高一数学平面向量的数量积及运算律
- 格式:ppt
- 大小:371.00 KB
- 文档页数:10
平面向量的数量积及其运算律在物理课中,我们学过功的概念:即一个物体在力F 的作用下产生位移s ,那么力F 所做的功:W =|F ||S |cos θ.即功等于运动距离乘以力在运动方 向上的投影.如图1.4—1.由此我们引出向量数量积的概念.一.数量积 【向量的夹角】已知两非零向量a 和b .在平面上任取一点O,作OA ⃗⃗⃗⃗⃗ =aa ,OB ⃗⃗⃗⃗⃗ =ab.则∠AOB =θ(0≤θ≤π).叫做向量a 与b 的夹角.想一想:你能指出下列图中两向量的夹角吗?参考答案:①的夹角为0,②OA ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗ 的夹角为π,③OA ⃗⃗⃗⃗⃗ 与OB⃗⃗⃗⃗⃗ 的夹角是∠AOB ,④OA ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗ 的夹角是θ.两向量夹角的取值范围[0,π].注:如果向量a 与b 的夹角是 π2,就称a 与b 垂直,记作a ⊥b .【平面向量的数量积】已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作:a ·b ,即a ·b =|a ||b |cos θ. 并规定0∙a =0.这里“·”表示向量的一种乘法运算,称为点乘.【数量积的几何意义】 我们把|b|cos θ (|a |cos θa 叫做向量b 在a 方向上(a 在b 方向上)的投影.你能从图中作出|b |cos θ的几何图形吗?①投影不是向量,是数量,它可以是任意的实数. ②当θ为锐角时投影为正值,数量积为正值.当θ为钝角时投影为负值,数量积为负值;当θ为直角时投影为0,数量积为0; 当θ = 0时,a 与b 同向,投影为|b |,a ·b =|a ||b |, 当θ=π时,a 与b 反向,投影为 -|b |,a ·b = -|a ||b |.a ·b 的几何意义:向量a 与b 的数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影(|b |cos θ的积.【数量积的性质】 ①a ⊥b ⇔a ⋅b =0.②当a 与b 同向时,a ·b =|a ||b |,当a 与b 反向时,a ·b = -|a ||b |.特别地a ·a=|aaa|2. ③|a ⋅b |≤|a |⋅|b |.图1.4—1 图1.4—2图1.4—3④设a 是非零向量,e 是单位向量,θ是a 与e 的夹角,则e ⋅a =a ⋅e =|a |cos θ. ⑤cos θ=a·b|a ||b|.【数量积的运算律】已知向量a 、b 、c 和实数λ,则: ①a·b = b·a .(交换律). ②(λa ·b =λ(a·b )=a·(λb ).③(a +b ·c=a·c+b·c . (分配律).注意:在实数中,乘法运算满足结合律.向量的数量积没有结合律可言.原因是(a·b )·c 包含的是两种不同的运算,即a· b 是数量积,再乘以c 为实数与向量的积.对于数量积的运算律,其中①、②读者可自证.下面就③给出相应的证明: 过a 、b ,a +b 的终点分别向c 引垂线,垂足分别是A 、B 、D. 如图1.4—4.a 、b ,a +b 在c 上的投影分别为OA 、OB 、OD. 又 OD=OB+BD.现证 BD=OA.过a +b 的终点引c 的平行线 交BE 于F.易知ΔEFG ≅ΔHAO ,⇒OA=FG,而FG=BD, 故OA=BD.⇒ OD=OA+OB,⇒ (a +b ·c=a·c+b·c .【特别提醒】从实数的运算到向量的数量积运算,发生了如下几个主要变化: (1)在实数运算中,若a ⋅b=0,则a=0或b=0; 在数量积中,若a ⋅b=0,则a=0或a b=0或b a ⊥. (2)在实数运算中,已知实数a 、b 、c(b ≠0),则ab=bc,⇒ a=c.在数量积中,若b 0≠,且a ⋅ba=ab ⋅c 则 aa=aca 吗? 如右图1.4—5:a ⋅ba=a|a||b|c os β = |b||OA|, b ⋅ca=a|b||c|cos α = |b||OA| ⇒aa ⋅ba=ab ⋅c ,但a ≠ac .(3)在实数运算中,乘法运算满足结合律(a ⋅b)c = a(b ⋅c). 在数量积中,没有结合律可言.a (4)在实数运算中,|ab|=|a||b|. 在数量积中,|a ⋅b |≤|a |⋅|b |.想一想①:已知向量|a |=2,|b |=1,a 、b 的夹角为600,则|a +b ||a -b |=|a 2-b 2|=3吗?