第七章 飞机复合材料修理案例
- 格式:ppt
- 大小:4.29 MB
- 文档页数:66
2019年01月复合材料在飞机上的应用与修理吕善宝(山东太古飞机工程有限公司,山东济南250107)摘要:随着经济的不断发展和航空技术的不断进步,人们越来越多会选择将飞机作为自己的出行方式,航空工业最近几年发展速度也较快。
由于飞机飞行的特殊性,其对材料的使用往往有较高的要求。
复合材料是将各种材料有效复合在一起的材料,其可以高效对各种材料的性能进行应用,其质量轻、强度高、阻燃型好的特点非常适合在飞机上进行应用,在飞机各部位上的应用也越来越多。
为此,我将要在本文中对复合材料在飞机上的应用进行探讨,希望对促进我国航空工业的发展,可以起到有利的作用。
关键词:复合材料;飞机;应用与修理随着时代的不断发展,飞机制造技术对材料的要求越来越高,飞机上的各种材料也从原来的金属材质,逐渐向复合材料进行转变。
由于纳米技术的不断发展,复合材料技术取得了很大的发展,尤其体现在碳纤维材料上,其质量更轻、强度更大、耐高温性能更好,非常适合在飞机上进行应用,相关的修理技术也取得了很大的进步【1】。
1复合材料在飞机上的应用复合材料在旋翼桨叶上的应用。
经过复合材料工艺和成分的不断改进,复合材料的抗疲劳性能更好、裂纹的扩散速度也较慢、容易冲压成型,比价适合在旋翼浆上进行应用。
通过复合材料的应用,可以有效提高桨叶的使用寿命,降低其维修成本,增加公司的经济效益【2】。
其主要特点是,翼型从对称变成了弯曲、非对称,浆尖形状从矩形变成了后掠、尖削,这样可以有效改善浆也的载荷分布、浆涡干扰和噪声特性,有效提高了旋翼的工作效率,在实际应用过程中,得到了不错的应用效果【3】。
纳米科技是科学技术领域的重大发现,其有效改变了我们对微观世界的认知,碳纤维就是在对纳米技术的研究中发现的。
碳纤维是有机纤维经过碳化和石墨化处理而得到的,其强度非常高,比常规的钢材料的强度还高,但是其密度却非常小,甚至比铝的密度还低。
为了让碳纤维具有更大的利用价值,将其和其它材料进行复合,便研制出碳纤维复合材料,其抗拉强度更高,是传统钢铁的数倍,还具有抗变形、抗磁化、耐高温、耐腐蚀的优点,具有非常大的发展和应用空间,目前在航空领域的应用已经较多,能够有效减轻航空器的重量。
用复合材料技术修理金属飞机结构个典型的修理实例1.在B747上的修理验证该项工作由澳大利亚航空研究所与波音飞机公司和澳大利亚快达航空公司合作进行,目的在于验证该项技术的置信度和可靠性。
1990年l0月在B747上选用了几个有代表性的部位用硼/环氧复合材料进行了修理,修理在外场进行,在真实飞行条件下考核并定期检查。
胶粘剂选了两种;高温固化胶和环氧一腈结构胶膜。
120℃固化1小时或80℃固化2小时;低温固化采用双组分丙烯酸类结构胶,室温固化2小时可达极限强度的9o 。
复合材料补片有已固化的和半固化的(B阶段).还有于现场设计制造,在真空袋中预固化的。
现场用加热毯加热,用真空袋加压进行胶接。
到1992年8月共飞行了6843小时,无损检测未见任何损伤以及分层脱粘等缺陷.效果十分良好。
2.B-1轰炸机群的修理1991年1月,美国发现其B-1轰炸机群中有37架飞机的前机身大粱区域有裂纹,曾用螺接铝板、裂纹端钻止裂孔的办法进行修理,但钻孔和螺接恶化了该区域的受力情况,7月即发现有17架飞机裂纹继续扩展,效果不佳。
以后采用复合材料补片进行胶接修理,补片在83-96kPa、12O℃下固化了9O分钟,修理效果良好,应力集中降低了15~20%,提高了疲劳寿命。
机群的其他破坏和损伤等均将采用此法进行修理。
3.B767机身龙骨大梁的腐蚀修理B767机身龙骨粱使用4年后发生严重腐蚀,在长达近1米的距离上,钉孔周围严重腐蚀,7075一T6材料腐蚀掉1/3,使连接钉易脱落,已超过了渡音的修理规范。
