y0),∵直线PA与OM的斜率之积恒为﹣,∴×=﹣,∴+=1,∴b=1,椭圆C的方程;(Ⅱ)设直线l:y=k(x+1),A(x1,y1),B(x2,y2),联立直线与椭圆方程:,得:(2k2+1)x2+4k2x+2k2﹣2=0,则x1+x2=﹣,x1x2=,则y1+y2=k(x1+x2+2)=,∴AB中点Q(﹣,),QN直线方程为:y﹣=﹣(x+)=﹣x﹣,∴N(﹣,0),由已知得﹣<﹣<0,∴0<2k2<1,∴|AB|=•=•=•=(1+),∵<<12k2+1<1,∴|AB|∈(,2),线段AB长的取值范围(,2).【点评】本题考查椭圆方程、线段长的取值范围的求法,考查椭圆、直线与椭圆的位置关系的应用,考查推理论证能力、运算求解能力,考查转化化归思想,解题时要注意韦达定理、中点坐标公式、直线方程、弦长公式的合理运用,属于中档题.21.(12分)(2017•沈阳二模)已知函数.(1)求f(x)的极值;(2)当0<x<e时,求证:f(e+x)>f(e﹣x);(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的极值即可;(2)问题转化为证明(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e ﹣x)ln(e+x)﹣(e+x)ln(e﹣x),根据函数的单调性证明即可.【解答】解:(1)f′(x)=,f(x)的定义域是(0,+∞),x∈(0,e)时,f′(x)>0,f(x)单调递增;x∈(e,+∞)时,f'(x)<0,f(x)单调递减.当x=e时,f(x)取极大值为,无极小值.(2)要证f(e+x)>f(e﹣x),即证:,只需证明:(e﹣x)ln(e+x)>(e+x)ln(e﹣x).设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),,∴F(x)>F(0)=0,故(e﹣x)ln(e+x)>(e+x)ln(e﹣x),即f(e+x)>f(e﹣x),(3)证明:不妨设x1<x2,由(1)知0<x1<e<x2,∴0<e﹣x1<e,由(2)得f[e+(e﹣x1)]>f[e﹣(e﹣x1)]=f(x1)=f(x2),又2e﹣x1>e,x2>e,且f(x)在(e,+∞)上单调递减,∴2e﹣x1<x2,即x1+x2>2e,∴,∴f'(x0)<0.【点评】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,考查学生解决问题的综合能力.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•长春三模)已知在平面直角坐标系xOy中,以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程.直线l的参数方程为(t为参数),消去参数t可得普通方程.(2),直角坐标为(2,2),,利用点到直线的距离公式及其三角函数的单调性可得最大值.【解答】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程:.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y﹣3=0.(2),直角坐标为(2,2),,∴M到l的距离≤,从而最大值为.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.(2017•长春三模)已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(1)法一:根据绝对值的性质求出f(x)的最小值,得到x=时取等号,证明结论即可;法二:根据f(x)的分段函数的形式,求出f(x)的最小值,证明即可;(2)法一,二:问题转化为≥t恒成立,根据基本不等式的性质求出的最小值,从而求出t的范围即可;法三:根据二次函数的性质判断即可.【解答】解:(1)法一:f(x)=|x+a|+|2x﹣b|=|x+a|+|x﹣|+|x﹣|,∵|x+a|+|x﹣|≥|(x+a)﹣(x﹣)|=a+且|x﹣|≥0,∴f (x )≥a +,当x=时取等号,即f (x )的最小值为a +,∴a +=1,2a +b=2;法二:∵﹣a <,∴f (x )=|x +a |+|2x ﹣b |=,显然f (x )在(﹣∞,]上单调递减,f (x )在[,+∞)上单调递增,∴f (x )的最小值为f ()=a +,∴a +=1,2a +b=2.(2)方法一:∵a +2b ≥tab 恒成立,∴≥t 恒成立,=+=(+)(2a +b )•=(1+4++),当a=b=时,取得最小值,∴≥t ,即实数t 的最大值为;方法二:∵a +2b ≥tab 恒成立,∴≥t 恒成立,t ≤=+恒成立,+=+≥=,∴≥t ,即实数t 的最大值为;方法三:∵a +2b ≥tab 恒成立,∴a +2(2﹣a )≥ta (2﹣a )恒成立,∴2ta 2﹣(3+2t )a +4≥0恒成立,∴(3+2t )2﹣326≤0,∴≤t ≤,实数t 的最大值为.【点评】本题考查了绝对值不等式问题,考查绝对值的性质以及二次函数的性质,考查转化思想,是一道中档题.。