【数量积的坐标形式】设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.二.数量积性质的应用平面向量的数量积及性质的应用是非常广泛的,利用它们可以解决许多问题.【性质2的应用】与两非零向量a 、b 垂直的问题可通过a ·b =0来处理.例1.(1)已知向量a ⊥b ,且|a |=2,|b |=3,若(3a +2b )·(k a -b )=0,求k 的值.EOGH A BD Fc baa+b图1.4—4O 图1.4—5 a b cA(2)设c 、d 是非零的向量,d =(b ·c )·a -(a ·c )·b ,则c ∥d ,还是c ⊥d ? (3)已知a 、b 、c 为非零的向量,若|b -a -c |=|a -b -c |且|a +b +c |=|a +b -c |.求证:a ⊥c . 解(1) ∵ a ⊥b , ∴ a ·b =0 . 由(3a +2b )·(k a -b )=0,⇒3k a 2-2b 2=0.∵ |a |=2,|b |=3 ,得k= 32.(2) ∵ d =(b ·c )·a -(a ·c )·b ,⇒a d ·c =[(b ·c )·a -(a ·c )·b ]·c =(b ·c ·a ·c -(a ·c ·b·c =0.⊥ d ⊥c.(3) ∵ |b -a -c |=|a -b -c | ⇒(b -a -c 2=(a -b -c 2,⇒a ·c -b·c =0. ①由|a +b +c |=|a +b -c | 类似地,⇒a a ·c +ab·c =0. ② ⊥ 由①、② ⇒a a ·c =0 ⇒a ⊥c .例2.如图1.4—6. AD 、BE 、CF 为△ABC 的三条高,求证:AD 、BE 、CF 交于一点H.证明:设BE,CF 交于一点H ,AB ⃗⃗⃗⃗⃗ =a a ,AC ⃗⃗⃗⃗⃗ =a b ,AH ⃗⃗⃗⃗⃗ =a h .则BH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =h -a ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =h -b , BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b -a . ∵ BH ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ , CH ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ∴ (h -a )a·b =0,且(h -b )a·a =0,⇒ (h -a )a·b =(h -b )a·a ,⇒(b -a )a·h =0. ∴ AH ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ 又∵ 点D 在AH 的延长线上,∴ AD 、BE 、CF 相交于一点.例3. 已知a =(√3,-1),b =(12,√32).设存在实数k 、t 使得x =a +(t 2-3)b ,y = -k a +t b ,且x ⊥y ,试求k+t 2t的值域.解:∵ a =(√3,-1),b =(12,√32) , ∴ a ·b =0且|a |=2,|b |=1.a又∵ x ⊥y ,∴x ·y =0,⇒-k a 2+t(t 2-3)b 2=0,⇒k =t(t 2−3)4,⇒k+t 2t=t 2+4t−34=(t+2)2−74(t ≠0). ⇒k+t 2t∈[−74,−34)∪(−34,+∞).说明:此题若采用坐标运算来处理,而不注意灵活地利用a ·b =0,则计算量会增加许多.一般来说,当题设条件中有|a |、|b |为定值,且a ·b =0时.还是采用本题的解法为好.想一想②:设向量a 、b 、c 的模均为1,它们两两间的夹角均为1200,求证:(a -b ⊥c.【性质3的应用】与模有关的问题可通过a 2=|a|2,|a|=√a 2=√x 2+y 2来处理.例4.利用向量证明:平行四边形的对角线的平方和等于四边的平方和.已知:已知平行四边形ABCD.如图1.4—7.求证:2(AB 2+AD 2)=AC 2+BD 2.证明:设AB ⃗⃗⃗⃗⃗ =a . AD ⃗⃗⃗⃗⃗ = b . ∵AC ⃗⃗⃗⃗⃗ =a+b ,BD ⃗⃗⃗⃗⃗ =aa -b , ∴ AC 2+BD 2=|AC ⃗⃗⃗⃗⃗ |2+|BD ⃗⃗⃗⃗⃗ |2=(a+b )2+(a -b )2=2(|a |2+|b |2)=2(AB 2+DA 2), ∴ 2(AB 2+AD 2)=AC 2+BD 2.