专题:水平面内的圆周运动
- 格式:doc
- 大小:110.50 KB
- 文档页数:4
第四章抛体运动圆周运动第四章抛体运动圆周运动微专题28水平面内的圆周运动1.常见的传动方式:同轴传动(ω相同),皮带传动,齿轮传动和摩擦传动(边缘v 大小相同)。
2.圆周运动的动力学问题实际上是牛顿第二定律的应用,通过受力分析找到指向圆心的力F n ,向心力F n =m v 2r=mω2r =m 4π2T 2r 。
1.(多选)如图为用于超重耐力训练的离心机。
航天员需要在高速旋转的座舱内完成超重耐力训练。
这种训练的目的是锻炼航天员在承受巨大过载的情况下仍能保持清醒,并能进行正确操作的能力。
离心机拥有长18m 的巨型旋转臂,在训练中产生8g 的向心加速度,航天员的质量为70kg ,可视为质点,g =10m/s 2,则下列说法正确的是()A .离心机旋转的角速度大小为2103rad/s B .离心机旋转的角速度大小为409rad/s C .座椅对航天员的作用力大小约为5600ND .座椅对航天员的作用力大小约为5644N答案AD 解析由向心加速度公式a n =ω2R ,得ω=2103rad/s ,故A 正确,B 错误;由向心力公式得F =ma =8mg ,座椅对航天员的作用力大小约为F N =F 2+(mg )2≈5644N ,故C 错误,D 正确。
2.两级皮带传动装置如图所示,轮1和轮2的半径相同,轮2和轮3两个同心轮固定在一起,轮3和轮4的半径相同,且为轮1和轮2半径的一半,转动时皮带和轮子之间均不打滑,则轮1边缘的a 点和轮4边缘的c 点相比()A .线速度大小之比为1∶4B .向心加速度大小之比为8∶1C .周期之比为4∶1D .角速度大小之比为1∶8答案C 解析由题图可知,1与3边缘的线速度相等,2与4边缘的线速度相等,2与3的角速度相等,根据v =ωr 可知2v 3=v 2,所以得2v a =2v 3=v 2=v c ,其中v 2、v 3为轮2和轮3边缘的线速度,即v a ∶v c =1∶2,故A 错误;设轮4的半径为r ,a a =v a 2r a ==v c 28r =18a c ,即a a ∶a c =1∶8,故B 错误;由ωa ωc =v ar a v c r c=14,又ω=2πT ,故T a T c =41,故C 正确,D 错误。
专题强化水平面内的圆周运动的临界问题[学习目标] 1.知道水平面内的圆周运动的几种常见模型,并会找它们的临界条件(重点)。
2.掌握圆周运动临界问题的分析方法(重难点)。
物体做圆周运动时,若物体的线速度大小、角速度发生变化,会引起某些力(如拉力、支持力、摩擦力)发生变化,进而出现某些物理量或运动状态的突变,即出现临界状态。
1.水平面内的圆周运动常见的临界问题:(1)物体恰好(没有)发生相对滑动,静摩擦力达到最大值。
(2)物体恰好要离开接触面,物体与接触面之间的弹力为0。
(3)绳子恰好断裂,绳子的张力达到最大承受值。
(4)绳子刚好伸直,绳子的张力恰好为0。
2.解题关键:(1)在圆周运动问题中,当出现“恰好”“最大”“至少”“取值范围”等字眼时,说明运动过程中存在临界点。
(2)分析临界状态的受力,列出临界条件下的牛顿第二定律方程。
例1如图所示,A、B、C三个物体放在旋转的水平圆盘上,物体与盘面间的最大静摩擦力均是其重力的k倍(最大静摩擦力等于滑动摩擦力),三物体的质量分别为2m、m、m,它们离转轴的距离分别为R、R、2R。
当圆盘旋转时,若A、B、C三物体均相对圆盘静止,则下列说法正确的是()A.A的向心加速度最大B.B和C所受摩擦力大小相等C.当圆盘转速缓慢增大时,C比A先滑动D.当圆盘转速缓慢增大时,B比A先滑动答案C解析A、B、C三物体角速度相同,a n=ω2r,则物体C的向心加速度最大,选项A错误;摩擦力提供向心力,F fB=mω2R,F fC=mω2·(2R),物体B所受摩擦力小于物体C所受摩擦力,,故滑动的临界角速度与质量无关,选项B错误;物体恰好滑动时,kmg=mω2r,ω=kgrr越大,临界角速度越小,故物体C先滑动,A、B同时滑动,选项C正确,D错误。
