深基坑工程变形监测分析
- 格式:doc
- 大小:28.00 KB
- 文档页数:9
例析深基坑支护工程变形监测1工程概况天津港东疆港区海铁大道雨水提升泵站工程一标段位于天津港北疆港区北部,西起新跃进路,承接上游自南向北收集到的雨水,沿海铁大道自西向东汇集,通过d2400-d2600雨水管道汇入海铁大道雨水泵站,管道长度近1km。
本工程雨水管线坐落在软土地基上,场地内地层条件以软塑状淤泥质粉质粘土、淤泥质粘土为主,会对施工造成一定困难。
除此之外,管线中线距南侧建筑物仅有12~13m,距海铁大道道路中心线33m,且施工区域内既有管线种类繁多,施工难度大。
2基坑监测目的和方案依据2.1监测目的基坑开挖和管道施工将会对周围构造物及道路产生较大影响,因此在基坑施工过程中对其进行变形监测具有重大意义。
为切实保证施工过程中基坑和周边环境安全,通过对一些监测项目进行数据采集,掌握支护结构的变形及稳定性状况,分析基坑周边地下水位、管线以及构造物沉降或位移速率,以便对基坑开挖和施工过程中可能出现的各种不利因素采取及时补救和加固措施,指导施工。
具体如下:1)为基坑四周构造物、环境进行及时有效的保护提供依据;2)驗证支护结构承载能力,通过反馈的信息指导基坑开挖和管线施工;3)将监测结果反馈给设计单位,为其工程的优化设计提供参考依据。
2.2监测方案根据施工的特点以及技术要求,深基坑工程涉及的监测的主要内容为:基坑周围保护结构的水平方向位移监测和周围建筑物垂直方向的位移监测;地下水位的监测等。
在技术方向上,采用的仪器:基坑周围保护结构的水平方向位移监测采用GTS-TOPCON 2″级全站仪;周围建筑物垂直方向的位移监测以及地下水位的监测采用的是天宝DINI12电子水准仪。
监测精度的设置是根据《建筑变形测量规程》(JGJ 8-2007)确定的,周围建筑物垂直方向的位移观测:水准测量站测得高差中误差为±0.5mm;水准闭合路线,闭合误差±1.0 mm(n为测站数)。
基坑周围保护结构的水平方向位移观测:水平位移观测观测的坐标的中误差为±3.0mm;测角的中误差为±2.0″;距离量测的精度为1/5000。
深基坑工程中的变形监测与处理方法深基坑工程是现代建筑施工中常见的一项技术挑战,它涉及到深埋地下的巨大土体开挖和支护工程。
在这一过程中,土体的变形是无法避免的,而人们则需要通过变形监测和相应的处理方法来保证工程的安全性和可靠性。
在深基坑工程中,变形监测是至关重要的。
它可以帮助工程师了解土体的变形情况,及时发现潜在的风险,并根据监测数据进行合理的调整和处理。
变形监测可以采用多种方法,如测量支护墙体的变形、测量土体的沉降和位移等。
其中,最常用的方法是采用传感器进行实时监测,如倾斜度传感器、沉降计、位移计等。
监测数据的处理与分析是变形监测的关键步骤。
工程师需要对监测数据进行准确的分析和解读,判断土体的变形情况,并根据情况采取相应的措施。
传统的处理方法是通过人工统计和计算,但随着计算机技术的发展,现代工程师可以借助计算机软件进行数据处理和分析,提高工作效率和准确度。
处理变形监测数据时,工程师需要考虑多个因素。
首先,他们需要将监测数据与设计值进行比较,以判断变形是否在可接受的范围内。
其次,他们需要考虑土体的复杂性和不均匀性,采用合适的数学模型进行数据分析。
此外,他们还需要关注时间因素,根据监测数据的变化趋势,判断土体的变形速度和趋势,并及时采取相应措施。
在处理变形监测数据时,工程师还可以借助经验和专业知识进行判断和决策。
他们可以根据历史数据和类似工程的经验,判断当前工程的安全性,并根据情况调整支护结构和施工方法。
此外,他们还可以借助专业的地质和土力学知识,对土体的特性和变形机理进行深入分析,为工程施工提供参考和建议。
除了变形监测和处理,深基坑工程中还有其他一些重要的安全措施。
例如,在施工前需要进行全面的勘察和调查,了解地下水位、土体的物理性质和结构等。
此外,在开挖和支护过程中,还需要采取相应的排水措施,以减少土体的渗透和水压。
总之,深基坑工程中的变形监测与处理方法是确保工程安全和可靠的重要环节。
通过科学的监测方法和准确的数据处理,工程师可以及时发现土体的变形情况,并采取相应的措施。
深基坑变形监测深基坑变形监测主要是为了确保深基坑施工过程中的安全和稳定性,及时发现并解决潜在的变形问题。
本文将介绍深基坑变形监测的意义、方法和技术,以及实施监测的关键点。
深基坑施工是城市建设中常见的工程方式之一,通常用于地铁、大型商业综合体等项目的建设。
深基坑施工过程中,由于地下水位、土壤条件等因素的影响,基坑结构会发生变形和沉降,导致地面沉降、建筑物倾斜等问题。
深基坑变形监测的意义主要包括以下几个方面:1.确保施工安全:深基坑结构的变形和沉降可能导致施工过程中的事故,对施工人员和周边居民的生命财产安全造成威胁。
通过变形监测,可以实时了解基坑变形情况,及时采取措施,确保施工安全。
2.保证工程质量:深基坑变形可能会对周边建筑物和地下管线等产生不利影响,导致土壤沉降、房屋裂缝等问题。