例5.利用向量证明余弦定理:在△ABC 中,求证:a 2=b 2+c 2-2bc·cosA .证明:如图1.4—8. ∵ BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ , ∴ cosA |AB ||AC |2AC )AB -AC (BC 2222-+==AB , 即:a 2=b 2 +c 2-2bccosA. 同理可得: b 2= a 2+c 2-2accosB ; c 2= a 2+b 2-2abcosC.AB CD E F H 图1.4—6 A BC D 图1.4—7ABCc ab图1.4—8例6.已知向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,满足:OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,且|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC⃗⃗⃗⃗⃗ |=1.求证:△ABC 是 正三角形. 思路1.由OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,⇒ OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ = -OC ⃗⃗⃗⃗⃗ =OD ⃗⃗⃗⃗⃗ , ⇒四边形OADB 是菱形,⇒△AOD 是正三角形, ⇒∠AOB=1200,同理可得:∠AOC=∠BOC=1200,⇒△ABC 是正三角形.思路2.由OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0 ,⇒ O 为重心. 由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC⃗⃗⃗⃗⃗ ||=1,⇒O 为外心. ∴ △ABC 是正三角形. 思路3.由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC ⃗⃗⃗⃗⃗ |=1及|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |2+|OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ |2=2(|OA ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2), ⇒|OC ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2=4,⇒ |AB ⃗⃗⃗⃗⃗ |2=3,⇒AB =√3. 同理可得:BC=AC=.√3 ⇒ △ABC 是正三角形. 思路4.由OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,⇒ OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ = -OC ⃗⃗⃗⃗⃗ ,⇒ OA ⃗⃗⃗⃗⃗ 2+OB ⃗⃗⃗⃗⃗ 2+2OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OC⃗⃗⃗⃗⃗ 2 , ⇒ cos ∠AOB=−12,⇒ ∠AOB=1200. 同理可得:∠AOC=∠BOC=1200.⇒△ABC 是正三角形.想一想③:a a aa a a 设AB ⃗⃗⃗⃗⃗ =c ,BC ⃗⃗⃗⃗⃗ =a ,CA ⃗⃗⃗⃗⃗ =b.若a·b=b ·c=a·c ,求证:△ABC 是正三角形.【性质4的应用】与两向量的夹角有关的问题.可通过cos θ=a⋅b |a||b|=x 1x 2+y 1y 2√x 12+y 12√x 22+y 22来处理.例7.已知向量a 、b 、c 两两所成的角都相等,且|a |=1,|b |=2,|c |=3.求向量a +b+c 的模及a +b+c 与a 的夹角.解:∵ 向量a 、b 、c 两两所成的角都相等,∴ a 、b 、c 两两所成的角为1200或00. ①若a 、b 、c 两两所成的角为00,则|a +b+c |=|a |+|b|+|c|=6.a +b+c 与a 的夹角的夹角为00.②若a 、b 、c 两两所成的角为1200,∵| a +b+c |2=a 2+b 2+c 2+2(a·b+b ·c+a·c )=1+4+9-(131322⨯+⨯+⨯)=3. ∴|aa +b+c |=√3.