例2如图所示,水平转盘上放有一质量为m的物体(可视为质点),连接物体和转轴的绳子长为r,物体与转盘间的最大静摩擦力是其压力的μ倍,转盘的角速度由零逐渐增大,求:(重力加速度为g)(1)绳子对物体的拉力为零时的最大角速度;(2)当角速度为3μg2r时,绳子对物体拉力的大小。
第18讲水平面内的圆周运动(圆锥摆模型)及其临界问题1.(江苏高考)如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上,不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小一.知识总结1.圆周运动相关物理量3.匀速圆周运动与变速圆周运动的区别与联系匀速圆周运动变速圆周运动运动特点线速度的大小不变,角速度、周期和频率都不变,向心加速度的大小不变线速度的大小、方向都变,角速度变,向心加速度的大小、方向都变,周期可能变也可能不变受力特点所受到的合力为向心力,大小不变,方向变,其方向时刻指向圆心所受到的合力不总指向圆心,合力产生两个效果:①沿半径方向的分力F n,即向心力,它改变速度的方向;②沿切线方向的分力F t,它改变速度的大小运动性质非匀变速曲线运动(加速度大小不变,方向变化)非匀变速曲线运动(加速度大小、方向都变化)二. 圆锥摆模型及其临界问题1.圆锥摆模型的受力特点受两个力,且两个力的合力沿水平方向,物体在水平面内做匀速圆周运动。
2.运动实例运动模型向心力的来源图示飞机水平转弯火车转弯圆锥摆物体在光滑半圆形碗 内做匀速圆周运动3.解题方法(1)对研究对象进行受力分析,确定向心力来源。
(2)确定圆心和轨道半径。
(3)应用相关力学规律列方程求解。
4.规律总结 (1)圆锥摆的周期如图摆长为L ,摆线与竖直方向夹角为θ。
受力分析,由牛顿第二定律得:mg tan θ=m 4π2T 2rr =L sin θ解得T =2πL cos θg =2πh g 。
(2)结论①摆高h =L cos θ,周期T 越小,圆锥摆转得越快,θ越大。
②摆线拉力F =mgcos θ,圆锥摆转得越快,摆线拉力F 越大。
③摆球的加速度a =g tan θ。
专题:圆锥摆模型(水平面内的圆周运动)教学目标物理观念:通过圆锥摆模型的分析,会在具体问题中分析向心力的来源,会寻找圆心,计算半径,列出方程求解物理量。
科学思维:运用函数思想构建所求物理量的函数关系,并利用函数关系处理物理问题。
科学探究:通过圆锥摆模型的分析,体会物理模型的重要性,并能将相关模型等效成圆锥摆模型。
科学态度与责任:通过圆锥摆模型的分析,培养学生将物理知识应用于生活的意识。
教学重难点:重点:通过圆锥摆模型的分析,会在具体问题中分析向心力的来源,会寻找圆心,计算半径,列出方程求解物理量。
难点:1.运用函数思想构建所求物理量的函数关系,并利用函数关系处理物理问题。
2.通过圆锥摆模型的分析,体会物理模型的重要性,并能将相关模型等效成圆锥摆。
模型。
教学过程:复习导入:向心力的表达式。
新课教学一.圆锥摆模型的受力特点受两个力,且两个力的合力沿水平方向,物体在水平面内做匀速圆周运动。
二.圆锥摆的相关规律1.摆球的加速度2.摆球的线速度3.摆球的周期和角速度4.摆线得拉力5.两种圆锥摆分析对甲:由a =g tan θ知A 、B 的向心加速度大小相等。
由a =ω2r 知ωA <ωB ,由a =v 2r 知v A >v B 对乙:由T =2πhg 知摆高h 相同,则ωA =ωB ,由v =ωr 知v A >v B ,由a =ω2r知a A >a B 。
三.案例分析例1、如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O 点.设法让两个小球均在各自的水平面上做匀速圆周运动.已知L 1跟竖直方向的夹角为60°,L 2跟竖直方向的夹角为30°,下列说法正确的是( )A .细线L 1和细线L 2所受的拉力大小之比为1:√3B .小球m 1和m 2的角速度大小之比为1:1C .小球m 1和m 2的向心力大小之比为3:1D .小球m 1和m 2的线速度大小之比为3√3:1练习1、A 、B 两质量相同的质点用轻质细线悬挂在同一点O ,在同一水平面上做匀速圆周运动,如图所示,则( ) A .A 的加速度一定比B 的加速度小 B .A 的线速度一定比B 的线速度小 C .A 的角速度一定等于B 的角速度D .A 所受细线的拉力一定等于B 所受的细线的拉力例2:如图所示,用一根质量不计、不可伸长的细绳,一端系一可视为质点的小球,另一端固定在O 点。