沈阳市高考数学二诊试卷(理科)D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高二下·眉山期末) 设i为虚数单位,则复数的虚部是()A . 3iB . ﹣3iC . 3D . ﹣32. (2分) (2019高一上·隆化期中) 设集合,则()A .B .C .D .3. (2分)如果随机变量ξ~N(0,σ2),且P(-2<ξ≤0)="0.4" ,则P(ξ>2)等于()A . 0.1B . 0.2C . 0.3D . 0.44. (2分)数列1,3,6,10,…的一个通项公式()A .B .C .D .5. (2分)设,则()A . c<b<aB . c<a<bC . a<b<cD . b<c<a6. (2分) (2017高一下·鞍山期末) 如图所示,程序框图的输出结果为()A . 4B . 5C . 6D . 77. (2分) (2018高一上·吉林期末) 与直线和圆都相切的半径最小的圆的方程是()A .B .C .D .8. (2分)若一个螺栓的底面是正六边形,它的主视图和俯视图如图所示,则它的体积是()A . 27+12πB . 9+12C . 27+3πD . 54+3π9. (2分) (2016高一上·荆州期中) 函数f(x)=[x]的函数值表示不超过x的最大整数,例如[﹣3.5]=﹣4,[2.1]=2,则f(x)﹣x=0的解有()A . 1B . 2C . 3D . 无数个10. (2分)如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,则填入A方格的数字大于D方格的数字的概率为()A BC DA .B .C .D .11. (2分)(2018·栖霞模拟) 已知实数,满足约束条件则目标函数的取值范围是()A .B .C .D .12. (2分)已知函数y=f(x)()满足f(x+2)=2f(x),且时,f(x)=-|x|+1,则当时,y=f(x)与g(x)=log4x的图象的交点个数为()A . 11B . 10C . 9D . 8二、填空题 (共4题;共4分)13. (1分)(2017·黑龙江模拟) 若在等腰Rt△ABC中,| |=| |=2,则• =________.14. (1分) (2017高二下·濮阳期末) 设z1 , z2是复数,给出下列四个命题:①若|z1﹣z2|=0,则 = ②若z1= ,则 =z2③若|z1|=|z2|,则z1• =z2• ④若|z1|=|z2|,则z12=z22其中真命题的序号是________.15. (1分)(2017·葫芦岛模拟) 已知数列{an}满足:2a1+22a2+23a3+…+2nan=n(n∈N*),数列{ }的前n项和为Sn ,则S1•S2•S3…S10=________.16. (1分)以椭圆的中心为顶点,且以椭圆的右焦点为焦点的抛物线的标准方程为________三、解答题 (共7题;共50分)17. (5分) (2016高一下·溧水期中) 已知△ABC中,A,B,C的对边分别是a,b,c,且2cos2 sinB,a=3c(Ⅰ)分别求tanC和sin2C的值;(Ⅱ)若b=1,求△ABC的面积.18. (10分)连续投掷一枚质量均匀的硬币,10次中出现正面的次数记为x.(1)求随机变量x的数学期望E(x);(2)求10次投掷中出现正面次数多于出现背面次数的概率P(x>5).19. (5分) (2017高二下·微山期中) 如图所示,在三棱锥S﹣ABC中,SO⊥平面ABC,侧面SAB与SAC均为等边三角形,∠BAC=90°,O为BC的中点,求二面角A﹣SC﹣B的余弦值.20. (10分) (2017高二上·莆田月考) 已知椭圆的右焦点为,且点在椭圆上.(1)求椭圆的标准方程;(2)过椭圆上异于其顶点的任意一点作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴,轴上的截距分别为,证明:为定值.21. (5分)已知函数f(x)= +x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线经过点(0,1),求实数a的值.(Ⅱ)求证:当a<0时,函数f(x)至多有一个极值点.(Ⅲ)是否存在实数a,使得函数f(x)在定义域上的极小值大于极大值?若存在,求出a的取值范围,若不存在,请说明理由.22. (10分)已知双曲线C1:(α为参数),再以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρsinθ+ρcosθ=10.(1)求曲线C1的普通方程和曲线C的直角坐标方程;(2)若点M在曲线C1上运动,试求出M到曲线C的距离的最小值.23. (5分)解答题(Ⅰ)已知a和b是任意非零实数满足|2a+b|+|2a﹣b|≥λ|a|,求实数λ的最大值.(Ⅱ)若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,求实数k的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共50分) 17-1、18-1、18-2、19-1、20-1、20-2、22-1、22-2、23-1、。