设a +b+c 与a 的夹角为θ,则cos θ=a⋅(a+b+c)|a||a+b+c|=1−1−32√3=−√32. ∴ a +b+c 与a 的夹角为1500.例8.已知|a |=√2,|b |=3,a 、b 的夹角为450,求使a +λb 与λa +b 的夹角为钝角时,λ的取值范围.解:由a +λb 与λa +b 的夹角为钝角,⇒ (a +λb ·(λa+b )<0,且a +λb 与λa +b 不共线,⇒λa 2+(1+λ2)a ⋅b +λb 2<0且λ≠±1,⇒−11+√856<λ<−11+√856,且λ≠−1.想一想④:1.已知|a |=2|b |≠0.关于x 的方程x 2+|a |x+a ·b =0有实根,求a 、b 的夹角的取值范围.2.已知a =(λ,2),b =(-3,5).若a 、b 的夹角为锐角,求实数λ的取值范围.【性质5的应用】与不等式、最值有关的问题通常可通过|a ·b |≤|a ||b |(x 1x 2+y 1y 2≤√x 12+y 12⋅√x 22+y 22) 或||a |-|b ||≤|a ±b |≤|a |+|b |来处理.例9.利用向量证明:(1)若a 、b 、c 、d ∈R ,则ac+bd≤√a 2+b 2⋅√c 2+d 2. (2)设a 、b ∈R ,则 |√1+a 2−√1+b 2|≤|a -b|.O ADB x yC 图1.4—9证明:(1) 设m =(a ,b),n =(c ,d).由|m ·n|≤|m ||n |, | ac+bd|≤√a 2+b 2⋅√c 2+d 2,又∵ x≤|x ,|⇒ ac+bd≤√a 2+b 2⋅√c 2+d 2.(2) 设m =(1,b),n =(1,a). 由||n |-|m ||≤|n -m |,⇒ |√1+a 2−√1+b 2|≤|a -b|.想一想⑤:1.设向量a =(1,-1),b =(3,-4),x =a +λb ,试证:使|x |最小的向量x ,垂直于向量b .2..求函数y =√x 2+a +√(x −c)2+b 的最小值.(其中a 、b 、c 是正实数)【数量积计算的几个形式】与向量数量积计算的相关试题可谓是千变万化,林林总总,不一而足.表面看来似乎纷繁杂陈,眼花缭乱.但是,假若我们静心品味,拨云驱雾,就会发现:这“万变”还是“不离其宗”的.归纳起来,其实主要是围绕如下三个方面展开的: ①直接形式——利用数量积的定义式(包括坐标形式)进行计算;②间接形式——通过变形将所求数量积转化到与已知条件有直接关系后进行计算; ③几何意义——利用数量积的几何意义进行计算.下面,我们将就此展开一些探讨.(1)紧扣定义,直接计算利用数量积的定义式进行计算时,通常要分别确定两向量的模和夹角.若题设条件没有 明确给出,就必须根据其它关系式将其导出.例10.如图1.4—10.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ⃗⃗⃗⃗ ∙PB⃗⃗⃗⃗⃗ 的最小值为( ). A.-4+√2. B. -3+√2. C. -4+2√2. D.-3+2√2.解:设|PA|=|PB|=x ,∵ PA ⃗⃗⃗⃗ ∙PB⃗⃗⃗⃗⃗ =x 2cos ∠APB=x 2(1-2sin 2∠APC) =x 2(1−21+x 2)=x 2−2x 21+x 2=−3+(21+x 2+1+x 2)≥−3+2√2.故应选D.例11.对于两个非零的平面向量α,β.定义α⊙β=α∙ββ∙β .若两个非零的平面向量a ,b ,满足a 与b 的夹角θ∈(π4,π2).当a ⊙b 和b ⊙a 都在集合{n 2|n ∈Z }中时,a ⊙b =( ).A.52.B. 32.C.1.D. 12. 解:由定义知,a ⊙b =|a||b|cos θ|b|2=|a|cos θ|b|. ∴(a ⊙b (b ⊙a )=cos 2θ.又由已知可设a ⊙b= n12,n 1∈Z ,b ⊙a =n 22,n 2∈Z , ∴(a ⊙b (b ⊙a )=n 1n 24,又∵ θ∈(π4,π2), ∴cos 2θ∈(0,12). 则0<n 1n 2<2,因此,n 1、n 2只能在{-1,1}中取值,故应选D.想一想⑥:1.如图1.4—11,在∆ABC 中,AD ⊥AB,BC ⃗⃗⃗⃗⃗ =√3BD ⃗⃗⃗⃗⃗ ,| AD ⃗⃗⃗⃗⃗ |=1, 则AC⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ = . 2.已知A ,B ,C 是圆O :x 2+y 2=1上的三点,若OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ .则AB⃗⃗⃗⃗⃗ ∙OA ⃗⃗⃗⃗⃗ = . 当所涉数量积计算的图形是直角三角形或矩形(正方形)时,应考虑通过建立平面直角坐P A B C x 图1.4—10_ BAD C 图1.4—11标系,利用数量积的坐标形式来进行.例12.在Rt ∆ABC 中,∠C=900,若∆ABC 所在平面内的一点P 满足PA → +PB →+λPC → =0. 则(1)当λ=1时,|PA|2+|PB|2|PC|2= ( ). (2)|PA|2+|PB|2|PC|2的最小值为 .解:建立如图1.4—12所示的平面直角坐标系. (1)设等腰直角三角形的边长为a ,当λ=1时,由PA ⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ =0,知P 是∆ABC 的重心.设A(0,a),B(a ,0), 得P(a3,a3).从而可得|PA|2+|PB|2|PC|2=(a 29+4a 29)+(4a 29+a 29)a 29+a 29=5.对于填空题,也可用特值法.即设两直角边长为3,则计算要方便得多. (2)设P(x ,y),∵|PA|2+|PB|2|PC|2=x 2+(y−a)2+(x−a)2+y 2x 2+y 2=2(x 2+y 2+a 2)−2(ax+ay)x 2+y 2≥2(x 2+y 2+a 2)−(a 2+x 2+a 2+y 2)x 2+y 2=1,当且仅当x=y=a 时取等号.∴ |PA|2+|PB|2|PC|2的最小值为1.想一想⑦:已知Rt ∆ABC 的三边CB ,BA ,AC 成等差数列.点E 为直角边AB 的中点,点D 在斜边AC 上,若AD⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ,且CE ⊥BD ,则λ= .(2)有效转换,方便计算有许多数量积的计算题,其所求式与题设条件之间没有直接的关联.这时,我们就必须通过转换与变形,将所求式变为与题设条件有密切关系的式子.我们常用的转换方式有两种:①利用向量加(减)法的三角形法则或平行四边形法则,变形后进行计算;②利用定比分点的向量形式OP → =OA → +λOB→1+λ (其中AP → =λPB → )转换后进行计算.例13.在边长为1的正∆ABC 中, 设BC ⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ =3CE ⃗⃗⃗⃗ . 则AD ⃗⃗⃗⃗⃗ ∙BE⃗⃗⃗⃗⃗ =___ . 解:法1.AD → ⋅BE → =(AB → +BC → 2)⋅(CA →3+BC → )=16(2AB → +BC → )⋅(−AB → +2BC → )=16(−2+2+3AB → ⋅BC → )=12cos 1200=−14.法2.由BC⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗ ,得 AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =2(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ),⇒AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ), 再由CA ⃗⃗⃗⃗⃗ =3CE ⃗⃗⃗⃗ ,得 CA ⃗⃗⃗⃗⃗ =3(BE ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ ),⇒BE ⃗⃗⃗⃗⃗ =13(3BC ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=13(−3AB ⃗⃗⃗⃗⃗ +2AC ⃗⃗⃗⃗⃗ ), ∴ AD ⃗⃗⃗⃗⃗ ∙BE ⃗⃗⃗⃗⃗ =16(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ )(−3AB ⃗⃗⃗⃗⃗ +2AC ⃗⃗⃗⃗⃗ )=16(−3+2−12)=−14. 说明:一般地,处理此类问题时,可由已知条件出发,将需要求数量积的两个向量,通过向量加法或减法的三角形法则,用已知模和夹角的向量表示出来后,再求值即可.例14.如图1.4—13,P 是∆AOB 所在平面上的一点.向量OA⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =ab ,OP ⃗⃗⃗⃗⃗ =ac .且点P 在线段AB 的中垂线上.若|a |=2,|b |=1.,则c·(a -b )= ( ). A. 12. B.1. C. 32. D.2. 