及时发现并解决变形问题,可以保证基坑施工后的工程质量。
3.控制环境污染:深基坑施工过程中可能会对周边环境造成噪音、振动、粉尘等污染。
通过变形监测,可以及时控制施工影响,减少环境污染。
深基坑变形监测的方法和技术多种多样,常用的包括全站仪监测、测量标杆监测、变形挠度监测等。
下面将介绍其中几种常用的监测方法和技术:1.全站仪监测:全站仪是一种高精度的测量仪器,可以同时测量水平角、垂直角和斜距。
在深基坑变形监测中,可以使用全站仪监测基坑边缘的标志点,通过连续测量,了解基坑的变形情况。
2.测量标杆监测:测量标杆是固定在基坑边缘或建筑物周围的标志物,通过测量标杆的位置和高程变化,可以判断基坑的变形情况。
常用的测量标杆包括水平标杆、竖直标杆和倾斜标杆等。
3.变形挠度监测:变形挠度监测是通过安装在建筑物或基坑结构上的变形传感器来测量变形挠度。
常见的变形传感器有测斜管、水平位移计、水准仪等。
通过实时监测和分析变形挠度的变化,可以了解基坑的变形状况。
深基坑变形监测是一个复杂的过程,需要注意一些关键点,以保证监测的准确性和可靠性。
1.监测方案设计:在进行深基坑变形监测之前,需要制定监测方案,确定监测参数和监测设备的布置。
基坑变形检测报告1. 引言本报告旨在对基坑变形进行检测分析,为工程施工提供可靠的数据支持。
基坑变形是指土壤在基坑开挖或施工过程中发生的变形现象,对工程的稳定性和安全性具有重要影响。
通过本次检测,我们将对基坑变形进行全面评估,并提出相应的建议。
2. 检测目标本次基坑变形检测的目标为:•确定基坑变形的类型和程度;•分析基坑变形的原因;•判定基坑变形对工程的影响;•提出相应的控制和修复措施。
3. 检测方法基坑变形检测通常采用以下方法:3.1 地下水位监测地下水位监测可以通过安装水位计等设备实时监测基坑周边地下水位的变化。
地下水位的上升或下降可能导致基坑变形,因此及时监测和控制地下水位是至关重要的。
3.2 地下水位压力监测地下水位压力监测是通过设置孔隙水压力计等设备监测地下水位压力的变化。
地下水位压力的变化可以对基坑变形进行预测和评估,从而采取相应的措施。
3.3 周边建筑物变形监测通过安装变形监测仪器,如测斜仪、水准仪等,监测周边建筑物的变形情况。
基坑变形可能引起周边建筑物的沉降或倾斜,因此及时监测周边建筑物的变形能够提前发现问题并采取措施。
3.4 基坑边坡变形监测利用边坡位移监测仪器,如测斜仪、全站仪等,对基坑边坡的变形进行实时监测。
基坑边坡的变形可能导致坡体滑动或坍塌,因此对边坡变形进行及时监测是必要的。
4. 检测结果分析根据以上检测方法,我们对基坑变形进行了全面的监测和分析。
根据数据和观察结果,我们得出以下结论:•基坑周边地下水位呈上升趋势,可能导致基坑变形;•地下水位压力表明地下水位压力较大,对基坑稳定性造成潜在威胁;•周边建筑物出现微小的沉降和倾斜,可能与基坑变形有关;•基坑边坡存在局部滑动和变形现象。
5. 影响分析基于对检测结果的分析,我们对基坑变形对工程的影响进行了评估,并提出以下结论:•基坑变形可能导致周边建筑物的沉降和倾斜,影响其结构安全;•基坑边坡的滑动和变形可能引发土方坍塌,对工程施工安全构成威胁;•地下水位的上升和压力的增大可能导致基坑的不稳定,进而影响整个工程的稳定性。
深基坑工程施工变形的监测和分析摘要:变形监测是利用专用的仪器和方法来持续观测变形结构的变形现象,对其变形状态进行分析,并预测其发展动态的各项工作。
实施变形监测的主要目的就是在各种荷载和外力作用下,明确变形体的形状、大小以及位置变化的空间状态以及时间特点。
在精密工程实际测量过程中,最常见的变形体有:深基坑、大坝、高层建筑物、隧道以及地铁等。
通过实施变形监测可以掌握和精准科学地分析变形体各部位的实际变形情况,进而做出提前预报,这对于整个工程质量控制和施工管理来讲,十分重要。
基于此,本文将对深基坑工程施工变形的监测进行分析。
关键词:深基坑工程;施工变形;变形监测1 基坑工程变形监测概述基坑工程变形监测首先应该确定监测对象及监测项目两部分,基坑工程结构不同、所处环境不同,变形监测的侧重点也不同。
确定合理有效的监测对象、监测项目,既能起到监测预警的作用,又能提高监测效率、节省监测成本,是基坑工程变形监测的关键控制点。
基坑工程变形监测对象一般包括基坑支护结构本身,基坑周边土体、地下水、地下管线以及基坑周边建(构)筑物、重要道路等等;监测项目一般包括位移监测(水平位移和竖向位移)、倾斜监测、土压力监测、地下水位监测、内力监测等等。
监测对象和监测项目的最终确定一般应遵循如下程序:首先根据基坑工程专项设计方案中对变形监测部分的设计要求,收集本项目相关地质、勘察、周边环境等资料,结合相关规范规定,初步确定监测对象及监测项目、并编制本项目基坑工程初步变形监测方案;然后组织专业技术人员现场实地踏勘,实地检核变形监测方案技术指标及条件因素,对于存在与现场条件不符、或有遗漏、有安全隐患部分等需进行基坑工程变形监测方案修编,做到监测方案与实际相符,真正起到基坑工程变形监测预警作用,保证监测成本合理高效;再将包含监测对象、监测项目在内的监测方案、监测成本预算提交建设单位,组织设计单位、专家等进行技术、成本等论证;最后根据论证意见再对包含监测对象、监测项目在内的监测方案进行修改审批,经审批的监测方案即可作为监测依据进行基坑工程监测工作。
