【免费下载】MATLAB符号运算习题
- 格式:pdf
- 大小:182.52 KB
- 文档页数:6
1 将(x -6)(x -3)(x -8)展开为系数多项式的形式。
2 求解多项式x 3-7x 2+2x +40的根。
3 求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。
4 计算多项式乘法(x 2+2x +2)(x 2+5x +4)。
5 计算多项式除法(3x 3+13x 2+6x +8)/(x +4)。
6 对下式进行部分分式展开:27243645232345234+++++++++x x x x x x x x x7 计算多项式9514124234++--x x x x 的微分和积分。
8 用符号函数法求解方程a t 2+b*t +c=0。
9用符号计算验证三角等式:sin(ϕ1)cos(ϕ2)-cos(ϕ1)sin(ϕ2) =sin(ϕ1-ϕ2) 10 因式分解:6555234-++-x x x x 11 ⎥⎥⎦⎤⎢⎢⎣⎡=)sin()log(12x x e x x a f ax ,用符号微分求df/dx 。
12 求代数方程组⎪⎩⎪⎨⎧=+=++002y x c by ax 关于x,y 的解。
13, 用符号函数法求解方程a t 2+b*t +c=0。
(应用solve)14, 因式分解:6555234-++-x x x x (应用syms, factor) 15, ⎥⎥⎦⎤⎢⎢⎣⎡=)sin()log(12x x e x x a f ax ,用符号微分求df/dx 。
(应用syms,diff)16计算极限求极限:n n h n x M hx h x L )1(lim )2(,)ln()ln(lim )1(0-=-+=∞→→ 17 计算导数22d d ,d d ,d d ,sin x y C a y B x y A ax y ====求.18计算不定积分、定积分、反常积分 x x x x I d )22(1222⎰+-+=,x x x x J d cos sin cos 2/0⎰π+=,⎰+∞-=0d e 2x K x .19 符号求和求级数 ∑∞=121n n 的和S, 以及前十项的部分和S1. 20解代数方程和常微分方程例如:求一元二次方程a*x^2+b*x+c=0的根. 21求微分方程x y ='的通解.22求微分方程⎩⎨⎧==+=0)0(' ,1)0('"y y y x y 的特解. 23求微分方程组⎩⎨⎧=+=x y xy x 2''的通解.。
11、绘制曲线13++=x x y ,x 的取值范围为[-5,5]。
clear; x=-5:0.1:5; y=x.^3+x+1; plot(x,y,'k'); title('曲线图像'); xlabel('x') ylabel('y') grid on;hold on;2、有一组测量数据满足-at e =y ,t 的变化范围为0~10,用不同的线型和标记点画出a=0.1、a=0.2和a=0.5三种情况下的曲线。
并添加标题:运动曲线图;添加横坐标:时间 t/s ;添加纵坐标:位移 s/mm ;添加图例。
t=0:0.5:10; y1=exp(-0.1*t); y2=exp(-0.2*t); y3=exp(-0.5*t);plot(t,y1,':*r',t,y2,'-^g',t,y3,'-ob') title('运动曲线图'); xlabel('时间 t/s') ylabel('位移 s/mm') legend('a=0.1','a=0.2','a=0.5')3、22y xxe z --=,当x 和y 的取值范围均为-2到2时,用建立子窗口的方法在同一个图形窗口中绘制出三维线图、网线图、表面图和等高线效果图。
[x,y]=meshgrid([-2:0.2:2]);z=x.*exp(-x.^2-y.^2); mesh(x,y,z) subplot(2,2,1) plot3(x,y,z)title('plot3(x,y,z)') subplot(2,2,2) mesh(x,y,z)title('mesh(x,y,z)') subplot(2,2,3) surf(x,y,z)title('surf(x,y,z)') subplot(2,2,4) surf(x,y,z) shading interptitle('surf(x,y,z) shading interp')shading interp4、在同一坐标内绘制如下曲线:(1)y1=tsin(t)(红色连续线‘—’);(2)y2=t2-cos(t);(蓝色间断线‘—.’)(3)题头:小车运动学分析曲线;图例:y1曲线、y2曲线(4)x轴:时间t/s;y轴:位移曲线/mm (5)曲线上标注文字说明:该运动曲线良好。
实验四MATLAB符号运算实验四MATLAB符号运算⼀、实验⽬的:1、掌握定义符号对象的⽅法;2、掌握符号表达式的运算法则以及符号矩阵运算。
3、掌握求符号函数极限及导数的⽅法。
4、掌握求符号函数定积分和不定积分的⽅法。
⼆、实验原理1、符号常量、符号变量、符号表达式的创建(1) 使⽤sym( )创建输⼊以下命令,观察Workspace 中A、B、f是什么类型的数据,占⽤多少字节的内存空间。
>>A=sym('1') %符号常量>>B=sym('x') %符号变量>>f=sym('2*x^2+3y-1') %符号表达式>>clear>>f1=sym('1+2') %有单引号,表⽰字符串>>f2=sym(1+2) %⽆单引号>>f3=sym('2*x+3')>>f4=sym(2*x+3) %为什么会出错>>x=1>>f4=sym(2*x+3)通过看MATLAB 的帮助可知,sym( )的参数可以是字符串或数值类型,⽆论是哪种类型都会⽣成符号类型数据。