2017年东北三省四市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2},则A∩B=()A.{x|﹣2<x<2} B.{x|﹣2<x<3} C.{x|﹣1<x<3} D.{x|﹣1<x<2} 3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个设计几何体体积的问题.意思是如果两个等高的几何体在同高处处截得两几何体的截面面积恒等,那么这两个几何体的体积相等.设A,B为两个等高的几何体,p:A,B的体积不相等,q:A,B在同高处的截面面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.5.已知数列{a n}满足a n+1﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()A.9 B.15 C.18 D.306.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞) B.(﹣∞,4] C.7.某几何体的三视图如图所示,则其体积为()A.4 B.C.D.8.将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,则n的最小值为()A.4 B.5 C.6 D.79.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.10.运行如图所示的程序框图,则输出的a、b、c满足()A.c≤b≤a B.a≤b≤c C.a≤c≤b D.b≤c≤a11.已知向量,,若m+n=1,则|的最小值为()A.B.C.D.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4= .16.F是双曲线的左焦点,过F作某一渐近线的垂线,分别与两条渐近线相交于A,B两点,若,则双曲线的离心率为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.18.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.19.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.20.椭圆C:的长轴长为2,P为椭圆C 上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为﹣.(1)求椭圆C的方程;(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是,求线段AB的长的取值范围.21.已知函数f(x)=(1)求函数f(x)的极值;(2)当0<x<e时,证明:f(e+x)>f(e﹣x);(3)设函数f(x)的图象与直线y=m的两个交点分别为A(x1,y1),B(x2,y2),AB的中点的横坐标为x0,证明:f'(x0)<0.四、请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.五、23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)证明:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的取值范围.2017年东北三省四市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知复数z=1+2i,则=()A.5 B.5+4i C.﹣3 D.3﹣4i【考点】A5:复数代数形式的乘除运算.【分析】由已知直接利用求解.【解答】解:∵z=1+2i,∴=|z|2=.故选:A.2.已知集合A={x|x2﹣2x﹣3<0},B={x||x|<2},则A∩B=()A.{x|﹣2<x<2} B.{x|﹣2<x<3} C.{x|﹣1<x<3} D.{x|﹣1<x<2} 【考点】1E:交集及其运算.【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x||x|<2}={x|﹣2<x<2}.故选:D.3.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个设计几何体体积的问题.意思是如果两个等高的几何体在同高处处截得两几何体的截面面积恒等,那么这两个几何体的体积相等.设A,B为两个等高的几何体,p:A,B的体积不相等,q:A,B在同高处的截面面积不恒相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由p⇒q,反之不成立.即可得出.【解答】解:由p⇒q,反之不成立.