深基坑变形监测
深基坑变形监测是指对深基坑的变形情况进行实时监测和分析,以保证基坑施工的安全和稳定。
深基坑指的是在地面以下较深处开挖的基坑工程,常见于高层建筑和地下结构工程中。
深基坑变形监测的目的是为了及时发现基坑的变形情况,确定任何变形对基坑结构的影响,并采取相应的措施来保证基坑的稳定性。
深基坑的变形监测主要包括以下几个方面的内容:
1. 地下水位监测:地下水位是影响基坑变形的重要因素之一,对于地下水位较高的基坑,应进行地下水位的监测,及时掌握地下水位的变化情况,以便采取相应的降水措施。
2. 基坑边界变形监测:基坑的边界变形是基坑变形的主要表现形式之一,通过设置边界测点,在基坑施工过程中实时监测边界的变形情况,以判断基坑是否存在过度破坏的风险。
3. 基坑内部变形监测:基坑内部的变形情况是了解基坑整体变形情况的重要依据,通过设置水平测点和竖向测点,在基坑内部监测自由变形和约束变形的变化情况,以便评估基坑的变形性态。
4. 地表沉降监测:基坑施工过程中,地表沉降是不可避免的,沉降的幅度和速度直接影响基坑工程的安全性,通过在基坑周边设置地表沉降测点,监测地表的沉降情况,及时发现任何异常变化。
5. 支护结构变形监测:基坑的支护结构是保证基坑稳定的重要部分,通过设置支护结构变形测点,监测支护结构的变形情况,及时发现任何异常变化,以便采取相应的措施加固和修复。
深基坑变形监测的方法包括传统的测量方法和现代的自动化监测方法。
传统的测量方法主要包括使用经纬仪、水准仪、全站仪等进行测量,然后根据测量数据进行分析。
现代的自动化监测方法包括使用激光测距仪、倾斜仪等设备进行实时监测,通过将设备与计算机和云平台相连接,可以实时获取监测数据,并进行分析和预警。
关于建筑深基坑工程变形监测的探析发布时间:2021-08-10T15:39:22.737Z 来源:《工程建设标准化》2021年第36卷第8期作者:王海生[导读] 变形监测对基坑施工非常重要,它能够监测出基坑表面是否存在裂纹,是否发生过小角度的偏移等等,这是保证基坑质量的一项重要监测手段。
王海生四川铭润工程勘察设计有限公司四川成都 611730简要:变形监测对基坑施工非常重要,它能够监测出基坑表面是否存在裂纹,是否发生过小角度的偏移等等,这是保证基坑质量的一项重要监测手段。
本文我们重点讨论下建筑基坑工程变形监测的注意事项和监测流程。
关键词:建筑基坑工程;变形监测;注意事项;监测流程一深基坑工程概述基坑底面积在27平方米以内,且底长边小于三倍短边的为基坑,深基坑是开挖深度超过5米(含5米)或地下室三层以上(含三层),或深度虽未超过5米,但地质条件和周围环境及地下管线特别复杂的工程。
基坑开挖前应该通过建设单位找工程勘察单位,让他们出示一份详细的地质资料。
建筑物修建的时候每到一定高度要用高精度水准仪定期观测,分析沉降是否均匀等。
如果该建筑是建在地铁旁边,建造深基坑比较困难。
因为,地铁的存在对基坑变形,特别是水平变形要求严格。
而对于临近地铁的深基坑开挖,最关键的是在支撑和维护体系的刚度上进行加强,来抵挡地铁周围土体的变形。
城市盖高层建筑需要挖近百米的基坑却不会出现地下水,原因很简单。
基坑施工前,一般是要进行施工降水的,通俗的说就是向地下钻孔抽水,并且是连续抽水,使短期内的地下水位低于施工高程。
由于短期的连续降水,使地下水位可以满足施工要求而不至于被水淹无法施工,而这不可能是永久性的,随着时间的推移,雨水下渗、地下水的流动等还是可能会让地下水位升高的,为防止施工完成后地下水回升造成建筑进水,施工过程中同时会对外围进行防水处理,这也就是为什么你会看到地下十几米甚至几十米的建筑内也是不受地下水的影响的。
基坑的降水、打桩等是施工中非常重要的一个环节,如果做不好对建筑基础的影响是永久性的且不可逆转。
深基坑变形监测深基坑是指在建筑施工中挖掘较深的地下空腔,通常用于建造地下车库、地下室等。
由于深基坑施工涉及大量土方开挖和支护工程,容易引起地下水涌入、土体塌陷和基坑变形等问题,因此深基坑变形监测显得尤为重要。
深基坑变形监测是通过使用现代化的监测设备和仪器,对深基坑施工过程中的变形情况进行实时监测和数据分析的过程。
其目的是及时掌握基坑的变形情况,为施工人员采取相应的支护措施提供依据,保证施工的安全和顺利进行。
深基坑变形监测主要包括以下几个方面的内容:1. 基坑周边地面沉降监测:通过沉降监测仪器,对基坑周边土体发生的沉降情况进行实时监测。
当地面出现明显下陷或不均匀沉降时,可以及时采取措施,避免地面塌陷和设施损坏。
2. 基坑边界位移监测:通过边界位移监测仪器,对基坑边缘土体的位移情况进行实时监测。
特别是当基坑边界土体有明显位移或变形时,可以进行及时处理,避免土体塌陷和基坑支护失效。
3. 基坑内部土压力监测:通过土压力监测仪器,对基坑内部土体的压力变化进行实时监测。