2020年高考物理备考微专题精准突破专题2.3 水平面内的圆周运动【专题诠释】1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,所有的力沿半径方向指向圆心的合力就是向心力.3.几种典型运动模型飞机水平转【高考领航】【2019·浙江选考】一质量为2.0×103 kg的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×104 N,当汽车经过半径为80 m的弯道时,下列判断正确的是()A .汽车转弯时所受的力有重力、弹力、摩擦力和向心力B .汽车转弯的速度为20 m/s 时所需的向心力为1.4×104 NC .汽车转弯的速度为20 m/s 时汽车会发生侧滑D .汽车能安全转弯的向心加速度不超过7.0 m/s 2 【答案】D【解析】汽车转弯时受到重力,地面的支持力,以及地面给的摩擦力,其中摩擦力充当向心力,A 错误;当最大静摩擦力充当向心力时,速度为临界速度,大于这个速度则发生侧滑,根据牛顿第二定律可得2vf m r=,解得m/s v ====,所以汽车转弯的速度为20 m/s 时,所需的向心力小于 1.4×104 N ,汽车不会发生侧滑,BC 错误;汽车能安全转弯的向心加速度225607m/s 80v a r ===,即汽车能安全转弯的向心加速度不超过7.0 m/s 2,D 正确。
【2018·江苏卷】火车以60 m/s 的速率转过一段弯道,某乘客发现放在桌面上的指南针在10 s 内匀速转过了 约10°。
在此10 s 时间内,火车( )A .运动路程为600 mB .加速度为零C .角速度约为1 rad/sD .转弯半径约为3.4 km 【答案】AD【解析】圆周运动的弧长s =vt =60×10 m=600 m ,选项A 正确;火车转弯是圆周运动,圆周运动是变速运动,所以合力不为零,加速度不为零,故选项B 错误;由题意得圆周运动的角速度103.1418010t θω∆==⨯∆⨯ rad/s=3.14180 rad/s ,又v r ω=,所以601803.14v r ω==⨯ m=3439m ,故选项C 错误、D 正确。
水平面内圆周运动的两种模型一、两种模型模型Ⅰ圆台转动类小物块放在旋转圆台上,与圆台保持相对静止,如图1所示.物块与圆台间的动摩擦因数为μ,离轴距离为R,圆台对小物块的静摩擦力(设最大静摩擦力等于摩擦力)提供小物块做圆周运动所需的向心力.水平面内,绳拉小球在圆形轨道上运动等问题均可归纳为“圆台转动类”.图1临界条件圆台转动的最大角速度ωmax=,当ω<ωmax时,小物块与圆台保持相对静止;当ω>ωmax时,小物块脱离圆台轨道.模型Ⅱ火车拐弯类如图2 所示,火车拐弯时,在水平面内做圆周运动,重力mg和轨道支持力N的合力F提供火车拐弯时所需的向心力.圆锥摆、汽车转弯等问题均可归纳为“火车拐弯类”.图2临界条件若v=,火车拐弯时,既不挤压内轨也不挤压外轨;若v>,火车拐弯时,车轮挤压外轨,外轨反作用于车轮的力的水平分量与F之和提供火车拐弯时所需的向心力;若v>,火车拐弯时,车轮挤压内轨,内轨反作用于车轮的力的水平分量与F之差提供火车拐弯时所需的向心力.二、两种模型的应用例1 如图3所示,半径为R的洗衣筒,绕竖直中心轴00'转动,小橡皮块P靠在圆筒内壁上,它与圆筒间的动摩擦因数为μ.现要使小橡皮块P恰好不下落,则圆筒转动的角速度ω至少为多大?(设最大静摩擦力等于滑动摩擦力)图3 图4【解析】此题属于“圆台转动类”,当小橡皮块P绕轴00'做匀速圆周运动时,小橡皮块P受到重力G、静摩擦力f和支持力N的作用,如图4所示.