∴p是q的充分不必要条件.故选:A.4.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C.D.【考点】K8:抛物线的简单性质.【分析】根据题意,设P到准线的距离为d,则有|PF|=d,将抛物线的方程为标准方程,求出其准线方程,分析可得d的最小值,即可得答案.【解答】解:根据题意,抛物线y=2x2上,设P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为:y=﹣,分析可得:当P在抛物线的顶点时,d有最小值,即|PF|的最小值为,故选:D.5.已知数列{a n}满足a n+1﹣a n=2,a1=﹣5,则|a1|+|a2|+…+|a6|=()A.9 B.15 C.18 D.30【考点】8E:数列的求和.【分析】利用等差数列的通项公式可得a n.及其数列{a n}的前n项和S n.令a n≥0,解得n,分类讨论即可得出.【解答】解:∵a n+1﹣a n=2,a1=﹣5,∴数列{a n}是公差为2的等差数列.∴a n=﹣5+2(n﹣1)=2n﹣7.数列{a n}的前n项和S n==n2﹣6n.令a n=2n﹣7≥0,解得.∴n≤3时,|a n|=﹣a n.n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=﹣a1﹣a2﹣a3+a4+a5+a6=S6﹣2S3=62﹣6×6﹣2(32﹣6×3)=18.故选:C.6.平面内的动点(x,y)满足约束条件,则z=2x+y的取值范围是()A.(﹣∞,+∞) B.(﹣∞,4] C.【考点】7C:简单线性规划.【分析】画出满足约束条件的平面区域,求出可行域各角点的坐标,然后利用角点法,求出目标函数的最大值和最小值,即可得到目标函数的取值范围.【解答】解:满足约束条件的平面区域如下图所示:由图可知解得A(1,2)当x=1,y=2时,目标函数z=2x+y有最大值4.故目标函数z=2x+y的值域为(﹣∞,4]故选:B.7.某几何体的三视图如图所示,则其体积为()A.4 B.C.D.【考点】L!:由三视图求面积、体积.【分析】通过三视图复原的几何体是正四棱锥,结合三视图的数据,求出几何体的体积.【解答】解:由题意三视图可知,几何体是正四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,所以四棱锥的体积.故选D.8.将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,则n的最小值为()A.4 B.5 C.6 D.7【考点】C9:相互独立事件的概率乘法公式.【分析】利用对立事件及n次独立重复试验中事件A恰好发生k次的概率计算公式得到p=1﹣()n,由此能求出n的最小值.【解答】解:将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,∴p=1﹣()n,∴()n≤.∴n的最小值为4.故选:A.9.若方程在上有两个不相等的实数解x1,x2,则x1+x2=()A.B.C.D.【考点】H6:正弦函数的对称性.【分析】由题意可得2x+∈[,],根据题意可得=,由此求得x1+x2 值.【解答】解:∵x∈,∴2x+∈[,],方程在上有两个不相等的实数解x1,x2,∴=,则x1+x2=,故选:C.10.运行如图所示的程序框图,则输出的a、b、c满足()A.c≤b≤a B.a≤b≤c C.a≤c≤b D.b≤c≤a【考点】EF:程序框图.【分析】分析程序运行的功能是比较a、b、c的大小并按大小顺序输出,写出运行结果即可.【解答】解:由程序框图知,程序运行的功能是比较a、b、c的大小并按大小顺序输出,程序运行后输出的是c≤b≤a.故选:A.11.已知向量,,若m+n=1,则|的最小值为()A.B.C.D.【考点】93:向量的模.【分析】根据题意,由向量的坐标计算公式可得的坐标,由向量模的公式可得||=,由基本不等式的性质可得≥()2=,即m2+n2≥;即可得答案.【解答】解:根据题意,向量,则=m﹣n=(3m+n,m﹣3n),||==,又由m+n=1,则有≥()2=,即m2+n2≥;故||=≥,即||的最小值为;故选:C.12.对函数f(x)=,若∀a,b,c∈R,f(a),f(b),f(c)都为某个三角形的三边长,则实数m的取值范围是()A.B.C.D.【考点】3T:函数的值.【分析】当m=2时,f(a)=f(b)=f(c)=1,是等边三角形的三边长;当m>2时,只要即可,当m<2时,只要即可,由此能求出结果.【解答】解:当m=2时,f(x)==1,此时f(a)=f(b)=f(c)=1,是等边三角形的三边长,成立;当m>2时,,只要即可,解得2<m<5;当m<2时,,只要即可,解得,综上.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有48 种不同的分法(用数字作答).【考点】D8:排列、组合的实际应用.【分析】甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,即可得出结论.