当土压力超过设计范围时,可以及时采取措施,保证基坑支护结构的稳定性。
4. 基坑周边建筑物的变形监测:对基坑周边重要建筑物进行变形监测,掌握建筑物的结构变形情况。
当建筑物发生明显的变形或位移时,可以及时采取支护措施,保证其结构的安全性。
深基坑变形监测的方法有多种,常用的监测设备包括全站仪、倾斜仪、沉降仪、测斜仪等。
这些仪器可以通过现场测量和远程监测两种方式工作。
现场测量是指监测人员定期到基坑现场进行测量和数据采集,远程监测则是将监测仪器与计算机等设备连接,通过网络实时获取和分析监测数据。
深基坑变形监测是保证施工质量和安全的重要手段。
通过及时获取和分析基坑变形数据,可以预防和解决基坑变形问题,为施工提供科学依据,最大程度上减小施工风险,确保基坑工程的安全和顺利进行。
建设工程深基坑变形与主体沉降监测技术研究一、研究背景及意义随着城市化进程的加快,建设工程在城市建设中的地位日益重要。
由于建筑物的高度和地下设施的复杂性,深基坑工程在施工过程中容易出现变形和主体沉降等问题,这些问题不仅会影响建筑物的安全性和使用寿命,还会对周围环境和人们的生活产生不利影响。
对深基坑变形与主体沉降进行监测技术研究具有重要的现实意义。
通过对深基坑变形与主体沉降的监测技术研究,可以为工程设计提供科学依据。
在深基坑施工过程中,通过对变形和沉降的实时监测,可以及时发现潜在的问题,为设计部门提供准确的数据支持,从而优化设计方案,提高建筑物的安全性和稳定性。
通过对深基坑变形与主体沉降的监测技术研究,可以降低工程事故的发生率。
通过对变形和沉降的实时监测,可以及时发现问题并采取相应的措施进行处理,避免因变形和沉降过大而导致的工程事故,减少人员伤亡和财产损失。
通过对深基坑变形与主体沉降的监测技术研究,可以提高工程质量。
通过对变形和沉降的监测,可以确保建筑物的质量达到设计要求,提高建筑物的使用性能和使用寿命。
通过对变形和沉降的监测,可以为后期的维护和管理提供依据,降低维护成本。
对深基坑变形与主体沉降进行监测技术研究具有重要的现实意义。
通过研究深基坑变形与主体沉降的规律,可以为工程设计、工程施工和工程管理提供科学依据,降低工程事故的发生率,提高工程质量,促进城市建设的可持续发展。
1.1 建设工程深基坑的发展历程随着城市化进程的加快,高层建筑、大型基础设施等建筑工程的建设日益增多,深基坑工程作为其中的重要组成部分,其安全性和稳定性对于整个建筑工程的质量至关重要。
自20世纪初以来,深基坑工程技术经历了从简单到复杂、从低级到高级的发展过程。
20世纪初,深基坑工程技术主要采用人工开挖的方法,施工过程中存在较大的安全隐患,如地下水位较高时容易导致地面沉降、建筑物倾斜等问题。
为了解决这些问题,人们开始研究采用机械挖掘、土钉墙等方法进行深基坑支护。
深基坑支护工程变形监测及数据分析摘要:本文主要针对深基坑支护工程变形的监测及数据展开了分析,通过结合具体的工程实例,介绍了深基坑支护工程中的变形监测方案设计,并对变形监测的结果作了数据处理,以期能为有关方面的需要提供参考借鉴。
关键词:深基坑支护;变形监测;数据分析0 引言深基坑施工如今已在建筑工程中得到了普遍的应用,但由于其存在着变形的问题,还是需要我们重视深基坑工程的施工。
因此,我们需要对深基坑的变形进行监测,并采取有效的措施做好处理。
基于此,本文就深基坑支护工程变形的监测及数据进行了探讨,相信对有关方面的需要能有一定的帮助。
1 工程实例1.1工程概况某基坑支护工程位于城中区的城市主干道旁,基坑长233m,宽202m,设计深度9.5~11.5m,设计等级为Ⅰ级,采用“动态设计法”进行设计施工。
基坑南部有5栋高度在4~7层的民用建筑,距支护墙最近为3m,小于基坑深度2倍,必须提供合理、可靠的监测方案,定期对支护桩桩顶、基坑侧壁边坡顶、周边既有建筑物、地表和周边道路进行位移和沉降变化监测。
1.2 主要方案设计1.2.1 基准点布设在场地外围不受施工影响的稳固处,采用钻孔置入法埋设5个水平位移基准控制点K1~K5,在施工场地内安置3个工作基点K6~K8,制作成强制对中观测墩。
以基准点BM1,BM2及BM3三个基岩点作为沉降观测的基准点,如图1所示。
图1 基坑工程变形监测基准点布点略图1.2.2 监测点布设依据设计要求,在支护桩顶梁上和基坑坡顶共布设51个水平位移观测点,在一级平台上共布设25个水平位移观测点;在基坑南面5栋4~7层民用建筑布设11个水平位移观测点。
基坑南面建筑物群布设20个沉降观测点;路面布设12个沉降观测点。
1.2.3 观测方法(1)水平位移监测点观测。
每次分别在工作基点上设站,以K1,K2,K3,K4,K5作为控制,利用后方交会的方法检核工作基点的稳定性,若工作基点处于稳定状态则直接用极坐标法观测各监测点;若工作基点不稳定则利用实时交会的坐标作为新的测站坐标,利用极坐标法观测各监测点。
深基坑监测数据分析与变形预测摘要:深基坑监测数据分析与变形预测是保障深基坑工程安全与质量的关键过程。