其中“恰好”是隐含条件,即重力与最大静摩擦力平衡f max=G,μN=mg列出圆周运动方程N=mω2min R联立解得ωmin=例2 在半径为R的半球形碗的光滑内面,恰好有一质量为m的小球在距碗底高为H处与碗保持相对静止,如图5所示.则碗必以多大的角速度绕竖直轴在水平面内匀速转动?图5【解析】此题属于“火车拐弯类”,当小球做匀速圆周运动时,其受到重力G和支持力F的作用,如图5所示.隐含条件一是小球与碗具有相同的角速度ω,隐合条件二是小球做匀速圆周运动的半径r=Rcosθ.列出圆周运动方程Fcosθ=mω2Rcosθ竖直方向上由平衡条件有Fsinθ-mg=0其中 sinθ=联立解得ω=例3 长度为2l的细绳,两端分别固定在一根竖直棒上相距为l的A、B两点,一质量为m的光滑小圆环套在细绳上,如图6所示.则竖直棒以多大角速度匀速转动时,小圆环恰好与A点在同一水平面内?图6【解析】此题属于“火车拐弯类”,当小圆环做匀速圆周运动时,小圆环受到重力G、绳OB的拉力F和绳OA的拉力F的作用,如图7所示图7隐含条件一是小圆环与棒具有相同角速度ω,隐含条件二是小圆环光滑,两侧细绳拉力大小相等,隐含条件三是小圆环做匀速圆周运动的圆心为A点、半径为r(OA).列出圆周运动方程 F+Fcosθ=mω2r由平衡条件有 Fsinθ-mg=0其中 cosθ=,sinθ=联立解得ω=小试身手1、如图8所示,质量均为m的A、B两物体用细绳悬着,跨过固定在圆盘中央光滑的定滑轮.物体A与圆盘问的动摩擦因数为μ,离圆盘中心距离R.为使物体A与圆盘保持相对静止,则圆盘角速度ω的取值范围为多少?(设最大静摩擦力等于滑动摩擦力)图82、如图9所示,长度分别为l1和l2两细绳OA、OB,一端系在竖直杆,另一端系上一质量为m的小球,两细绳OA和OB同时拉直时,与竖直杆的夹角分别为30°、45°.则杆以多大角速度转动时,两细绳同时且始终拉直?图9。
水平面内圆周运动(五大类)静摩擦力供给向心力1. 如图所示,粗糙水平圆盘上,质量相等的A 、B 两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是( )A.物块A 、B 的运动属于匀变速曲线运动B.B 的向心力是A 的向心力的2倍C.盘对B 的摩擦力是B 对A 的摩擦力的2倍D.若B 先滑动,则B 与A 之间的动摩擦因数μA 小于盘与B 之间的动摩擦因数μB2. 在室内自行车比赛中,运动员以速度v 在倾角为θ的赛道上做匀速圆周运动。
已知运动员的质量为m ,做圆周运动的半径为R ,重力加速度为g ,则下列说法正确的是( )A .将运动员和自行车看作一个整体,整体受重力、支持力、摩擦力和向心力的作用B .运动员受到的合力大小为m v 2R ,做圆周运动的向心力大小也是m v 2RC .运动员做圆周运动的角速度为v RD .如果运动员减速,运动员将做离心运动3. 水平转台上有质量相等的A 、B 两小物块,两小物块间用沿半径方向的细线相连,两物块始终相对转台静止,其位置如图所示(俯视图),两小物块与转台间的最大静摩擦力均为f 0,则两小物块所受摩擦力F A 、F B 随转台角速度的平方(ω2)的变化关系正确的是( )4. 【多选】如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( )A .此时绳子张力为T =3μmgB .此时圆盘的角速度为ω= 2μg rC .此时A 所受摩擦力方向沿半径指向圆外D .此时烧断绳子,A 仍相对盘静止,B 将做离心运动5. 【多选】如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是( )A .当ω>2Kg 3L 时,A 、B 相对于转盘会滑动 B .当ω>Kg 2L时,绳子一定有弹力C .ω在Kg 2L <ω<2Kg 3L范围内增大时,B 所受摩擦力变大 D .ω在0<ω<2Kg 3L范围内增大时,A 所受摩擦力一直变大 6. 