解析:∵ BA → =a -b ,c =OP⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ +12BA ⃗⃗⃗⃗⃗ +DP ⃗⃗⃗⃗⃗ =DP ⃗⃗⃗⃗⃗ +12(aa +b ) AC B xy 图1.4—12又DP → ⊥BA → .∴ c·(a -b )=ac=[DP⃗⃗⃗⃗⃗ +12(aa +b )]·(a -b = 12(aa +b a·(a -b = 12(a 2-b 2 = 32. 故应选 C.想一想⑻:1.在∆ABC 中,M 是BC 的中点.AM=3,BC=10.则AB ⃗⃗⃗⃗⃗ ∙AC⃗⃗⃗⃗⃗ = . 2.在∆ABC 中,∠BAC=1200,AB=2,AC=1.点D 在BC 边上,且DC=2BD.则AD⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ . 3.如图1.4—14.已知圆M :(x -3)2+(y -4)2=4.四边形ABCD 为圆M 的 内接正方形,点E ,F 分别为AB ,AD 的中点.当正方形ABCD绕圆心M 转动时,ME⃗⃗⃗⃗⃗⃗ ∙OF ⃗⃗⃗⃗⃗ 的最大值是 .(3)厘清意义,简化计算两向量a ,b 的数量积a·b 的几何意义是:一个向量a 的模|a |,与另一个向量b 在向量a 的方向上的投影的积.如图1.4—15.aa·b =|a |·OD.利用几何意义,我们在处理与三角形的外心或等腰三角形底边上的中线(实质是与线段的中垂线)有关的问题时,常常会收到奇效. 例15.(1)等腰∆ABC 中,若BC=4,则AB⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ . (2)在∆ABC 中,若AB=3,AC=4,BC=5,AM ⊥BC 于M.点N 为∆ABC 的内部或边上的点,则AM ⃗⃗⃗⃗⃗⃗ ∙AN ⃗⃗⃗⃗⃗ 的最大值是( ). A..25144 B.2. C.9. D.16..解:(1)AB → ⋅BC → =|AB → |⋅|BC → |cos(π−B)=−|AB → |⋅|BC → |cos B =−12|BC →|2=−8. (2)由条件知∆ABC 为直角三角形,且角A 为直角.易求得AM=125由数量积的几何意义知,当点N 落在BC 上时,AM ⃗⃗⃗⃗⃗⃗ ∙AN ⃗⃗⃗⃗⃗ 取得最大值14425故应选A.例16.(1)已知O 是∆ABC 的外心,|AB ⃗⃗⃗⃗⃗ |=16,|AB ⃗⃗⃗⃗⃗ |=10√2.若AO ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,且32x+25y=25,求|AO ⃗⃗⃗⃗⃗ |. (2)已知O 是锐角三角形ABC 的外心,若cosBsinC AB ⃗⃗⃗⃗⃗ +cosC sinB AC⃗⃗⃗⃗⃗ =mAO ⃗⃗⃗⃗⃗ . 求证:m=2sinA. 解(1)如图1.4—15.∵ AO⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,且32x+25y=25, ∴ AO⃗⃗⃗⃗⃗⃗ 2= (xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ )∙ AO ⃗⃗⃗⃗⃗⃗ = xAB ⃗⃗⃗⃗⃗ ∙ AO ⃗⃗⃗⃗⃗⃗ + yAC ⃗⃗⃗⃗⃗ ∙ AO ⃗⃗⃗⃗⃗⃗ = x |AB ⃗⃗⃗⃗⃗ |12|AB ⃗⃗⃗⃗⃗ |+y|AC ⃗⃗⃗⃗⃗ |12|AC ⃗⃗⃗⃗⃗ |=4(32x+25y)=100, 可得 |AO⃗⃗⃗⃗⃗ |=10. (2) 设∆ABC 外接圆的半径为R ,由正弦定理c=2RsinC ,b=2RsinB.∵ cosBsinC AB ⃗⃗⃗⃗⃗ +cosC sinB AC ⃗⃗⃗⃗⃗ =mAO ⃗⃗⃗⃗⃗ ,∴ cosB sinC AB ⃗⃗⃗⃗⃗ ∙AO ⃗⃗⃗⃗⃗ +cosC sinBAC ⃗⃗⃗⃗⃗ ∙AO⃗⃗⃗⃗⃗ =m|AO|⃗⃗⃗⃗⃗⃗⃗ 2=mR 2, 又∵ cosBsinC AB ⃗⃗⃗⃗⃗ ∙AO ⃗⃗⃗⃗⃗ +cosC sinB AC ⃗⃗⃗⃗⃗ ∙AO ⃗⃗⃗⃗⃗ =AB 22sinC cosB +AC 22sinBcosC =2R 2(sinCcosB+sinBcosC) A BO PD 图1.4—13CA BO 。
高一平面向量数量积知识点在高中数学课程中,平面向量数量积是一个重要的概念。
它不仅在平面几何的研究中起着至关重要的作用,而且在物理学等其他科学领域也有广泛的应用。