数据分析阶段涉及预处理、清洗、统计分析与可视化,以揭示基坑的变形趋势与相关影响因素的关系。
变形预测阶段可利用多种模型,如统计模型、机器学习模型及深度学习模型,通过对历史数据和相关因素的训练进行预测。
这些预测结果可为风险评估、调整施工方案、优化资源调配提供科学依据。
综合而言,深基坑监测数据分析与变形预测为工程师与决策者提供了准确、可靠的信息,助力于深基坑工程的安全施工与管理。
关键字:深基坑;监测数据分析;变形预测深基坑工程作为重要的土木工程领域之一,面临着巨大的技术挑战和风险。
为了确保深基坑施工的安全性和工程质量,深基坑监测数据分析与变形预测成为至关重要的研究领域。
深基坑监测数据分析通过对实时监测数据的处理和解读,揭示了土体变形、水位变化等方面的重要信息,为工程施工提供了及时的监测和调控手段。
而深基坑变形预测则通过建立模型和分析历史数据,预测未来基坑的变形趋势,帮助工程师和决策者规划工程进度、评估风险,并制定合理的决策和措施。
本文将深入探讨深基坑监测数据分析与变形预测的背景、重要性以及关键方法和技术。
一、深基坑监测数据分析与变形预测的背景和重要性深基坑监测数据分析与变形预测是在土木工程领域中的重要研究方向之一。
随着城市化进程的加速和土地资源的有限性,越来越多的高层建筑和地下结构需要建设,深基坑工程的规模和复杂性也在不断增加。
深基坑工程的安全监测和变形预测成为确保工程施工安全和保护周围环境的关键环节。
深基坑监测数据可以通过各种传感器和测量仪器收集,例如位移传感器、压力计、应变计等。
这些数据可以提供关于基坑土体变形、水位变化、承载状态等方面的实时监测信息。
通过对这些数据进行分析,可以揭示工程施工过程中的问题和隐患,及时采取措施进行调整和修复。
变形预测是基于深基坑监测数据和相关因素,利用统计模型或机器学习算法,对未来的变形趋势进行预测。
深基坑变形监测与分析研究的开题报告一、研究背景深基坑是建筑施工中常见的一种施工方法,它是在土壤或岩石中挖掘出来的垂直壁面结构工程。
深基坑的开挖过程中,常常会引起周围土体的变形和沉降,严重时可能造成地面塌陷或者斜坡滑动等安全事故。
因此,对深基坑的变形监测与分析成为了保障施工安全的一个关键环节。
二、研究目的本研究旨在:1)研究深基坑变形监测的方法和技术,包括传统和现代的监测方式和监测仪器;2)建立深基坑变形监测体系,对深基坑施工过程中的变形、沉降及变形速率等进行实时监测,提高施工安全性;3)分析深基坑开挖及支护过程中土体的变形与沉降规律,探究影响深基坑变形的因素,为深基坑施工提供可靠性策略。
三、研究内容及步骤本研究主要包括以下内容及步骤:1. 深基坑变形监测的方法和技术研究包括传统的监测方式,如位移计、钢管法等,以及现代的监测技术,如激光扫描仪、全站仪、GNSS等,并对不同的监测方法进行比较分析,确立合适的监测方式和方案。
2. 基于数码化管理的深基坑变形监测体系建立采用信息化手段建立深基坑变形监测体系,利用数字化技术对监测数据进行分析和处理,建立完善的监测数据管理平台。
3. 深基坑变形规律分析对深基坑在开挖、支护和复原过程中的变形及沉降进行实时监测,获取数据,分析其规律和变化趋势,从而得出变形机理及其影响因素。
4. 变形控制策略研究根据深基坑变形监测结果,对其变形进行控制和调控,并提出相应的变形控制策略。
四、预期成果1. 深基坑变形监测的方法和技术研究成果,包括传统的监测方式和现代的监测技术,以及最优的监测方案。
2. 基于数码化管理的深基坑变形监测体系,建立信息化的监测数据管理平台,提高监测数据管理效率。
3. 深基坑变形规律分析成果,包括深基坑变形的规律和变化趋势等内容,为变形控制提供参考。
4. 变形控制策略成果,根据深基坑变形监测结果,提出可行的变形控制策略,确保施工安全性。
五、研究方案(详见附件)。
深基坑变形监测内容深基坑变形监测是指对建筑工程中的深基坑进行实时监测和分析,以确保基坑的稳定性和安全性。
深基坑是指在地下开挖的较深的基坑,常见于高层建筑、地下车库和地铁工程等。
由于深基坑的特殊性和复杂性,其变形监测显得尤为重要。
深基坑变形监测主要包括以下内容:1. 基坑周边地表沉降监测:基坑开挖过程中,地表可能会发生沉降现象,特别是在软土地区。
通过设置沉降监测点,可以实时监测地表沉降情况,及时发现和处理沉降异常,确保地表稳定。
2. 基坑支护结构变形监测:在深基坑开挖过程中,为了保证基坑的稳定,常需要设置支护结构,如土钉墙、悬挂墙、钢支撑等。
通过设置变形监测点,可以监测支护结构的变形情况,及时发现和处理变形异常,确保支护结构的稳定性。
3. 地下水位监测:基坑开挖过程中,地下水位的变化对基坑的稳定性有重要影响。
通过设置地下水位监测井,可以实时监测地下水位的变化情况,及时采取相应措施,确保基坑的排水和稳定。
4. 地下管线位移监测:在深基坑开挖过程中,地下管线的位移可能会对基坑的稳定性和管线的安全性产生影响。
通过设置管线位移监测点,可以实时监测管线的位移情况,及时发现和处理位移异常,确保基坑的稳定和管线的安全。