【解答】解:甲乙分得的电影票连号,有4×2=8种情况,其余3人,有=6种情况,∴共有8×6=48种不同的分法.故答案为48.14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是y=x .【考点】6H:利用导数研究曲线上某点切线方程.【分析】先求出f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵f(x)=e x•sinx,f′(x)=e x(sinx+cosx),f′(0)=1,f(0)=0,∴函数f(x)的图象在点A(0,0)处的切线方程为y﹣0=1×(x﹣0),即y=x.故答案为:y=x.15.等比数列{a n}中各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4= 30 .【考点】89:等比数列的前n项和.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,a4=16,∴2a1(1+q+q2)=a1(8+3q),=16,解得a1=q=2.则S4==30.故答案为:30.16.F是双曲线的左焦点,过F作某一渐近线的垂线,分别与两条渐近线相交于A,B两点,若,则双曲线的离心率为或2 .【考点】KC:双曲线的简单性质.【分析】运用两渐近线的对称性和条件,可得A为BF的中点,由垂直平分线的性质和等腰三角形的性质,可得Rt△OAB中,∠AOB=,求得渐近线的斜率,运用离心率公式即可得到.【解答】解:当b>a>0时,由,可知A为BF的中点,由条件可得=,则Rt△OAB中,∠AOB=,渐近线OB的斜率k=,即离心率e===2.同理当a>b>0时,可得e=;故答案为:或2.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知点P(,1),Q(cosx,sinx),O为坐标原点,函数f(x)=•.(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(Ⅰ)利用向量的数量积以及两角和与差的三角函数化简函数的解析式,然后求解f (x)的最小正周期;(Ⅱ)利用函数的解析式求解A,然后利用余弦定理求解即可,得到bc的范围,然后利用基本不等式求解最值.【解答】解:(Ⅰ)f(x)=•=(,1)•(﹣cosx,1﹣sinx)=﹣cosx﹣sinx+4=﹣2sin(x+)+4,f(x)的最小正周期T==π;(Ⅱ)∵f(A)=4,∴A=,又∵BC=3,∴9=(b+c)2﹣bc.∵bc≤,∴,∴b+c≤2,当且仅当b=c取等号,∴三角形周长最大值为3+2.18.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者进行调查,对手机进行打分,打分的频数分布表如下:(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(Ⅰ)画出女性用户和男性用户的频率分布直方图,由图可得女性用户的波动小,男性用户的波动大;(Ⅱ)由分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,根据X的取值计算对应的概率,求出X的分布列和数学期望.【解答】解:(Ⅰ)对于女性用户,各小组的频率分别为:0.1,0.2,0.4,0.25,0.05,其相对应的小长方形的高为0.01,0.02,0.04,0.025,0.005,对于男性用户,各小组的频率分别为:0.15,0.25,0.30,0.20,0.10,其相对应的小长方形的高为0.015,0.025,0.03,0.02,0.01,直方图如图所示:,由直方图可以看出女性用户比男性用户评分的波动大.(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,从6人人任取3人,记评分小于90分的人数为X,则X取值为1,2,3,且P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为X的数学期望为EX=1×+2×+3×=2.19.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.(1)求证:PD⊥平面ABE;(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM﹣B的余弦值为.【考点】MT:二面角的平面角及求法;LS:直线与平面平行的判定.【分析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.【解答】解:(I)证明:∵PA⊥底面ABCD,AB⊂底面ABCD,∴PA⊥AB,又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴AB⊥平面PAD,又PD⊂平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE⊂平面ABE,AB⊂平面ABE,∴PD⊥平面ABE.