采用常规修理要换龙骨粱,耗时费力。
用本方法修理仅需两人花8小时即可完成,用复合材料代替了原破坏片的金属承载,恢复了原设计,修复后经两年多的飞行.检查完好无损。
修理方法的技术要点“贴补”修理方法的技术要点和技术关键大致有如下几点:1.修理选材修理时材料体系的选用是首当其冲的问题,其中主要的是纤维体系、树脂体系和胶粘剂的选择。
迄今为止国外多采用硼纤维环氧体系复合材料,其优点是强度高、刚性好;热膨胀系数相对高,与金属部件的热匹配性能好,可以降低固化后的残余热应力;导电性低.便于使常规的涡流无检测技术与金属接触电化学腐蚀性能较碳纤维复合材料为好。
图1右平尾上蒙皮腐蚀损失情况用复合材料技术修理金属飞机结构的修理记实Re p air Practice of Usin g Com p osite Technolo gy for Aircraft Metal Structures¿陈绍杰/沈阳飞机研究所用复合材料技术修理金属飞机结构是一项比较新的机体结构修理技术,90年代已为世界各国普遍采用。
该方法实质上是由复合材料结构胶接修理方法发展而来的,此时贴补的胶接补片不是贴在复合材料结构上而是贴在金属结构上。
该方法特别适用于金属飞机结构的裂纹的腐蚀等多发性常见损伤,是目前世界上公认的一种优质、高效、低成本的修理方法。
原5航空制造工程6杂志已对该项技术作过相应的报道。
任务来源用复合材料技术修理金属飞机结构,虽然在国际上已是一项成熟的新技术,但在我国国内基本上还是一个空白。
有鉴于此,以沈阳飞机制造公司(沈飞)为主,有沈阳飞机研究所参加与希腊的H AI(H ellenic Aeros p ace Industr y )合作成立了/沈阳)Hellenic 飞机修理公司0,拟从希腊引进该项技术,推广应用于国内的军、民机修理业务。
HAI 是希腊一家国家控股的国有大型飞机和发动机修理公司,始建于1975年,在欧洲同业者中占有较重要的技术地位。
沈阳)H ellenic 飞机修理公司于1999年7月7日~9日在沈飞公司进行了第一次采用该技术进行飞机修理,因为这是首次将该技术用于国内飞机的修理实践,故某种程度上带有演示验证的性质。
修理材料、修理设备均由希方提供,操作亦由希方为主进行。
修理方案和设计及则由双方合作进行。
为此希方派来3名技术和操作人员完成了具体的修理工作。
待修结构及损伤情况待修飞机结构是某型飞机的两个水平尾翼。
该机是一架返厂大修的飞机。
因该机长期在沿海使用,由环境条件造成多处腐蚀损伤。
此次修理的具体对象为该机左右平尾翼尖接近配重处的腐蚀损伤,计有左尾下蒙皮、右平尾上、下蒙皮共3处,具体腐蚀性能详见表1。
复合材料的粘接修理前言复合材料在飞机上的用量愈来愈广,以空中客车A380为例,用量占结构重量的28%,B787占51%。
复合材料结构由于比重轻,强度大,刚度大,不易腐蚀等特点,在现代民航运输机中得到大量采用。
因此,涉及复合材料结构损伤的维修便日益重要,特别是由于复合材料结构抗冲击能力差,在使用中极易受到外来因素(如鸟击、雷击、弹伤以及维护或操作不当等情况)发生以冲击损伤为主的各种结构破坏,如分层、裂纹、破孔和断裂等。
这些损伤会显著降低复合材料的静、动态承载性能,严重时会直接影响飞行安全,如不及时修复,将会使整个复合材料部件失效,花巨额费用进行更换。
复合材料的修理方法可分为机械修理和粘接修理两大类。
机械修理方法存在着结构增重较多、修理区应力较大、修理补片影响修复区的电性能等缺点,因此,目前复合材料结构损伤主要采用粘接修理方法。
一、标准复合材料修理(一)常见结构复合材料结构制造中所采用的材料为玻璃纤维增强塑料(GFRP)、碳纤维增强塑料(CFRP)以及芳纶纤维增强塑料(AFRP)。