【多选】如图,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,AB 整体、C 离转台中心的距离分别为r 、1.5r.设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .B 对A 的摩擦力一定为3μmgB .B 对A 的摩擦力一定为 3mω2rC .转台的角速度一定满足:ω≤μg r D .转台的角速度一定满足:ω≤2μg 3r7. 【多选】如图所示,在水平转台上放一个质量M =2.0 kg 的木块,它与台面间的最大静摩擦力F f m =6.0 N ,绳的一端系住木块,另一端穿过转台的中心孔O (为光滑的)悬吊一质量m =1.0 kg 的小球,当转台以ω=5.0 rad/s 的角速度转动时,欲使木块相对转台静止,则它到O 孔的距离可能是( )A.6 cmB.15 cmC.30 cmD.34 cm8. 如图所示,物块P 置于水平转盘上随转盘一起运动,图中c 方向沿半径指向圆心,a 方向与c 方向垂直。
- 1 -圆周运动全模型高分专题水平面内的圆周运动(一般为匀速圆周运动)1.(机车转弯类模型)火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。
若在某转弯处规定行驶速度为,则下列说法中正确的是( )A. 当以V 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B. 当以V 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C. 当速度大于v 时,轮缘挤压外轨D. 当速度小于v 时,轮缘挤压外轨解:A 、当火车以v 的速度通过此弯路时,火车重力与轨道面支持力的合力恰好提供向心力,内外轨都无压力.所以A 选项是正确的,B 错误.C 、若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力,轮缘挤压外轨.所以C 选项是正确的.D 、若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力,轮缘挤压内轨.故D 错误.所以AC 选项是正确的.2.(机车转弯类模型)汽车与路面之间的动摩擦因数4.0=μ,转弯处弯道半径为m R 4=,g 取2/10s m 。
(1)若路面铺成水平的,汽车转弯时速度不能超过多大?(2)若路面铺成外侧高内侧低的坡面,倾角为︒=7.5θ,汽车以多大速度转弯,与路面无摩擦。
1:此时汽车做圆周运动,由最大静摩擦力提供向心力,则解得:2:此时由重力分力:提供向心力,则3.(水平摆模型)把一个长为20cm ,劲度系数为360N /m 的弹簧,一端固定,作为圆心,弹簧的另一端连接一个质量为0.50kg 的小球,当小球以min /360r π的转速在光滑水平面上做匀速圆周运动时,弹簧的伸长应为( )A. 5.2cmB. 5.3cmC. 5.0cmD. 5.4cm解:小球在弹簧弹力的作用下做匀速圆周运动,角速度,设弹簧伸长量为,由胡克定律和牛顿第二定律得:,解得:,故C 项正确。
4.(凹凸桥模型)(多选)如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D.丁图中,轨道车过最高点的最小速度为gR5.(水平转盘模型)如图所示,水平圆盘绕竖直中心轴匀速转动,一小木块放在圆盘上随盘一起转动,且木块相对于圆盘保持静止,则下列说法正确的是()A.木块所受摩擦力的方向与其线速度的方向相反B.木块质量越大,就越不容易在圆盘上滑动C.木块离转轴越远,就越容易在圆盘上滑动D.圆盘转动的频率越快,木块就越容易在圆盘上滑动解:A、木块做匀速圆周运动时,运动中所受摩擦力提供向心力,其方向和线速度方向垂直,故A错误;B、木块在转盘上发生相对滑动的临界状态时有:mgμ=mω2r,质量消去,由此可知质量无关,故B错误;C、木块到转轴的距离越大,需要的向心力越大,越容易发生滑动,故C正确;D、发生相对滑动时,最大静摩擦力提供向心力,此时有:mgμ=mω2r,因此周期越小,即角速度ω越大,越容易发生相对滑动,故D对.