深基坑工程变形监测实例分析
- 格式:doc
- 大小:20.00 KB
- 文档页数:7
例析深基坑支护工程变形监测1工程概况天津港东疆港区海铁大道雨水提升泵站工程一标段位于天津港北疆港区北部,西起新跃进路,承接上游自南向北收集到的雨水,沿海铁大道自西向东汇集,通过d2400-d2600雨水管道汇入海铁大道雨水泵站,管道长度近1km。
本工程雨水管线坐落在软土地基上,场地内地层条件以软塑状淤泥质粉质粘土、淤泥质粘土为主,会对施工造成一定困难。
除此之外,管线中线距南侧建筑物仅有12~13m,距海铁大道道路中心线33m,且施工区域内既有管线种类繁多,施工难度大。
2基坑监测目的和方案依据2.1监测目的基坑开挖和管道施工将会对周围构造物及道路产生较大影响,因此在基坑施工过程中对其进行变形监测具有重大意义。
为切实保证施工过程中基坑和周边环境安全,通过对一些监测项目进行数据采集,掌握支护结构的变形及稳定性状况,分析基坑周边地下水位、管线以及构造物沉降或位移速率,以便对基坑开挖和施工过程中可能出现的各种不利因素采取及时补救和加固措施,指导施工。
具体如下:1)为基坑四周构造物、环境进行及时有效的保护提供依据;2)驗证支护结构承载能力,通过反馈的信息指导基坑开挖和管线施工;3)将监测结果反馈给设计单位,为其工程的优化设计提供参考依据。
2.2监测方案根据施工的特点以及技术要求,深基坑工程涉及的监测的主要内容为:基坑周围保护结构的水平方向位移监测和周围建筑物垂直方向的位移监测;地下水位的监测等。
在技术方向上,采用的仪器:基坑周围保护结构的水平方向位移监测采用GTS-TOPCON 2″级全站仪;周围建筑物垂直方向的位移监测以及地下水位的监测采用的是天宝DINI12电子水准仪。
监测精度的设置是根据《建筑变形测量规程》(JGJ 8-2007)确定的,周围建筑物垂直方向的位移观测:水准测量站测得高差中误差为±0.5mm;水准闭合路线,闭合误差±1.0 mm(n为测站数)。
基坑周围保护结构的水平方向位移观测:水平位移观测观测的坐标的中误差为±3.0mm;测角的中误差为±2.0″;距离量测的精度为1/5000。
深基坑工程施工变形的监测和分析摘要:变形监测是利用专用的仪器和方法来持续观测变形结构的变形现象,对其变形状态进行分析,并预测其发展动态的各项工作。
实施变形监测的主要目的就是在各种荷载和外力作用下,明确变形体的形状、大小以及位置变化的空间状态以及时间特点。
在精密工程实际测量过程中,最常见的变形体有:深基坑、大坝、高层建筑物、隧道以及地铁等。
通过实施变形监测可以掌握和精准科学地分析变形体各部位的实际变形情况,进而做出提前预报,这对于整个工程质量控制和施工管理来讲,十分重要。
基于此,本文将对深基坑工程施工变形的监测进行分析。
关键词:深基坑工程;施工变形;变形监测1 基坑工程变形监测概述基坑工程变形监测首先应该确定监测对象及监测项目两部分,基坑工程结构不同、所处环境不同,变形监测的侧重点也不同。
确定合理有效的监测对象、监测项目,既能起到监测预警的作用,又能提高监测效率、节省监测成本,是基坑工程变形监测的关键控制点。
基坑工程变形监测对象一般包括基坑支护结构本身,基坑周边土体、地下水、地下管线以及基坑周边建(构)筑物、重要道路等等;监测项目一般包括位移监测(水平位移和竖向位移)、倾斜监测、土压力监测、地下水位监测、内力监测等等。
监测对象和监测项目的最终确定一般应遵循如下程序:首先根据基坑工程专项设计方案中对变形监测部分的设计要求,收集本项目相关地质、勘察、周边环境等资料,结合相关规范规定,初步确定监测对象及监测项目、并编制本项目基坑工程初步变形监测方案;然后组织专业技术人员现场实地踏勘,实地检核变形监测方案技术指标及条件因素,对于存在与现场条件不符、或有遗漏、有安全隐患部分等需进行基坑工程变形监测方案修编,做到监测方案与实际相符,真正起到基坑工程变形监测预警作用,保证监测成本合理高效;再将包含监测对象、监测项目在内的监测方案、监测成本预算提交建设单位,组织设计单位、专家等进行技术、成本等论证;最后根据论证意见再对包含监测对象、监测项目在内的监测方案进行修改审批,经审批的监测方案即可作为监测依据进行基坑工程监测工作。
临近地铁深基坑主动变形控制技术案例分析—新生闻涛大厦基坑围护项目发布时间:2022-10-28T08:56:19.875Z 来源:《城镇建设》2022年12期作者:胡焕[导读] 地铁保护区范围内的基坑工程项目对于基坑及周边环境变形有着非常严格的控制要求胡焕东通岩土科技股份有限公司浙江杭州 310000摘要:地铁保护区范围内的基坑工程项目对于基坑及周边环境变形有着非常严格的控制要求。
轴力伺服型钢组合支撑相比传统的支撑具有更好的抵抗基坑变形的能力,其特点在于24小时实时监控,根据基坑变形监测情况实时调整支撑轴力,低压自动补偿、高压自动报警,全方位多重安全保障,更适用于对基坑变形控制严格的工程项目。