(2) 使⽤syms 创建>>clear>>syms x y z %注意观察x,y,z都是什么类型的,它们的内容是什么>>x,y,z>>f1=x^2+2*x+1>>f2=exp(y)+exp(z)^2>>f3=f1+f2通过以上实验,知道⽣成符号表达式的第⼆种⽅法:由符号类型的变量经过运算(加减乘除等)得到。
⼜如:>>f1=sym('x^2+y +sin(2)')>>syms x y>>f2=x^2+y+sin(2)>>x=sym('2') , y=sym('1')>>f3=x^2+y+sin(2)>>y=sym('w')>>f4=x^2+y+sin(2)(3)符号矩阵创建>>syms a1 a2 a3 a4>>A=[a1 a2;a3 a4]>>A(1),A(3)或者>>B=sym('[ b1 b2 ;b3 b4] ')>>c1=sym('sin(x) ')>>c2=sym('x^2')>>c3=sym('3*y+z')>>c4=sym('3 ')>>C=[c1 c2; c3 c4]2、符号算术运算(1) 符号量相乘、相除符号量相乘运算和数值量相乘⼀样,分成矩阵乘和数组乘。
第9章 MATLAB符号计算习题9一、选择题1.设有a=sym(4)。
则1/a+1/a的值是()。
BA.0.5 B.1/2 C.1/4+1/4 D.2/a2.函数factor(sym(15))的值是()。
DA.'15' B.15 C.[ 1, 3, 5] D.[ 3, 5]3.在命令行窗口输入下列命令:>> f=sym(1);>> eval(int(f,1,4))则命令执行后的输出结果是()。
AA.3 B.4 C.5 D.14.MA TLAB将函数展开为幂级数,所使用的函数是()。
DA.tailor B.tayler C.diff D.taylor5.MATLAB用于符号常微分方程求解的函数是()。
CA.solve B.solver C.dsolve D.dsolver二、填空题1.在进行符号运算之前首先要建立,所使用的函数或命令有和。
符号对象,sym,syms2.对于“没有定义”的极限,MATLAB给出的结果为;对于极限值为无穷大的极限,MA TLAB给出的结果为。
NaN,Inf3.在命令行窗口输入下列命令:>> syms n;>> s=symsum(n,1,10)命令执行后s的值是。
554.在MATLAB中,函数solve(s,v)用于代数方程符号求解,其中s代表,v 代表。
符号代数方程,求解变量5.在MA TLAB符号计算中y的二阶导数表示为。
D2y三、应用题1.分解因式。
(1)x9-1 (2)x4+x3+2x2+x+1(3)125x6+75x4+15x2+1 (4)x2+y2+z2+2(xy+yz+zx)(1):2x=sym('x'); A=x^9-1; factor(A) (2):x=sym('x');B=x^4+x^3+2*x^2+x+1; factor(B) 2.求函数的极限。
(1)4586lim 22++x x x x --4→x (2)xx -0→x lim(1):x=sym('x');A=(x^2-6*x+8)/(x^2-5*x+4); limit(A,x,4) (2):x=sym('x'); B=abs(x)/x; limit(B)3.求函数的符号导数。
Matlab 教程 第二章 符号计算课堂练习1 创建符号变量有几种方法?MA TLAB 提供了两种创建符号变量和表达式的函数:sym 和syms 。
sym 用于创建一个符号变量或表达式,用法如x=sym(‘x’) 及 f=sym(‘x+y+z’),syms 用于创建多个符号变量,用法如syms x y z 。
f=sym(‘x+y+z’) 相当于syms x y z f= x+y+z2 下面三种表示方法有什么不同的含义? (1)f=3*x^2+5*x+2 (2)f='3*x^2+5*x+2' (3)x=sym('x') f=3*x^2+5*x+2 (1)f=3*x^2+5*x+2表示在给定x 时,将3*x^2+5*x+2的数值运算结果赋值给变量f ,如果没有给定x 则指示错误信息。
(2)f='3*x^2+5*x+2'表示将字符串'3*x^2+5*x+2'赋值给字符变量f ,没有任何计算含义,因此也不对字符串中的内容做任何分析。
(3)x=sym('x')f=3*x^2+5*x+2表示x 是一个符号变量,因此算式f=3*x^2+5*x+2就具有了符号函数的意义,f 也自然成为符号变量了。
3 用符号函数法求解方程a t 2+b*t +c=0。
>> r=solve('a*t^2+b*t+c=0','t') r =[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))] [ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]4 用符号计算验证三角等式:sin(ϕ1)cos(ϕ2)-cos(ϕ1)sin(ϕ2) =sin(ϕ1-ϕ2) >> syms phi1 phi2;>> y=simple(sin(phi1)*cos(phi2)-cos(phi1)*sin(phi2)) y =sin(phi1-phi2)5 求矩阵⎥⎦⎤⎢⎣⎡=22211211a a a a A 的行列式值、逆和特征根。