5. 监测数据采集与分析:深基坑变形监测需要对各种监测数据进行采集和分析。
通过选择合适的监测仪器和传感器,可以实时采集各项监测数据,并进行数据分析,判断基坑的稳定性和安全性。
6. 报警与预警:基于深基坑变形监测数据的分析,可以建立相应的报警与预警机制。
一旦监测数据超过预设阈值,系统将发出报警信号,提醒相关人员及时采取措施,防止事故发生。
深基坑变形监测是保障基坑施工安全的重要环节。
通过对基坑周边地表沉降、支护结构变形、地下水位和地下管线位移等进行实时监测和分析,可以及时发现和处理变形异常,确保基坑的稳定性和安全性。
同时,监测数据的采集和分析也为基坑施工过程提供了可靠的参考,为工程进展和决策提供依据。
深基坑变形监测及变形机理与规律分析摘要:深基坑工程的施工过程主要包括开挖土方、支护结构施工以及降排水处理等施工内容,而深基坑支护结构的安全稳定则是保证施工安全的重要基础,因此必须加强变形监测工作。
施工单位应在变形监测中积极应用信息化以及数字化的技术手段,加大在深基坑变形监测方面的研究力度,充分了解深基坑支护结构变形的基本机理。
同时监测人员还应不断总结实践经验,根据深基坑变形监测数据来分析其客观规律,以便准确掌握深基坑支护结构的受力变形情况,并为及时采取有效的防控措施提供数据参考,从而确保深基坑施工以及周边建筑的安全。
基于此,本文将对深基坑变形监测及变形机理与规律进行分析。
关键词:深基坑;变形监测;变形机理;规律分析1 深基坑变形监测技术概述1.1 变形监测的特点在深基坑工程的施工过程中,为了保证施工安全,应采用相关的监测技术以及仪器设备实时监测深基坑工程支护结构的稳定性以及施工现场环境要素的变化情况。
在深基坑变形监测工作中要对深基坑支护结构的沉降和水平位移情况、水位变化、基坑周围地表的沉降变化以及支撑结构的支撑轴力变化等指标参数进行动态监测,为深基坑施工提供参考依据。
变形是指变形体在不同的荷载和因素的作用下其形状、大小、位置等在时间和空间上发生的变化。
与一般工程测量相比,变形监测具有以下特点:变形观测属于安全监测范围,有内部监测和外部监测两个方面;观测精度要求高;观测周期颇繁,需要重复观测。
近年来我国对深基坑监测及变形进行了更广泛的研究,数字化的监测手段逐渐被研发、应用,促使深基坑监测研究逐渐发展、完善,为建筑基坑施工保驾护航。
随着数字化、网络技术发展迅速,许多新型材料和技术被应用于基坑监测等工作中。
因此,需要结合科技发展进一步优化和研究相关监测技术,分析变形情况及规律,保障基坑及支护结构的稳定性。
1.2 变形监测的等级划分及观测精度要求变形观测的精度等级,是按照变形观测点的水平位移点位中误差、垂直位移的高程中误差或相邻变形观测点的高差中误差的大小来划分。
深基坑工程基坑变形超预警研究分析与处置措施摘要:由于支护结构失稳、变形引起的地表沉陷,严重地影响着周围环境和邻近建筑物、地下管线以及地面道路的安全,通过大量的理论分析、试验研究和实地测试,从这些研究中可以归纳为两个主要问题;一是支护结构的位移;二是支护结构的稳定,本文通过实际案例,对基坑变形超预警研究分析及处置措施进行总结。
关键词:深基坑工程、基坑变形、变形超预警在深基坑施工过程中,基坑变形量为基坑工程安全风险分析与评估的关键指标,影响变形的因素比较复杂,基坑变形超预警值基坑的失稳形态归纳为两类:一、因基坑土体强度不足、地下水渗流作用而造成基坑失稳,包括基坑内外侧土体整体滑动失稳;基坑底土隆起;地层因承压水作用,管涌、渗漏等等。
二、因支护结构(包括桩、墙、支撑系统等)的强度、刚度或稳定性不足引起支护系统破坏而造成基坑倒塌、破坏。
基坑开挖时,由于坑内开挖卸荷,造成围护结构在内外压力差作用下产生位移,进而引起围护外侧土体的变形,造成基坑外土体或建(构)筑物沉降与移动。
变形表现主要体现为:围护墙体水平变形、围护墙体竖向变位、基坑底部隆起、地表沉降等。
变形控制的措施主要为:增加围护结构和支撑的刚度、增加围护结构的入土深度、加固基坑内被动区土体(加固方法有抽条加固、裙边加固及二者相结合的形式)、减小每次开挖围护结构处土体的尺寸和开挖支撑时间、通过调整围护结构深度和降水井布置来控制降水对环境变形的影响、基坑稳定控制、保证深基坑坑底稳定的方法有加深维护结构入土深度、坑底土体加固、坑内井点降水等措施、适时施作底板结构。
一、周边环境及变形情况1、基坑情况介绍拟建项目基坑面积约14230㎡,基坑总延长约507m。
围护结构北侧在铁路保护区范围采用800厚地下连续墙,其余区域采用钻孔灌注桩(桩径采用Ф850和Ф950)+三轴水泥土搅拌桩止水帷幕/双轴裙边加固、深坑加固+二道水平内支撑的围护体系。
基坑一般位置开挖深度为10.20m。
深基坑工程变形监测分析摘要:基坑变形监测在基坑施工过程中起到至关重要的作用,其主要内容有围护结构的水平位移监测、沉降监测、应力监测,及地下水位监测、护坡监测和周围环境监测等。
本文结合深基坑工程实例,对基坑变形监测逐一进行了分析,介绍了具体的变形监测技术、方法及注意事项,有效确保了整个基坑工程的安全、稳定。