(II)以A为原点,以为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0),,,,M(2λ,2λ,2﹣2λ)设平面PFM的法向量,,即,设平面BFM的法向量,,即,,解得.20.椭圆C:的长轴长为2,P为椭圆C 上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为﹣.(1)求椭圆C的方程;(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是,求线段AB的长的取值范围.【考点】KH:直线与圆锥曲线的综合问题;KL:直线与椭圆的位置关系.【分析】(I)由2a=2,解得a=,设P(x0,y0),A1(,0),A2(,0).由=1,可得=﹣.根据OM∥PA1,可得,于是===﹣=﹣,解得b2.(II)设直线l的方程为:y=k(x+1),A(x1,y1),B(x2,y2).与椭圆方程联立化为:(2k2+1)x2+4k2x+2k2﹣2=0,利用根与系数的关系与中点坐标公式可得线段AB的中点Q,QN的方程为:y﹣=﹣,可得N.根据<<0,解得:0<2k2<1.利用弦长公式可得:|AB|=,即可得出.【解答】解:(I)由2a=2,解得a=,设P(x0,y0),A1(,0),A2(,0).则=1,可得=﹣.∵OM∥PA1,∴,∴====﹣=﹣,解得b2=1.∴椭圆C的方程为=1.(II)设直线l的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(2k2+1)x2+4k2x+2k2﹣2=0,则x1+x2=,x1•x2=,∴y1+y2=k(x1+x2+2)=,可得线段AB的中点Q,QN的方程为:y﹣=﹣,∴N.∵<<0,解得:0<2k2<1.∴|AB|=•=,∵<1,∴|AB|∈.21.已知函数f(x)=(1)求函数f(x)的极值;(2)当0<x<e时,证明:f(e+x)>f(e﹣x);(3)设函数f(x)的图象与直线y=m的两个交点分别为A(x1,y1),B(x2,y2),AB的中点的横坐标为x0,证明:f'(x0)<0.【考点】6D:利用导数研究函数的极值.【分析】(1)求导,令f′(x)=0,根据函数单调性与导数的关系,即可求得函数f(x)的极值;(2)采用分析法,要证明f(e+x)>f(e﹣x),只需证(e﹣x)ln(e+x)>(e+x)ln(e ﹣x),构造辅助函数求导,由F′(x)>0,即可求得函数单调性递增,F(x)>F(0)=0,即可求得f(e+x)>f(e﹣x);(3)由(1)可知0<x1<e<x2,则0<e﹣x1<e,由(2)可知,f(x)在(e,+∞)上单调递减,x1+x2>2e,x0=>e,即可f'(x0)<0.【解答】解:(1)由f(x)=,x>0,求导f′(x)=,当x∈(0,e),f′(x)>0,f(x)单调递增,x∈(e,+∞)时,f′(x)<0,f(x)单调递减,∴当x=e时,f(x)取极大值为,无极小值,(2)证明:要证明f(e+x)>f(e﹣x),即证>,只需证(e﹣x)ln(e+x)>(e+x)ln(e﹣x),设F(x)=(e﹣x)ln(e+x)﹣(e+x)ln(e﹣x),求导F′(x)=﹣ln(e2﹣x2)=+>0,∴f(x)在(0,e)单调递增,∴F(x)>F(0)=0,∴(e﹣x)ln(e+x)>(e+x)ln(e﹣x),∴f(e+x)>f(e﹣x),(3)证明:不妨设x1<x2,由(1)可知0<x1<e<x2,由0<e﹣x1<e,由(2)可知:f>f=f(x1)=f(x2),由2e﹣x1>e,x2>e,且f(x)在(e,+∞)上单调递减,即x1+x2>2e,则x0=>e,∴f'(x0)<0.四、请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程.直线l的参数方程为(t为参数),消去参数t可得普通方程.(2),直角坐标为(2,2),,利用点到直线的距离公式及其三角函数的单调性可得最大值.【解答】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程:.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y﹣3=0.(2),直角坐标为(2,2),,∴M到l的距离≤,从而最大值为.五、23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)证明:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的取值范围.【考点】3R:函数恒成立问题.【分析】(1)化简f(x)的解析式,判断f(x)的单调性,根据单调性得出f(x)的最小值化简即可得出结论;(2)分离参数得t≤,把2a+b=2代入不等式,根据基本不等式的性质得出的最小值,从而得出t的范围.【解答】解:(1)证明:令x+a=0得x=﹣a,令2x﹣b=0得x=,∵a>0,b>0,∴﹣a,则f(x)=,∴f(x)在(﹣∞,]上单调递减,在(,+∞)上单调递增,∴f min(x)=f()=a+=1,2a+b=2;(2)∵a+2b≥tab恒成立,∴t≤恒成立,∵2a+b=2,∴a+b=1,∴=+=+=+≥=,(当且仅当a=b时取等号)∴的最小值为,∴t.。