Matlab考试题库+标准答案Matlab考试题库+答案————————————————————————————————作者:————————————————————————————————⽇期:3 填空题 1、标点符号; %—⽤来表⽰该⾏为注释⾏。
可以使命令⾏不显⽰运算结果,2、x 为0 ~4pi ,步长为0.1pi 的向量,使⽤命令 x=0:0.1*pi:4*pi 创建。
3、输⼊矩阵A= ,使⽤全下标⽅式⽤A(2,2)取出元素“-5 ”,使⽤单下标⽅式⽤A(5)取出元素“-5 ”。
4、符号表达式sin(2*a+t)+m 中独⽴的符号变量为 t 。
5、M 脚本⽂件和M 函数⽂件的主要区别是M 脚本⽂件没有函数定义和M 函数⽂件有函数定义_______。
6. 设x 是⼀维数组,x 的倒数第3个元素表⽰为x(_end-2_)设y 为⼆维数组,要删除y 的第34⾏和48列,可使⽤命令y(34,:)=[] ;y(:,48)=[];7. 将变量x 以Ascii ⽂本格式存储到⽂件fname.txt ,应使⽤命令 save _x ;8. 在while 表达式, 语句体, End 循环语句中,表达式的值⾮零时表⽰循环条件为真,语句体将被执⾏,否则跳出该循环语句;9.要从键盘读⼊⼀个字符串并赋值给变量x ,且给出提⽰“Who is she?”,应使⽤命令x=input(‘Who is she?’,’s’) ;10.设A=和B= 和C=均为m*n 矩阵,且存在于WorkSpace 中,要产⽣矩阵D= ,可⽤命令D=(A-C)/B.^C ,计算可⽤命令det(inv(A’*B)11. 在MATLAB 命令窗⼝中的“>>”标志为MATLAB 的命令⾏提⽰符,“│”标志为输⼊提⽰符。
12.已知A=[1 2 3;4 5 0;7 8 9];B=[1 0 3;1 5 0;0 1 2];写出下列各指令运⾏的结果。
第3讲 MATLAB 符号计算符号计算则是可以对未赋值的符号对象(可以是常数、变量、表达式)进行运算和处理。
MATLAB 具有符号数学工具箱(Symbolic Math Toolbox),将符号运算结合到MATLAB 的数值运算环境。
符号数学工具箱是建立在Maple 软件基础上的。
1、求矩阵的行列式值、非共轭转置和特征值。
⎥⎦⎤⎢⎣⎡=22211211a a a a A 解: >> A=sym('[a11,a12;a21,a22]') A = [ a11, a12][ a21, a22] >> B=det(A) B = a11*a22-a12*a21 >> C=A.' C = [ a11, a21][ a12, a22] >> D=eig(A) D = 1/2*a11+1/2*a22+1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2) 1/2*a11+1/2*a22-1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2)2\符号表达式f=2x 2+3x+4与g=5x+6的代数运算(f+g ,f*g )。
解:
2、将g=x3-6x2+11x-6用两种形式的符号表达式的表示。
(因
式和嵌套式)
解:>> f=sym('x^3-6*x^2+11*x-6')
f =
x^3-6*x^2+11*x-6
>> g=sym('(x-1)*(x-2)*(x-3)')
g =
(x-1)*(x-2)*(x-3)
>> g1=sym('x*(x*(x-6)+11)-6')
g1 =
x*(x*(x-6)+11)-6
4.利用三角函数来简化符号表达式cos2x-sin2x。
解:>> f=sym('cos(x)^2-sin(x)^2')
f =
cos(x)^2-sin(x)^2
>> simplify(f)
ans =
2*cos(x)^2-1
>>
5、用subs函数对符号表达式(x+y)2+3(x+y)+5中的x+y替换成s。
解:>> f=sym('(x+y)^2+3*(x+y)+5')
f =
(x+y)^2+3*(x+y)+5
>> f1=subs(f,'x+y','s') f1 = ((s))^2+3*((s))+5 >>
6、用numden 函数来提取符号表达式和的
23s s 12
++23s s 12++分子、分母。
解: >> f1=sym('1/(s^2+3*x+2)') f1 = 1/(s^2+3*x+2) >> f2=sym('1/s^2+3*x+2')
f2 =
1/s^2+3*x+2
>> [n1,d1]=numden(f1) n1 =
1
d1 =
s^2+3*x+2
>> [n2,d2]=numden(f2) n2 =
1+3*x*s^2+2*s^2
d2 = s^2 >>
7、分别求1/x 在0处、从左边趋近和从右边趋近的三个极限值。
解:8、已知f(x)=ax 2+bx+c ,求f(x)的一阶和三阶微分。
9、对符号矩阵求t 的一阶微分。
⎥⎥⎦⎤⎢⎢⎣⎡x 2e tsin(x)t 2x 10、求积分 。
⎰⎰π230cos(x)11、求级数和1+x+x 2+…+x k +…的和。
(符号变量 ++++
+222k 131211为k )12、求三元非线性方程组的解。
⎪⎩⎪⎨⎧-==+=++1z *y 43z x 012x x 213、求微分方程,y(1)=0,y(0)=0的解。
222x dx dy 3dx y d x =-。