第三章matlab语言的符号运算
- 格式:ppt
- 大小:657.00 KB
- 文档页数:46
第三讲 MATLAB 的符号运算(注:文中红色字体为命令执行的结果,在Command 窗口中显示)3-1 符号对象的创建和使用1.符号运算入门符号运算的特点是,运算过程中允许存在非数值的符号变量。
先看如下示例: 函数2)(sin )(x x f =,用MATLAB 求它的微积分,命令如下:f=’sin(x)^2’; %定义符号函数f(x)dfdx=diff(f) %求dxx df )(的指令 intf=int(f) %求⎰dx x f )(的指令显示的计算结果为:dfdx=2*sin(x)*cos(x)intf=-1/2sin(x)*cos(x)+1/2*x 所以,x x dx x df cos sin )(2=,x x x dx x f cos sin )(2121-=⎰。
此例中,首先定义符号函数f=’sin(x)^2’,然后由符号运算获得2)(sin )(x x f =的微分和积分。
2.定义符号变量在使用符号变量之前,应先声明某些要用到的变量是“符号”变量。
声明符号变量的语句:syms 变量名列表或: sym(‘变量名’)其中各个变量名应该用空格分隔,而不能用逗号分隔。
如创建符号变量x 和a :x=sym(‘x ’)a=sym(‘alpha ’)或用: syms x a %定义符号变量x 和a这里,变量x 和a 的类型是符号对象,它们被定义后,即可参与符号运算。
3.定义符号表达式和符号方程符号表达式和符号方程是两种不同的操作对象。
区别在于:符号表达式不包含等号(=),而符号方程须带等号。
它们的创建方式相同。
如:要考虑二次函数f=ax^2+bx+c ,可以创建符号表达式,赋值给符号变量f 。
f=sym(‘a*x^2+b*x+c ’)或:f=‘a*x^2+b*x+c’此例中,将符号表达式赋给符号变量f,但这不是必需的,引入符号变量是为了以后调用方便。
在这种情况下,没有创建对应于表达式中a、b、c、x项的变量,为了执行符号数学运算(如微分、积分等),必须显式地创建这些变量,可用下列命令创建:syms a b c x如下例中创建了符号表达式和符号方程,分别赋给相应的符号对象。
matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。
MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。
以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。
例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。
-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。
-转置:使用单引号`'` 来进行转置操作。
例如,`A'` 表示矩阵A的转置。
-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。
例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。
2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。
例如,`result = 2 + 3`。
-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。
例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。
-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。
-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。
-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。
这些是MATLAB中一些常见的数学符号和运算。
MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。
如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。
实验三 MATLAB 的符号运算一 实验目的:1.掌握符号对象的创建及符号表达式化简的基本方法;2.掌握符号微积分、符号方程的求解的基本方法。
二 实验装置:计算机三 实验内容:1.符号对象的创建(1) 建立符号变量使用sym 函数把字符表达式'2*sin(x)*cos(x)'转换为符号变量。
2.符号表达式的化简(1)因式分解对表达式f=x 3-1 进行因式分解。
(2) 符号表达式的展开对符号表达式f=cos(x+y)进行展开。
(3)符号表达式的同类项合并对于表达式f=(2x 2*(x+3)-10)*t ,分别将自变量x 和t 的同类项合并。
(4)符号表达式的化简(5)符号表达式的分式通分对表达式 进行通分。
(6)符号表达式的替换用新变量替换表达式a+b 中变量b 。
3.符号微积分(1) 符号极限计算表达式 的极限。
(2)符号微分计算表达式f=sinx 的微分。
(3)符号积分。
例:简化32381261+++=xx x f 22x y y x f +=xtgx x lim 0→()⎰+dzz x31计算表达式 的积分。
(4)符号求和计算表达式 4.符号方程的求解求解代数方程组 四 实验要求:1.按照要求预习实验;2.在MATLAB 中运行实验程序验证仿真结果;3. 按照要求完成实验报告。
.10005∑k⎪⎩⎪⎨⎧=--=-+=+-043035218472z y x z y x z y x。
一、介绍matlab符号运算matlab符号运算是指利用matlab软件进行代数表达式的计算和求解。
在matlab中,符号运算可以实现对多项式的加减乘除、导数和积分等操作,非常适用于代数表达式的计算和求解。