这些材料用于夹心结构以及整体结构的制造。
在进行永久修理时,修理材料一般必须按下列准则与原制造材料相配合:Ⅰ、只用碳纤维材料修理碳纤维结构。
Ⅱ、只用玻璃纤维材料修理玻璃纤维或芳纶纤维结构。
A、蜂窝夹芯部件玻璃纤维增强塑料、碳纤维增强塑料以及芳纶纤维增强塑料构成了这类部件的蒙皮,然后将蒙皮与金属或非金属的芯子胶接在一起,芯子通常采用蜂窝结构。
B、整体结构部件整体结构部件由带内部桁条、肋及翼梁的复合材料蒙皮构成。
它提供刚度及强度。
C、混合结构部件这类部件由混合结构制成,包括部分整体结构及部分夹芯结构。
(二)修理材料1、环氧树脂体系环氧树脂由两部分组成:树脂和催化剂(也称固化剂)。
环氧树脂提供了很好的机械和抗疲劳性能,尺寸稳定性相当好,抗腐蚀,层间结合强度高,有良好的电学性能和低的吸湿性。
2、纤维增强材料①玻璃纤维②Kevlar纤维——芳纶纤维③碳/石墨④硼⑤陶瓷纤维3、粘接剂①胶膜胶膜是涂在一层支持薄膜上的粘接剂。
飞机复合材料结构修理技术1 复合材料在飞机上的应用复合材料是由两种或两种以上的不同材料、不同形状、不同性质的物质复合形成的新型材料。
一般由基体材料和增强材料所组成。
复合材料可经设计,即通过对原材料的选择、各组分分布设计和工艺条件的保证等,使原组分材料优点互补,因而呈现了出色的综合性能。
随着玻璃纤维、凯夫拉、碳纤维等复合材料的发展,并且早期复合材料结构的使用预示着复合材料运用的辉煌。
在飞机上翼尖小翼、雷达罩和尾锥上少量玻璃纤维增强塑料的使用标志着飞机设计上复合材料的重新应用。
从那时起复合材料在这些部件上的成功应用导致在每一种新机型上复合材料应用的增加。
波音747使用了超过10000平方英尺表面的复合材料结构。
在过去几年当中先进复合材料技术运用到诸如大翼面板、地板梁等主要结构上[2]。
显而易见对基本复合材料结构和复合材料结构修理技术的理解对航空企业特别是航空维修企业是多么重要。
2 复合材料结构修理技术飞机复合材料的修理目的是最大限度的恢复飞机结构的完整性和安全性,主要修理的效果如何与多种因素有关,如修理后的强度、耐久性、气动平滑度、重量、工作温度、环境因素等[3],强度主要考虑恢复结构的刚度、静强度和疲劳强度,因此,为了避免修理中出现意外的错误,必须严格按照一定的操作规程进行,一般的修理程序为:找出损伤区域→评估损伤的程度→损伤应力的评估→修理方案设计→修理结构的准备→补丁的制造→补丁的安装→修理后的无损检测。
当今复合材料修理的主要工艺有以下几种:2.1 复合材料的连接和打孔飞机复合材料不同于其他金属或合金材料,由于自身的特点,在修理时容易出现下列问题[4]:复合材料件装配前的钻孔困难,容易磨损钻具,钻孔附近易出现分层现象;复合材料与金属件连接时,由于电位差较大,容易腐蚀金属件;复合材料装配时易造成损伤等,基于这种种原因,必须对打孔和连接工艺做特殊的处理,才能保证复合材料件的安装和修理后的使用安全。
飞机复合材料修理技术研究复合材料在飞机领域的应用范围越来越广泛,在制造和使用过程中出现了各种结构缺陷和损伤,因此对复合材料的修理和维护成为重要的研究领域。
对飞机复合材料的合理维修可以有效降低成本,提高飞机的安全系数。
主要对复合材料在飞机领域的应用进行了介绍,总结了常见的复合材料维修方法。
标签:复合材料;维修;应用一、复合材料的结构构成该机型所使用的复合材料是由玻璃纤维或由环氧树脂基体(树脂)制成的碳布组成的。
环氧树脂基体可以保护纤维,并转移分布在纤维上的载荷。
环氧树脂是一种热固性材料,一旦其形状成型,将不再改变。
纤维具有抗拉强度高的特点,但其抗压和弯曲强度较低;环氧树脂基体具有较高的抗压强度和剪切强度。