故选:CD6.(水平转盘模型)如图所示,小物块放在水平转盘上,随盘同步做匀速圆周运动,则下列关于物块受力情况的叙述正确的是().A.受重力、支持力、静摩擦力和向心力的作用B.摩擦力的方向始终指向圆心OC.摩擦力的方向始终与线速度的方向相同D.静摩擦力提供使物块做匀速圆周运动的向心力解:A、小物块受到重力、支持力和静摩擦力三个力,向心力是物体做圆周运动所需要的力.故A错误.B、物块做圆周运动所需要的向心力由静摩擦力提供,向心力的方向指向圆心,所以静摩擦力的方向指向圆心.故B、D正确,C错误.- 2 -7.(水平转筒模型)如图所示,物体与圆筒壁的动摩擦因数为μ,圆筒的半径为R。
2024版新课标高中物理模型与方法专题08水平面内的圆周运动模型目录【模型一】圆锥摆、圆锥斗、圆碗模型 (1)【模型二】火车转弯模型 (13)【模型三】水平路面转弯模型 (19)【模型四】圆盘模型 (27)结论是:在同一地点,摆球的质量相等、摆长不等但高度相同的圆锥摆,转动的快慢相等,但锥摆,摆线的拉力大,向心力大,向心加速度大,运动得快。
4.多绳圆锥摆问题二.圆锥斗1.结构特点:内壁为圆锥的锥面,光滑,轴线垂直于水平面且固定不动,可视为质点的小球紧贴着内壁在图中所示的水平面内做匀速圆周运动。
2.受力特点:小球质量为m,受两个力即竖直向下的重力mg和垂直内壁沿斜向上方向的支持力N F。
两个力的合力,就是摆球做圆周运动的向心力结论是:在同一地点,同一锥形斗内在不同高度的水平面内做匀速圆周运动的同一小球,支持力大小相等,向心力大小相等,向心加速度大小相等,若高度越高,则转动的越慢,而运动的越快。
三.圆碗受力分析运动分析正交分解x 轴指向心列方程求解规律mgθRF N x :F N sinθ=mω2r y :F N cosθ=mg r =RsinθAB Ca n =gtanθ;①同角同向心加速度(B 和C )②同高同角速度(A 和C )【模型演练1】.(2023·福建厦门·厦门外国语学校校考模拟预测)智能呼啦圈轻便美观,深受大众喜爱。
如图甲,腰带外侧带有轨道,将带有滑轮的短杆穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示。
可视为质点的配重质量为0.5kg ,绳长为0.5m ,悬挂点P 到腰带中心点O 的距离为0.2m 。
水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看作不动,重力加速度g 取210m /s ,sin370.6= ,下列说法正确的是()A .匀速转动时,配重受到的合力恒定不变B .若增大转速,腰带受到的合力不变C .当θ稳定在37︒时,配重的角速度为15rad /s ω=D .当θ由37︒缓慢增加到53︒的过程中,绳子对配重做正功【答案】CD【详解】A .匀速转动时,配重做匀速圆周运动,合力大小不变,但方向在变化,故A 错误;B .运动过程中腰带可看作不动,所以腰带合力始终为零,故B 错误;C .对配重,由牛顿第二定律2tan sin mg m l r θωθ=+()即A.甲容器中A球的线速度比B球大B.乙容器中C.丙容器中两球角速度大小相等D.丙容器中【答案】ABC【详解】A.设容器对小球弹力方向与竖直方向夹角为A.球A和球B的向心加速度大小分别为B.两球所受漏斗支持力大小之比与其所受向心力大小之比相等C.球A和球B的线速度大小之比为D.从图示时刻开始,球B旋转两周与球【答案】BDA.向心力大小为mRω2B.θ越小则ω越小C.在保持物块位置不变的情况下增大D.在保持物块位置不变的情况下增大【答案】BC由受力图可得解得由此可知θ越小则ω越小,故B正确;水平方向竖直方向可知增大角速度,陶罐对小物块的弹力增大,故故选BC。
第五章抛体运动专题04:水平面内圆周运动的临界问题题组一以弹力改变为临界条件1.(2023广东深圳红岭中学期中)传统吹糖技艺为我们展现了中国非物质文化遗产的独特魅力,向人们生动传述着不朽的民间手艺与文化记忆。