哈尔滨师大附中东北师大附中 2017年高三第二次联合模拟考试 辽宁省实验中学理科数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}A x x =≤<,2{|4}B x x =≥,则()R A C B =( )A .{|12}x x ≤<B .{|21}x x -≤<C .{|12}x x ≤≤D .{|12}x x <≤2.复数11ii -+(i 是虚数单位)的虚部为()A .i -B .2i -C . -1D .—2 3.已知随机变量2(0,)XN σ,若(||2)P X a <=,则(2)P X >的值为()A .12a -B .2aC .1a -D .12a +4.等差数列{}na 中,13539a a a ++=,57927a a a ++=,则数列{}n a 的前9项的和9S等于( )A .66B .99C . 144D .2975. α是一个平面,,m n 是两条直线,A 是一个点,若m α⊄,n α⊂,且A m ∈,A α∈,则,m n 的位置关系不可能是()A .垂直B .相交C . 异面D .平行 6.某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是( )A . (51)2π-B (51)2π+C .32π+D .522+7.函数()cos(2)3f x x π=+的图象可由函数()sin(2)3g x x π=+的图象()A .向左平移2π个单位长度得到B .向右平移2π个单位长度得到 C .向左平移4π个单位长度得到D .向右平移4π个单位长度得到8.已知偶函数()f x 的定义域为R ,若(1)f x -为奇函数,且(2)3f =,则(5)(6)f f +的值为()A . -3B . —2C . 2D .39.公元263年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,正多边形的周长可无限逼近圆的周长,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率,利用刘徽的割圆术设计的程序框图如图所示,若输出的96n =,则判断框内可以填入( )(参考数据:sin 7.50.1305≈,sin 3.750.06540≈,sin1.8750.03272≈)A . 3.14p ≤B . 3.14p ≥C . 3.1415p ≥D . 3.1415926p ≥10.在哈尔滨的中央大街的步行街同侧有6块广告牌,牌的底色可选用红、蓝两种颜色,若要求相邻两块牌的底色不都为蓝色,则不同的配色方案共有( )A . 20B . 21C . 22D .2411.已知12,F F 是双曲线E :22221(0,0)x y a b a b -=>>的左、右焦点,过点1F 的直线l 与E 的左支交于,P Q 两点,若11||2||PF FQ =,且2F Q PQ ⊥,则E 的离心率是( ) A 5B .7 C .15 D 1712.已知函数2()2ln 22x f x x x =+--,若函数()|()|log (2)(1)a g x f x x a =-+>在区间[1,1]-上有4个不同的零点,则实数a 的取值范围是( )A .(1,2)B .(2,)+∞C . 11ln 2[3,)-+∞ D .11ln 2(2,3]-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若直线(3)y k x =+与圆2223x y x +-=相切,则k = .14.甲乙两人从1,2,3,…,10中各任取一数(不重复),已知甲取到的数是5的倍数,则甲数大于乙数的概率为 . 15.下列命题正确的是 .(写出所有正确命题的序号) ①已知,a b R ∈,“1a >且1b >”是“1ab >”的充分条件;②已知平面向量,a b ,“||1a >且||1b >”是“||1a b +>"的必要不充分条件;③已知,a b R ∈,“221a b +≥”是“||||1a b +≥”的充分不必要条件; ④命题P :“0x R ∃∈,使001x e x ≥+且00ln 1x x ≤-”的否定为p ⌝:“x R ∀∈,都有1x e x <+且ln 1x x >-” 16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若222a cb ac +-=,2c =,点G 满足19||3BG =且1()3BG BA BC =+,则sin A =.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}na 满足13a=,121n n a a n +=-+,数列{}n b 满足12b =,1n n n b b a n +=+-.