在工程、数学和物理等领域,matlab符号运算被广泛应用,能够高效地解决各种代数运算问题。
二、matlab符号运算的基本操作1. 创建符号变量在matlab中,可以使用syms函数来创建符号变量,例如:```matlabsyms x y```这样就创建了两个符号变量x和y,可以用于代数表达式的计算和求解。
2. 代数表达式的运算利用符号变量创建代数表达式,并进行加减乘除等运算,例如:```matlabf = x^2 + 2*x + 1;g = x + 1;h = f * g;```这样就实现了对代数表达式的乘法运算,h为结果表达式。
3. 多项式求导利用diff函数可以对代数表达式进行求导,例如:```matlabf = x^2 + 2*x + 1;df = diff(f,x);```这样就求出了代数表达式f对x的一阶导数df。
4. 多项式积分利用int函数可以对代数表达式进行积分,例如:```matlabf = x^2 + 2*x + 1;F = int(f,x);```这样就求出了代数表达式f对x的不定积分F。
5. 多项式因式分解利用factor函数可以对代数表达式进行因式分解,例如:```matlabf = x^2 + 2*x + 1;factored_f = factor(f);```这样就对代数表达式f进行了因式分解,得到了其因式分解形式。
三、matlab符号运算在工程应用中的实例在工程领域,matlab符号运算被广泛应用于各种代数表达式的计算和求解。
以下以电路分析为例,介绍了matlab符号运算在工程应用中的实例。
1. 电路分析中的符号运算在电路分析中,通常需要对电路中的电压、电流、电阻等元件进行建模和分析。
第3章 MATLAB符号计算符号计算则是可以对未赋值的符号对象(可以是常数、变量、表达式)进行运算和处理。
MATLAB具有符号数学工具箱(Symbolic Math Toolbox),将符号运算结合到MATLAB的数值运算环境。
符号数学工具箱是建立在Maple软件基础上的。
3.1 符号表达式的建立3.1.1 创建符号变量和表达式Symbolic Math Toolbox规定在进行符号计算时,首先要定义基本的符号对象然后才能进行符号运算。
创建符号变量和符号表达式可以使用sym和syms命令。
1. 使用sym命令创建符号变量和表达式语法:sym(‘变量’,参数) %把变量定义为符号对象2.使用syms命令创建符号变量和符号表达式语法:syms(‘arg1’, ‘arg2’, …,参数) %把字符变量定义为符号变量syms arg1 arg2 …,参数%把字符变量定义为符号变量的简洁形式说明:syms用来创建多个符号变量,这两种方式创建的符号对象是相同的。
参数设置和前面的sym命令相同,省略时符号表达式直接由各符号变量组成。
说明:参数用来设置限定符号变量的数学特性,可以选择为’positive’、’real’和’unreal’,’positive’表示为“正、实”符号变量,’real’表示为“实”符号变量,’unreal’表示为“非实”符号变量。
如果不限定则参数可省略。
【例3.1】创建符号变量,用参数设置其特性。
>> syms x y real %创建实数符号变量>> z=x+i*y; %创建z为复数符号变量>>real(z) %复数z的实部是实数xans =x【例3.2】创建符号表达式。
>> f1=sym('a*x^2+b*x+c')f1 =a*x^2+b*x+c【例3.3】使用syms命令创建符号变量和符号表达式。
>> syms a b c x %创建多个符号变量>>f2=a*x^2+b*x+c %创建符号表达式f2 =a*x^2+b*x+c3.1.2符号表达式的代数运算符号运算与数值运算的区别主要有以下几点:▪传统的数值型运算因为要受到计算机所保留的有效位数的限制,它的内部表示法总是采用计算机硬件提供的8位浮点表示法,因此每一次运算都会有一定的截断误差,重复的多次数值运算就可能会造成很大的累积误差。
matlab的符号计算符号数学工具箱是操作和解决符号表达式的符号数学工具箱(函数)集合,有复合、简化、微分、积分以及求解代数方程和微分方程的工具。
另外还有一些用于线性代数的工具,求解逆、行列式、正则型式的精确结果,找出符号矩阵的特征值而无由数值计算引入的误差。
工具箱还支持可变精度运算,即支持符号计算并能以指定的精度返回结果。
符号数学工具箱中的工具是建立在功能强大的称作Maple软件的基础上。
它最初是由加拿大的滑铁卢(Waterloo)大学开发的。
当要求MATLAB进行符号运算时,它就请求Maple去计算并将结果返回到MATLAB命令窗口。
因此,在MATLAB中的符号运算是MATLAB处理数字的自然扩展。
8.1 符号表达式符号表达式是代表数字、函数、算子和变量的MATLAB字符串,或字符串数组。
不要求变量有预先确定的值,符号方程式是含有等号的符号表达式。
符号算术是使用已知的规则和给定符号恒等式求解这些符号方程的实践,它与代数和微积分所学到的求解方法完全一样。
符号矩阵是数组,其元素是符号表达式。
MATLAB在内部把符号表达式表示成字符串,以与数字变量或运算相区别;否则,这些符号表达式几乎完全象基本的MATLAB命令。
下表列有几则符号表达式例子以及MATLAB等效表达式。
符号表达式 MATLAB表达式'1/(2*x^n)'y='1/sqrt(2*x)''cos(x^2)-sin(2*x)'M=sym('[a,b;c,d]')f=int('x^3/sqrt(1-x)','a','b')MATLAB符号函数使我们能用多种方法来操作符号表达式,比如,>>diff('cos(x)') %differentiate cos(x) with respect to xans=-sin(x)>>M=sym('[a,b;c,d]') %create a symbolic matrix MM=[a,b][c,d]>>determ(M) %find the determinant of the symbolic matrix Mans=a*d-b*c要注意的是,以上第一例的符号表达式是用单引号以隐含方式定义的。