其中,甩糖是中国传统糖塑的重要表现形式之一,可简化成如图的模型,糖丝AC、BC可视为细线,其一端系在竖直杆上,另一端共同系着质量为m的麦芽糖。
当系统绕竖直杆以角速度ω水平旋转时,两根细线均处于伸直状态,忽略空气阻力。
下列说法正确的是()A.麦芽糖一定受到三个力作用B.麦芽糖可能受两个力作用C.增大角速度,糖丝AC的拉力减小,BC的拉力增大D.增大角速度,糖丝AC的拉力增大,BC的拉力减小2.(2023河北石家庄月考)如图所示,转动轴垂直于光滑水平面,交点O的上方h处(A点)固定细绳的一端,细绳的另一端拴接一质量为m的小球B,绳长l大于h,转动轴带动小球在光滑水平面上做圆周运动。
当转动的角速度ω逐渐增大时,下列说法正确的是()A.小球始终受三个力的作用B.细绳上的拉力始终保持不变C.要使球不离开水平面,结合l cos θ=h得到角速度的最大值为√gℎD.角速度ω逐渐增大,球可以上升到高度h以上3.(2023江苏常州高级中学月考)一光滑圆锥固定在水平地面上,其圆锥角为74°,圆锥底面的圆心为O'。
用一根长为0.5 m的轻绳一端系一质量为0.1 kg的小球(可视为质点),另一端固定在光滑圆锥顶上O点,O点距地面的高度为0.75 m,如图所示,如果使小球在光滑圆锥表面上做圆周运动。
(取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8)(1)小球的角速度不断缓慢增大,求小球恰离开圆锥表面时的角速度和此时轻绳的拉力;(2)当小球的角速度为2 rad/s时,求轻绳中的拉力大小;N时会被拉断,求当轻绳断裂后小球落地点与O'点间的(3)逐渐增大小球的角速度,若轻绳受力为53距离。
水平面内的圆周运动
一、水平圆盘问题
例1、水平圆盘以角速度ω匀速转动,距转动轴L 的位置有一小物块与圆盘相对静止,小物块的向心加速度多大所受摩擦力多大对接触面有什么要求离轴近的还是远的物体容易滑动
练习:质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑的水平面上绕O 点匀速转动时,求杆的OA 段和AB 段对小球的拉力之比。
例2、中心穿孔的光滑水平圆盘匀速转动,距转动轴L 的位置有一质量为m 的小物块A 通过一根细线穿过圆盘中心的光滑小孔吊着一质量为M 的物体B ,小物块A 与圆盘相对静止,求盘的角速度。
变式:若圆盘上表面不光滑,与A 的动摩擦因数为μ,则圆盘角速度的取值范围是多少
例3、在半径为r 的匀速转动的竖直圆筒内壁上附着一物块,物块与圆筒的动摩
擦因数为μ,要使物块不滑下来,圆筒转动的角速度应满足什么条件
例4、长为L 的细线悬挂质量为M 的小球,小球在水平面内做匀速圆周运动,细线与竖直方向夹角为θ,求(1)小球的角速度。
(2)小球对细线的拉力大小。
变式:一个光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,质量为m 的小球沿着筒的内壁在水平面内做匀速圆周运动,圆锥母线与轴线夹角为θ,小球到锥面顶点的高为h ,(1)小球的向心加速度为多少(2)对圆锥面的压力为多大(3)小球的角速度和线速度各为多少
°
·
思考:小球的向心加速度与小球质量有关吗与小球的高度有关吗若有两个小球在同一光滑的圆锥形筒内转动,A 球较高而B 球较低,试比较它们的向心加速度、对圆锥面的压力、线速度、角速度大小。
二、临界问题
例5:如图所示,洗衣机内半径为r 的圆筒,绕竖直中心轴OO ′转动,小物块a 靠在圆筒的内壁上,它与
圆筒的动摩擦因数为μ,现要使a 不下落,则圆筒转动的角速度ω至少为( )
A .r g /μ
B .g μ
C .r g /
D .r g μ/
例6:如图所示,细绳一端系着质量M =的物体,静止在水平桌面上,另一端通过光滑
的小孔吊着质量m =的物体 m ,已知M 与圆孔距离为,M 与水平面间的最大静摩擦力为
2N 。
现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态(g =10m
/s 2
)