其中,固体压板(层压板)结构是由一个或多个纤维布和环氧树脂基体铺层组成的;二级胶接是用胶粘剂将预固化的复合材料零件固定的结构连接;夹层结构是由两个包围着闭孔泡沫芯的层压板组成的。
二、飞机复合材料的维修技术2.1飞机复合材料的维修准则在飞机复合材料的维修中,需要满足以下几点要求:1)满足飞机的载荷和强度要求;2)满足结构的刚性要求;3)满足耐久性要求;4)满足气动光滑性要求;5)修理后增重效应小;6)修理的时间短、成本低。
2.2飞机复合材料修理方法在飞机复合材料的修理方法中,主要包括了贴补法、挖补法、注胶法、机械连接法等方法。
按照连接形式划分,可以分为机械连接修理和胶接修理两种。
(一)胶接修理胶接修理是飞机复合材料最为常见的修理方法,在飞机复合材料中主要采用的结构形式是层合板和复合材料蜂窝夹芯结构。
在复合材料蜂窝夹芯结构的修理中主要是层合板和芯材的修理两个方面。
在复合材料修理的分类中,可以根据补片与原结构的位置分为贴补修理和挖补修理。
(1)贴补修理在贴补修理中主要是在损伤结构的外表面胶黏固定补片的修理方式,通过贴补修理可以恢复损伤构件的结构强度和刚度。
首先将损伤区域的结构清除,打磨成圆孔,也可以根据实际需求打磨成任意形状。
先进复合材料在飞机主承力件修理中的应用:1 待修结构及损伤情况飞机机翼前梁是机翼前部的主要受力件,由LC4铝合金的模压件制成,剖面呈“工”字形,沿展向分为两段,根部第1段是4m长的整体大梁,同时兼作前整体油箱隔板。
LC4材料耐腐蚀性能差,飞机经长期使用后机翼前梁(尤其是前梁第1段)腐蚀严重,此次修理的两架飞机机翼前梁共发现81处腐蚀,腐蚀的原始状态见图1。
分布位置为前梁腹板74处,前梁交点3处,机翼1肋4处。
腐蚀按深度划分,深度不超过1.0mm的有17处,深度大于1.0mm而不超过2.0mm的有31处,深度大于2.0mm而不超过3.0mm的有27处,深度大于3.0mm的有6处,其中穿透性腐蚀4处。
由于机翼前梁结构工艺性的限制,在修理中既不能更换新件,也不能用常规机械方法用螺接或铆接形式去加强。
采用先进复合材料补片贴补技术对机翼前梁进行修理,能有效克服机翼前梁结构工艺性的限制,修复铆(螺)接无法实施的部位。
此方法易于掌握,成形性好,所用的时间短,成本低,经济性好。
2 修理实践2.1 材料选择硼纤维是目前国外飞机金属结构修理中普遍采用的理想材料,但在国内仅处于实验室研究阶段。
虽然碳纤维在强度上不如硼纤维,但在国内已批量生产,并在国内许多领域中得到广泛的应用。
因此,此次修理采用中温固化环氧碳纤维单向预浸料3234/T300,其拉伸强度为1300MPa,拉伸模量110GPa,压缩强度890MPa,密度为1.72g/cm3 ,每层厚度0.125mm。
胶膜采用SY-24C,其剪切强度为33MPa。
2.2 设备选型设备选用美国HEATCON公司的双区热补仪HCS9200B,HCS9200B,它们是由电脑监测和控制的,使用多个传感器输入、各种图表状态显示屏幕以及完整的程序记录打印系统来实现复合材料的修理。
在固化对温度非常敏感的复合材料时,双区均能有效控制固化所需要的电热、真空度和时间。
设备体积小、便于携带,可以在车间里或外场修理时使用,是当前国际上标准的复合材料热胶接修理设备。
常见飞机蜂窝板损伤形式及修理方法航空器复合材料中的蜂窝板是由薄而强的两层面板中间胶接蜂窝材料而成的一种新型复合材料,也称蜂窝层合结构(见图1)。
其面板选材有金属板、玻璃纤维、石英纤维、碳纤维等;夹心材料主要有芳纶、玻璃纤维、铝合金及发泡型结构。
蜂窝可制成不同的形状。
飞机上的蜂窝结构是由耐腐蚀夹心、面板、衬垫、隔板(假梁)、边肋等零件胶合而成。
面板与夹芯之间用胶膜胶接,蜂窝夹芯用芯子胶和耐腐蚀胶根据实际需要形状施加真空压力后加温胶接成型。