本文将重点介绍高一学生需要掌握的平面向量数量积的知识点。
1. 定义和性质平面向量数量积,也称为点乘或内积,是指两个向量的乘积与这两个向量之间夹角的余弦值的乘积。
设有向量a=(x1, y1)和b=(x2, y2),则a与b的数量积为a·b=x1x2+y1y2。
平面向量数量积具有以下性质:(1) 交换律:a·b=b·a(2) 分配律:(ka)·b=a·(kb)=k(a·b),其中k为实数(3) 零向量的数量积为0:0·a=a·0=0(4) a·a=|a|^2,其中|a|表示向量a的模长2. 计算方法根据定义,平面向量a·b=x1x2+y1y2。
为了方便计算,我们还可以使用坐标的方法。
设向量a的起点为A(x1, y1),向量b的起点为B(x2, y2),则a·b=AB·AC=|AB||AC|cosθ,这里θ为向量a和向量b之间的夹角。
3. 利用向量数量积求夹角给定两个向量a和b,如果我们知道它们的数量积a·b和模长|a|、|b|,我们可以利用以下公式来求解它们之间的夹角θ:cosθ = a·b / (|a||b|)θ = arccos(a·b / (|a||b|))4. 判断向量之间的夹角利用向量数量积可以方便地判断两个向量之间的夹角大小。
如果a·b>0,则夹角θ为锐角;如果a·b<0,则夹角θ为钝角;如果a·b=0,则夹角θ为直角。
5. 判断两个向量是否垂直如果两个向量a和b垂直,则它们的数量积为0,即a·b=0。
因此,我们可以利用这一性质来判断两个向量是否垂直。
平面向量的数量积及运算律一、根底知识1.两个非零向量夹角的概念非零向量a 与b ,作OA =a ,OB =b ,那么∠AOB叫a 与b 的夹角记作,a b 说明:〔1〕0︒≤,a b ≤180︒〔2〕当,a b =2π时,a 与b 垂直,记a ⊥b ; 2.平面向量数量积〔内积〕的定义:两个非零向量a 与b ,它们的夹角是,a b , 那么数量|a ||b |cos ,a b 叫a 与b 的数量积,记作a b ,即有a b =|a ||b |cos ,a b ,3.正射影的数量定义|b |cos ,a b 叫做向量b 在a 方向上的正射影的数量4.两个向量的数量积的性质: 设a 与b 为两个非零向量,e 是与b 同向的单位向量(1)e a a e •== |a |cos ,a b (2)a ⊥b ⇔ a b = 0(3)22||a a a a ==或者||a a a =⋅ (4)cos ,a b =||||a b a b ⋅ (5)| a b | ≤ |a ||b |5.数量积的运算律〔1〕a b b a •=•〔2〕()()a b b a λλ•=•〔3〕()a b c a c λλ+•=+二、根底练习1.假设 a ,b ,c 为任意向量,m R ∈,那么以下等式不一定成立的是〔 〕〔A 〕〔a +b 〕+c =a +〔b +c 〕;〔B 〕〔a +b 〕c =a c b c +;〔C 〕m 〔a +b 〕=m a +m b ; 〔D 〕〔a b 〕c =a 〔b c 〕2.|a |=3,|b |=6,假设a 与b 的夹角是30°,那么a ·b = 假设a ⊥b ,那么a ·b = 假设a ∥b 时,那么a ·b =3.|a |=3,| b |=4,且a 与b 的夹角为150°,那么a ·b = 4.向量a 与b 的夹角为120,且2,5a b ==,那么〔2a -b 〕. a = 5.1,2a b ==,〔a -b 〕a =0,那么a 与b 的夹角为〔 〕1a b ==,a ⊥b ,且2a +3b 与k a -4b 也互相垂直,那么k 为〔 〕 〔A 〕-6; 〔B 〕6; 〔C 〕3〔D 〕-3;7.2,5,3a b a b ===-,那么a b +等于 〔 〕〔A 〕 23 〔B 〕 35 〔C 〕23 〔D 〕358、在△ABC 中,有命题①AB AC BC -=;②0AB BC CA ++=;③假设()()0AB AC AB AC +⋅-=,那么△ABC 为等腰三角形;④假设0AC AB ⋅>,那么△ABC 为锐角三角形;上述命题中正确的有〔 〕〔A 〕①② 〔B 〕①④ 〔C 〕②③ 〔D 〕②③④9、假设||1,||2,a b c a b ===+,且c a ⊥,那么向量a 与b 的夹角为( )〔A 〕30° 〔B 〕60° 〔C 〕120° 〔D 〕150°10.11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4π,那么k 等于 〔 〕 〔A 〕1 〔B 〕 2 C. 12〔D 〕-1 的夹角为与则若c a c b a c b a ,25)(,5||),4,2(),2,1(=⋅+=--=〔 〕 〔A 〕30°〔B 〕60°〔C 〕120°〔D 〕150° 12.