例7、如图所示,两根相同的细线长度分别系在小球和竖直杆M 、N 两点上,其长度分别为L 、R 且构成如图一个直角三角形,小球在水平面内做匀速圆周运动,细线能承受的最大拉力为2mg,当两根细线都伸直时,若保持小球做圆周运动的半径不变,求:小球的角速度范围
变式、如图所示,两根相同的细线长度分别系在质量为m 的小球和竖直杆M 、N 两点上。
小球在水平面内做匀速圆周运动,当两根细线都伸直时,小球到杆的距离为R,且细线与杆的夹角分别为θ和α,承受的最大拉力为2mg ,若保持小球做圆周运动的半径不变,求:小球的角速度范围
三、两个或多个物体的圆周运动
例4:如图所示,A 、B 、C 三个物体放在水平旋转的圆盘上,三物与转盘的最大静摩擦因数均为μ,A 的
质量是2m ,B 和C 的质量均为m ,A 、B 离轴距离为R ,C 离轴2R ,若三物相对盘
r o
gR v ≤μ
静止,则( )
A .每个物体均受重力、支持力、静摩擦力、向心力四个力作用
B .
C 的向心加速度最大 C .B 的摩擦力最小
D .当圆台转速增大时,C 比B 先滑动,A 和B 同时滑动
例5:在光滑杆上穿着两个小球m 1、m 2,且m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚
好能与杆保持无相对滑动,如右图所示,此时两小球到转轴的距离r 1与r 2之比为( )
A .1∶1
B .1∶2
C .2∶1
D .1∶2
四、课后作业
1.在水平面上转弯的汽车,提供向心力的是( )
A .重力与支持力的合力
B .静摩擦力
C .滑动摩擦力
D .重力、支持力、牵引力的合力
2.有长短不同,材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上做匀速圆周运
动,那么( )
A .两个小球以相同的线速度运动时,长绳易断
B .两个小球以相同的角速度运动时,长绳易断
C .两个球以相同的周期运动时,短绳易断
D .不论如何,短绳易断
3.在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则
汽车拐弯时的安全速度是( )
A .v gR ≤μ
B .
C .v gR ≤2μ
D .v gR ≤μ 4.如图所示,A 、B 、C 三个小物体放在水平转台上,m A =2m B =2m C ,离转轴距离分
别为2R A =2R B =R C ,当转台转动时,下列说法正确的是( )
A .如果它们都不滑动,则C 的向心加速度最大
B .如果它们都不滑动,则B 所受的静摩擦力最小
C .当转台转速增大时,B 比A 先滑动
D .当转台转速增大时,C 比B 先滑动
5.如图所示,甲、乙两名滑冰运动员,M 甲=80kg ,M 乙=40kg ,面对面拉着弹簧秤做圆周运动的溜冰表演,两人
相距,弹簧秤的示数为600N ,下列判断中正确的是( )
A .两人的线速度相同,约为s
B .两人的角速度相同,约为5rad/s
C .两人的运动半径相同,都是
D .两人的运动半径不同,甲为,乙为
6.汽车在倾斜的轨道上转弯如图所示,弯道的倾角为θ,半径为r ,则汽车完
全不靠摩擦力转弯的速率是(设转弯半径水平)( )
A .θsin gr
B .θcos gr
C .θtan gr
D .θcot gr
7.一辆质量为1t 的赛车正以14m/s 的速度进入一个圆形跑道,已知跑道半径为50m ,最大静摩擦力约等
于滑动摩擦力,则:
(1)此赛车转弯所需的向心力是多大
(2)当天气晴朗时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道
(3)在雨天时,赛车和路面之间的摩擦系数是,问比赛过程中赛车是否能顺利通过弯道
8.水平圆盘绕竖直轴以角速度ω匀速转动。
一个质量为50kg 的人坐在离轴r=m/3处随盘一起转动。
设人
与盘的最大静摩擦力均为体重的倍,g 取10 m/s 2
,求:
(1)ω为多大时,人开始相对盘滑动。
(2)此时离中心r′= m 处的质量为100kg 的另一个人是否已相对滑动请简述理由。