关键词:深基坑工程;围护结构;变形监测;水平位移;支护中图分类号: tv551.4 文献标识码: a 文章编号:1 引言随着城市化进程的加快,城市土地资源也变得日益紧张。
为了提高土地的空间利用率,人们在加大建筑高度的同时,也争相开发地下空间。
随着基坑支护工艺及技术的不断完善,基坑的开挖深度在不断的加大,深基坑工程也越来越多。
在深基坑工程施工中,由于地质情况的复杂、岩土工程理论的不完善、人为的因素等原因,致使基坑支护安全事故不断。
因此,基坑支护的监测工作,尤其是深基坑的变形监测工作就显得尤为重要。
它通过动态监测为实现信息化施工、动态设计和及时提供反馈和预警信息,是确保整个基坑工程的安全、稳定的重要手段。
2基坑变形监测的内容深基坑监测的主要内容有围护结构的水平位移监测、沉降监测、应力监测,及地下水位监测、护坡监测和周围环境监测等,一般通过设定监测项目的报警值来保障基坑施工和周边环境的安全。
在监测过程中,不仅要提供精确的监测数据,还应加强对基坑水文地质的了解与分析、基坑与周边相邻建筑物关系的分析研究。
2.1围护结构的监测(1)水平位移监测围护结构顶部水平位移是围护结构变形最直观的体现,是整个监测过程的重点。
围护结构变形是由于水平方向上基坑内外土体的原始应力状态改变而引起的地层移动。
基坑开挖时水平方向影响范围为1.5倍开挖深度,水平位移及沉降的监测控制点一般设置在基坑边2.5~3.0倍开挖距离以外的稳定区域。
变形监测点的布置和观测间隔应遵循以下原则:间隔5~8m布设1个变形监测点,在基坑阳角处、距周围建筑物较近处等重要部位适当加密布点。
基坑开挖初期,可每隔2~3d观测1次;开挖深度超过5m到基坑底部的过程中,可适当增加观测次数,以1d观测1次为宜。
特殊情况要继续增加监测频次,甚至实时监测。
(2)沉降监测基坑围护结构的沉降多与地下水活动有关。
地下水位的升降使基底压力产生不同的变化,造成基底的突涌或下陷。
通常使用精密电子水准仪按水准测量方法对围护结构的关键部位进行沉降监测。
观测的周期、时间和次数,应根据工程的性质、施工进度、地基地质情况及基础荷载的变化情况而定。
(3)应力监测基坑稳定状态下,侧壁受主动土压力,围护结构受被动土压力,主动土压力与被动土压力之间成动态平衡。
随着基坑的开挖,平衡被破坏,基坑将发生变形。
围护结构通过锚索拉力或锚杆向土体提供主动土压力。
可利用锚索测力计提供对锚杆、锚索的长期应力变化监测。
通过对应力监测可实时动态反映土体的受力变化情况,预测基坑水平位移情况,保证基坑的稳定与安全。
2.2周围环境监测(1)邻近建筑物沉降监测当软土地区开挖深基坑时,基坑周围土体塑性区比较大,土的塑性流动也比较大,土体从围护结构外侧向坑内和基底流动,因此地表产生沉降,这是沉降产生的主要原因。
基坑开挖前期地下连续墙的施工也会造成地层位移,并相应引起地表沉降。
当对建筑物进行沉降监测时,监测点布置应根据建筑物体积、结构、工程地质条件、开挖方案等因素综合考虑。
一般在建筑物角点、中点及周边设置,并固定在建筑物自身的墙壁上,距地面高约1m左右,每栋建筑物观测点不少于6个。
(2)邻近建筑物裂缝监测地基发生不均匀沉降后,基础产生相对位移,建筑物出现倾斜。
倾斜使结构上产生附加拉力和剪力,当应力大于材料的承载能力时即会出现裂缝。
裂缝多出现在房屋下部沉降变化剧烈处附近的纵墙。
对裂缝的观测应统一编号,每条裂缝至少布设2组(两侧各1个标志为1组)观测标志,裂缝宽度数据应精确至0.1mm,一组在裂缝最宽处,另一组设在裂缝末端。
并对裂缝观测日期、部位、长度、宽度进行详细记录。
(3)道路、管线变形监测基坑开挖过程中,应同时对邻近道路、管线等设施进行水平位移和沉降观测。
尽可能以仪器观测或测试为主、目测调查为辅相结合,通过目测对仪器观测进行定性补充。
例如:目测调查周围地面的超载状况,周围建(构)筑物和地面的裂缝分布,周围地下管线的变位与损坏,边坡、支护结构渗漏水状况或基坑底面流土流砂现象。
3 工程实例分析3.1工程概况某深基坑工程,基坑长度为150m,宽度为90m,开挖深度约23m。
基坑东侧紧邻某7层大酒店,西侧紧邻某9层大楼,且地下为回填杂土,地下水位较高,涌水量约2000m3/d。
周边市政管线密布。
深基坑西边坡土质为回填土,基坑周边放坡空间有限,几乎垂直放坡,支护结构复杂。
因此,西边坡的变形监测为本工程的重点。
基坑西部边坡剖面见图1。
图1基坑西边坡剖面3.2围护结构水平位移监测水平位移监测采用坐标法和基线法。
(1)坐标法坐标法为全站仪结合反射片进行动态扫描式变形点监测,采用整体平面控制网法对变形监测点进行观测。
在基坑区北面道路和南面道路上共选择4个稳定点,构成平面控制基准点。
在基坑支护结构顶端布置3排围护结构变形监测点,如图1所示。
沿基坑周边道路及施工道路布设控制网过渡点,以连接围护结构位移监测点与基准点成网,通过监测基准点,对基坑内锚杆、桩顶冠梁及护坡变形点进行监测。
但受场地条件限制,其组成的监测控制网图形规则性较弱,因此需定期进行整体控制网的复测。