以下命题:①a ·0=0;②0·a=0; ③0-AB =BA ;④|a ·b |=|a ||b |;⑤假设a ≠0,那么对任一非零b 有a ·b ≠0;⑥a ·b =0,那么a 与b 中至少有一个为0;2022年元月元日⑦对任意向量a ,b ,c 都有〔a ·b 〕c =a 〔b ·c 〕;⑧a 与b 是两个单位向量,那么a 2=b 2其中正确的选项是 〔把正确的序号都填上〕134||=a ,2||=b ,且a 与b 夹角为120°求 ⑴)()2(b a b a +•-; ⑵|2|b a -; ⑶a 与b a +的夹角。
平面向量的数量积及运算律1. 引言平面向量是在平面上具有大小和方向的量。
在研究平面向量的运算中,数量积是一个重要的概念。
本文将介绍平面向量的数量积及其运算律。
2. 数量积的定义给定两个平面向量A和B,它们的数量积(也称为点积或内积)定义为 |A| |B| cosθ,其中 |A| 和 |B| 分别表示向量A和B的模长,θ 表示两个向量之间的夹角。
3. 数量积的性质平面向量的数量积具有以下性质:3.1 交换律对于任意两个向量A和B,有A ·B = B ·A。
3.2 分配律对于任意三个向量A,B和C,有A · (B + C) = A ·B + A ·C。
3.3 结合律对于任意三个向量A,B和C,有 (A + B) ·C = A ·C + B ·C。
3.4 数量积与运算顺序无关对于任意三个向量A,B和C,有 (A + B) ·C = A ·C + B ·C和A · (B + C) = A ·B + A ·C。
3.5 平行向量的数量积如果两个向量A和B平行(即夹角θ=0°或180°),则它们的数量积为 |A| |B|。
3.6 垂直向量的数量积如果两个向量A和B垂直(即夹角θ=90°),则它们的数量积为0。
4. 应用举例4.1 判断两个向量的关系通过计算两个向量的数量积,可以判断它们的夹角、平行性和垂直性。
例如,如果两个向量的数量积为0,则它们垂直;如果数量积为正数,则它们夹角小于90°;如果数量积为负数,则它们夹角大于90°。
4.2 计算向量的模长通过数量积的定义 |A| |B| cosθ,可以计算一个向量的模长。
例如,如果已知向量A和它与另一个向量的夹角θ,以及另一个向量的模长,则可以利用数量积计算出A的模长。
4.3 求解平面向量的夹角通过数量积的定义 |A| |B| cosθ,可以求解两个向量之间的夹角θ。
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
平面向量的数量积平面向量的数量积,也叫点积或内积,是向量运算中的一种重要操作。
它与向量的夹角以及向量的长度有着密切的关系。
在本文中,我们将详细介绍平面向量的数量积的概念、计算方法以及一些应用。
一、概念平面向量的数量积是指将两个向量的对应分量相乘,并将所得乘积相加而得到的数值。
设有两个平面向量A和A,它们的数量积记作A·A,计算公式为:A·A = AAAA + AAAA其中,AA和AA分别是向量A在A轴和A轴上的分量,AA和AA分别是向量A在A轴和A轴上的分量。
二、计算方法要计算平面向量的数量积,需要先求出两个向量在A轴和A轴上的分量,然后按照数量积的计算公式进行计算。
假设有两个向量A = (A, A)和A = (A, A),它们的数量积为A·A,计算步骤如下:1. 计算A和A在A轴上的分量AA和AA,分别为A和A;2. 计算A和A在A轴上的分量AA和AA,分别为A和A;3. 将AA和AA、AA和AA进行相乘得到AA和AA;4. 将AA和AA相加,得到平面向量的数量积A·A。
三、性质平面向量的数量积具有以下性质:1. 交换律:A·A = A·A2. 数乘结合律:(AA)·A = A(A·A) = A·(AA)3. 分配律:(A + A)·A = A·A + A·A其中,A为任意实数,A、A和A为任意向量。
四、夹角与数量积的关系两个非零向量A和A的数量积A·A与它们夹角A的余弦函数之间存在着如下关系:A·A = ‖A‖‖A‖cosA其中,‖A‖和‖A‖分别为向量A和A的长度。
五、应用平面向量的数量积在几何和物理学中有着广泛的应用。
以下是一些常见的应用:1. 判断两个向量是否垂直:如果两个向量的数量积为零,即A·A = 0,那么它们是垂直的。
2. 计算向量的模:根据数量积的性质,向量的模可以通过向量与自身的数量积来计算。
平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。