图1 蜂窝夹心板结构一、航空复合材料蜂窝结构损伤种类根据航空复合材料蜂窝结构部件在使用过程中可能出现损伤的情况,我们可以大致将胶接蜂窝结构部件的损伤分以下5类:1、表面损伤图2 典型表面凹坑此类损伤一般通过目视检查发现,包括表面擦伤、划伤、局部轻微腐蚀、表面蒙皮裂纹、表面小凹坑和局部轻微压陷等。
这类损伤一般对结构强度不产生明显的削弱。
2、脱胶及分层损伤该损伤是指纤维层与层之间或面板与夹芯之间的树脂失效缺陷,主要通过敲击检查、超声波检测等手段发现。
此类损伤一般不引起结构外观变化,大多是在生产过程中造成的初始缺陷,并在反复使用过程中缺陷不断扩展而导致的。
脱胶或分层面积过大会引起整体复合材料强度的削弱,应及时予以修补。
3、单侧面板损伤这类损伤包括单侧面板局部压陷、破裂或穿孔,一般通过目视检查即可发现。
该类型损伤能使一侧面板和蜂窝夹芯都受到损伤(表面塌陷),对气动性能和结构强度影响较大。
一旦发现该类损伤必须经过修理和检验确认后方能能重新使用。
4、穿透损伤该类型损伤是指蜂窝部件出现穿透性损伤、严重压陷和较大范围的残缺损伤等。
此类损伤对结构性能和强度有严重的影响,根据受损情况立即予以修理或按需更换新件。
5、内部积水该损伤原因主要由于蜂窝结构边缘或蜂窝材料对接边缘密封不严或密封失效,在长期使用过程中由于雨水渗透、油液浸泡以及水汽冷凝而造成蜂窝夹芯出现积水。
虽然一般情况蜂窝内部积水不会造成严重影响;但在冬季日夜气温变化较大的情况下,由于积液结冰膨胀将会会造成复合材料部件内部树脂基体脱胶;同时在积液的长期浸泡下也会使复合材料的树脂基体的胶接强度大幅降低而降低部件的整体性能;特别是各类复合材料制备的舵面、襟翼、翼身整流罩及发动机部件等,均应及时检查其内部蜂窝结构的积水情况并作出相应修理措施。
飞机的复合材料修理:飞机复合材料通常被称为先进复合材料(Advanced Composite Material,ACM)。
它使用高强度的纤维增强材料,嵌入在一种树脂基体里,以层或层片的形式叠加起来,形成层板,具有高强度,结实坚硬,能够减轻飞机结构重量,还具有抗腐蚀、破损安全性高等优点。
复合材料的修理工序也极其专业,涉及检查、去除修复损伤、打磨、清洁、制作浸布、铺层、粘接以及固化等众多复杂环节,其特点可用“精细”二字形容。
他们穿着白大褂、戴着口罩和细纱手套……远看你会以为这是一间手术室,其实这里是Ameco复合材料修理车间的洁净室。
仅从工作场所上看,已能略猜出一二,复合材料的修理规格不一般。
近年来,复合材料作为飞机结构件的“新宠”,越来越多地被使用在飞机上,如飞机的整流罩、控制面、起落架舱门、大翼和安定面前后缘等部位。
据悉,在波音787等一系列先进客机上,复合材料使用的比重甚至超过50%。
但提及复合材料的修理,却鲜为人知。
其实,复合材料的修理过程很有意思,就像是为飞机表面做“外科手术”。
但整个手术又涉及众多环节,每个环节都能展示出操作者的“十八般武艺”。
诊断:“病情损伤”靠耳朵复合材料的特点是层面多,有点像“多层三明治”,中间夹层结构是蜂窝芯体,外面覆盖蒙皮,所有材料均由胶膜粘接。
蒙皮也有多层,拿飞机大翼盖板来说,从里至外分别由三层碳纤维和一层玻璃纤维组成。
郭玉明是Ameco复合材料车间的一位年轻修理工,他常拿着专业敲击棒在一块襟翼盖板上轻轻敲击。
他说,这个方法是为了查出那些从部件表面看不出来的“内伤”,比如开胶或脱层。
“这个地方声音清脆,说明它是完好区域,而这个地方声音沉闷、有点混沌,应该是有脱层。
”据郭玉明讲,这份“练耳朵”的能力可不是随便谁都行的,需要多次实战磨炼和领悟。
出师2年的郭玉明,当初为了练好这项本领,没少在部件上做“听音练耳”。
此外,复合材料损伤的检查方法还有超声波、红外线热成像等。