为提高对中精度,埋设观测墩在监测基准点上进行强制对中,各变形观测点设置固定反射片装置,采用全站仪极坐标法直接扫描式观测基坑侧壁各观测点的坐标,以三维坐标的变化来反映基坑的水平与竖向位移,高效准确地采集基坑侧壁的动态变化数据。
(2)基线位移观测觇法同时,利用基线法测量围护结构水平位移。
在基坑西边坡坡顶北部选择1个监测基准点,利用经纬仪基线法,在基准点上架设仪器,瞄准基坑西边坡南部开挖影响范围外的目标,确定基线,然后在基线上每5m选择1个位移变形监测点,共选择16个边坡变形监测点。
随着基坑的开挖,变形监测点将向着基坑开挖的方向移动。
其移动的距离即为变形监测点的位移。
传统的方法为在变形监测点处多次立测钎,使测钎处于基线上,利用直尺直接读出数值,两次读数的差值即为变形监测点的位移值。
实践中发现,采用基线法时,传统的瞄准方式为测钎与直尺读数,误差较大,而且经纬仪对中测钎是一个往复定位的过程,立钎者需要左右移动测钎,同时保持测钎的垂直状态,这都降低了测量的精确度与效率。
为提高基线法的观测精度与效率,可制作一种轨道化标尺,使繁琐的立测钎过程通过标尺的一次滑动即可完成。
于是研制出了一种测量辅助装置—基线位移观测觇。
该装置具有以下优点:1)觇板与反射片的强制对中作用,使经纬仪能够精确瞄准目标;2)激光器具有调节方向的作用,能够使观测觇精确对准经纬仪,确保在经纬仪确定的基线上;3)上部瞄准系统可以在基座平台轨道上滑动,一次滑动便可测出位移量;4)基座可以利用3个调节螺旋整平,由圆水准器体现;5)读数系统由指针与刻度尺组成,可估读到0.1mm。
使用时在基准点上架设经纬仪,确定基线。
将观测觇某一刻度贴紧变形观测点,转动经纬仪望远镜,粗瞄位移观测觇。
然后滑动上部系统使观测觇上的反射片位于望远镜中心,从刻度盘上直接读出观测点的位移值。
观测台的读数可估读至0.1mm,而传统基线法只能精确到1mm,精度大大提高。
该装置调节简单,方便快捷,适用于基线法测水平位移的所有项目,在实际工程实践中取得良好效果,有着广阔的应用前景。
3.3周围建筑物沉降监测周围建筑物的沉降监测采用精密水准测量的方法,利用高精度电子水准仪周期性地观测建筑物上的沉降观测点和水准基点之间的高差变化值。
在基坑西边坡周边道路上选择10个地下管线沉降监测点。
在大楼上靠基坑边选择8个建筑物沉降监测点。
3.4锚索应力监测锚索测力计为高强度的合金钢圆筒,不同荷载的锚索测力计分别内置3~6支高精度振弦式传感器。
传感器可监测作用在锚索测力计上的总荷载,同时通过测读每只传感器,还可测出不均匀荷载或偏心荷载。
本工程使用基康三弦式锚索测力计。
在基坑西边坡下挖后,根据支护施工进度,在西边坡内壁2排桩顶冠梁处选定5根锚索进行锚索应力监测。
图2为锚索应力计ms9-2测量的应力值变化曲线。
该锚索测力计处于基坑位移较大处,应力变化具有典型性。
锚索应力与基坑变形有着必然的联系,将锚索应力监测与基坑位移监测统一进行变形数据分析,更有效准确地反映出了基坑的变化状态。
由图2可以看出,在第43d左右,锚索应力监测数据迅速增加,呈直线上升态势。
如此下去,当应力超出锚索承载力时,基坑必将超出稳态,破坏将难以阻止。
通过与变形监测数据比对发现,在此阶段基坑发生明显水平位移,最大位移量可达3mm/d。
规范指出,观测值为基坑开挖深度的3‰或位移速率连续3d不小于3mm/d时,基坑的变形超限。
而该基坑的侧移量已超限,必须采取防治加固措施。
图2 ms9-2应力值变化曲线通过对基坑现场考察得出,变形主要是由于基坑爆破施工过程中对地基土体产生扰动,使地基土原有的受力平衡遭到破坏。
因此,提出了采用设置钢支撑的方法对围护结构进行加固。
即将双拼h型钢一端支撑于东侧浇筑完成的地下室底板预留的钢筋混凝土牛腿上,另一端支撑于原围护结构中部的圈梁上,并施加1000kn的预应力。
由于对围护结构背后的土体形成有效的抵抗作用,从而控制了位移的继续发展。
该支护方案取得了良好的效果,有效避免了基坑危险情况的出现。
3.5周围环境监测在基坑开挖到底部时,毗邻基坑西侧的地面沉降最为明显。
多处路面产生纵向裂痕,在古力井盖、道路中缝、建筑物地基交接处裂缝较为明显。
经过实时监测与分析发现,裂缝主要是由于第43d左右基坑侧壁移动而产生的,在采取支护措施后,并没有超限值发展,建筑物虽有轻微沉降,但沉降在允许范围之内。
可见,采用斜向支撑的支护方案已经快速有效地遏了基坑位移的发展,及时防止了灾害的产生。
4结束语众多基坑工程证明,一个成功的基坑工程,除以要有严谨的施工组织设计外,还要有严格有效的变形监测。
深基坑工程施工开挖不仅要保证基坑本身的安全与稳定,还要对围护结构、周边建筑物沉降及周围环境等进行严格的变形监测,以及时发现不稳定因素,确保工程取得成功。
实践证明,本文所介绍的几种变形监测技术,是可行、可靠的,能为基坑施工的顺利进行和工程安全提供保障。
参考文献[1] 王正晓;刘保信;张晓春;耿玉岺.深基坑变形监测浅析[j].测绘通报.2000年06期[2] 庞巧玲;吴巍.浅谈深基坑施工的变形监测[j].矿山测量.2009年03期。