(1)证明:{}nan -为等比数列;(2)数列{}nc 满足1(1)(1)n n n n a nc b b +-=++,求数列{}n c 的前n 项和n T .18. 下表数据为某地区某种农产品的年产量x (单位:吨)及对应销售价格y (单位:千元/吨).(1)若y 与x 有较强的线性相关关系,根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程^^^y b x a =+;(2)若每吨该农产品的成本为13.1千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润Z 最大?19. 如图,四棱锥S ABCD -中,底面ABCD 是边长为4的正方形,平面SAD ⊥平面SCD ,22SA SD ==.(1)求证:平面SAD ⊥平面ABCD ;(2)E 为线段DS 上一点,若二面角S BC E --的平面角与二面角D BC E --的平面角大小相等,求SE 的长. 20. 已知F是抛物线2:4C x y =的焦点,1122(,),(,)A x y B x y 为抛物线C 上不同的两点,12,l l 分别是抛物线C 在点A 、点B 处的切线,0(,)P x y 是12,l l 的交点.(1)当直线AB 经过焦点F 时,求证:点P 在定直线上; (2)若||2PF =,求||||AF BF 的值. 21. 已知函数()sin f x x =.(1)当0x >时,证明:2'()12x f x >-;(2)若当(0,)2x π∈时,'()()()f x f x ax f x +>恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin )ρθθ=若射线6πθ=,3πθ=分别与l 交于,A B 两点. (1)求||AB ;(2)设点P 是曲线22:19y C x +=上的动点,求ABP ∆面积的最大值.23.选修4—5:不等式选讲 已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若对任意1[,1]2x ∈-,不等式()|2|4f x x a ≥+-恒成立,求实数a 的取值范围.试卷答案一.选择题 1—6:ACABDB 7-12:CDBBDC二.填空题13.±14.1318; 15.③; 16.14;三.解答题17.解: (1)121n n a a n +=-+,1(1)2()n n a n a n +∴-+=-又因为112a -=,所以{}na n -是以2为首项,2为公比的等比数列(2)11(1)22n n n a n a --=-⋅=1,2n n n n n b b n a a n +=-+-=且1-=2n n n b b +∴ 121232-1-1-=2-=2-=2n n n b b b b b b ⎧⎪⎪⎨⎪⎪⎩累和得到12(12)22(2)12n n n b n -⋅-=+=≥-当1n =时,12b =,2nn b ∴=∴111211(1)(1)(21)(21)2121n n n n n n n n n a n c b b +++-===-++++++ 111321n n T +∴=-+18. 解:(I )3x =, 50y =,51627i ii x y==∑,52155ii x==∑解得:ˆ12.3b =-,ˆ86.9a= 所以:ˆ12.386.9y x =-+; (Ⅱ)年利润2(86.912.3)13.112.373.8z x x x x x =--=-+所以3x =时,年利润Z 最大. 19. 解:(Ⅰ)∵平面SAD ⊥平面SCD ,DC AD ⊥,∴DC ⊥平面SAD ∵DC ⊂底面ABCD ,∴平面SAD ⊥底面ABCD (Ⅱ)取AD 中点M ,连接SMSA AD SM AD =⇒⊥,又因为平面SAD ⊥底面ABCD ,所以SM ⊥平面ABCD以M 为原点,,,MD AB MS 方向分别为,,x y z 轴正方向建立空间直角坐标系 平面ABCD 的法向量1(0,0,1)=n ,平面BCS 的法向量2(,,)x y z =n,(0,0,1),(1,2,0),(1,2,0)S B C -,(2,0,0),(1,2,1)BC BS ==-则2020x x y z =⎧⎨-+=⎩,∴2(0,1,2)=n设()2,0,2DE DS λλλ==-,所以()22,0,2E λλ- 由上同理可求出平面BCE 的法向量3(0,,2)λ=n由平面BCD 、BCS 与平面BCE 所成的锐二面角的大小相等可得13231323⋅⋅=⋅⋅n n n nn n n n,∴4λ=∴SE =20. 解:(Ⅰ)抛物线2:4x C y =,则2xy '=,∴切线PA 的方程为111()2x y y x x -=-,即211=24x x y x -,同理切线PB 的方程为222=24x x y x -,联立得点P 1212,24x x x x +⎛⎫⎪⎝⎭,设直线AB 的方程为1y kx =+,代入2:4C x y =得2440x kx --=。