通过新生闻涛大厦基坑项目,系统介绍了轴力伺服型钢组合支撑基坑项目的设计和施工方案,结合该工程的成功实践,系统体现了轴力伺服技术在地铁周边地下空间开发项目中安全高效和绿色环保的优势。
一、工程概况新生闻涛大厦项目位于杭州滨江区滨文支路以北、西浦路以西。
本工程南侧靠近地铁6号线西浦路站B号出入口及盾构区间,最近处围护结构外边线距离地铁出站口附属结构约6.700m,距离南侧盾构区间约29.90m,基坑开挖前6号线已在试运行阶段,但尚未运营。
基坑西侧为滨浦路,基坑边距离道路边约6.408m;基坑东侧为西浦路,基坑边距离征地红线约30.898m。
基坑北侧为新建道路,基坑边距离征地红线最近约3.0m。
本工程基坑东西向长约260.9,南北向宽约111.0m,呈"矩形",基坑周长约743.8m,基坑面积约8.8万平方米。
整体下设3层地下室,基坑底板垫层底大面积挖深12.600m,考虑到承台垫层挖深为13.100m。
图1项目平面位置及周边环境二、项目围护设计方案本工程基坑开挖深度为13.000m,主要根据基坑周边环境影响及地层情况确定设计方案: 1、南侧靠近杭州地铁六号线处,采用分坑形式,共分为K1、K2、K3、K4四个小坑,采用地下连续墙+三道内支撑(第一道砼支撑,下二道带伺服系统的预应力型钢支撑)的支护形式。
关于建筑深基坑工程变形监测的探析发布时间:2021-08-10T15:39:22.737Z 来源:《工程建设标准化》2021年第36卷第8期作者:王海生[导读] 变形监测对基坑施工非常重要,它能够监测出基坑表面是否存在裂纹,是否发生过小角度的偏移等等,这是保证基坑质量的一项重要监测手段。
王海生四川铭润工程勘察设计有限公司四川成都 611730简要:变形监测对基坑施工非常重要,它能够监测出基坑表面是否存在裂纹,是否发生过小角度的偏移等等,这是保证基坑质量的一项重要监测手段。
本文我们重点讨论下建筑基坑工程变形监测的注意事项和监测流程。
关键词:建筑基坑工程;变形监测;注意事项;监测流程一深基坑工程概述基坑底面积在27平方米以内,且底长边小于三倍短边的为基坑,深基坑是开挖深度超过5米(含5米)或地下室三层以上(含三层),或深度虽未超过5米,但地质条件和周围环境及地下管线特别复杂的工程。
基坑开挖前应该通过建设单位找工程勘察单位,让他们出示一份详细的地质资料。
建筑物修建的时候每到一定高度要用高精度水准仪定期观测,分析沉降是否均匀等。
如果该建筑是建在地铁旁边,建造深基坑比较困难。
因为,地铁的存在对基坑变形,特别是水平变形要求严格。
而对于临近地铁的深基坑开挖,最关键的是在支撑和维护体系的刚度上进行加强,来抵挡地铁周围土体的变形。
城市盖高层建筑需要挖近百米的基坑却不会出现地下水,原因很简单。
基坑施工前,一般是要进行施工降水的,通俗的说就是向地下钻孔抽水,并且是连续抽水,使短期内的地下水位低于施工高程。
由于短期的连续降水,使地下水位可以满足施工要求而不至于被水淹无法施工,而这不可能是永久性的,随着时间的推移,雨水下渗、地下水的流动等还是可能会让地下水位升高的,为防止施工完成后地下水回升造成建筑进水,施工过程中同时会对外围进行防水处理,这也就是为什么你会看到地下十几米甚至几十米的建筑内也是不受地下水的影响的。
基坑的降水、打桩等是施工中非常重要的一个环节,如果做不好对建筑基础的影响是永久性的且不可逆转。
58 汪大龙:深基坑开挖对周边环境变形影响监测实例 2009年第3期(总第89期)深基坑开挖对周边环境变形影响监测实例汪大龙上海岩土工程勘察设计研究院有限公司【提 要】工程建设过程中对施工引起的变形要求越来越严格。
本文以实际工程为研究背景,对基坑施工时周边环境的变形规律进行了详细分析。
以期对今后从事类似工程建设提供参考和积累经验。
【关键词】深基坑 周边环境变形 开挖1 前 言随着城市发展,在有限的城市空间内进行工程建设活动越来越频繁。
工程建设的任何过程都将对周围环境造成变形影响,客观存在的环境条件给工程建设带来了极大的难度,同时对工程建设提出了更高的技术要求。
通过大量工程实践,人们对工程活动中周围地下管线保护、临近建筑物保护、一般地下设施保护等积累了大量的成功经验。
工程建设过程中对施工引起的变形要求越来越严格。
本文以实际工程为研究背景,对基坑施工时周边环境的变形规律进行了详细分析。
以期对今后从事类似工程建设提供参考和积累经验。
2 研究背景2.1 工程概况已建设完成的某高层建筑位于上海中心城区,为地上46层,地下3层钢筋砼结构,建筑基坑面积约8860㎡,基坑开挖深度16.3m。
本工程场地西侧距离基坑较近的有8条管线,最近的供电电缆距离基坑约为13.5m,内环高架路结构柱距基坑开挖面约25.5m;场地东侧电话线距基坑约为18.5m,轻轨结构柱与基坑的距离约为25.5m;北侧有11条地下管线,距基坑最近的给水管距离约为17.5m;场地南侧的西区与南区分别和5层建筑物、3层建筑物为邻,两幢建筑物均无桩基,与基坑相距约5.5m。
基坑平面呈不规则狭长矩形,基坑南北向最大跨度约199m,东西向最大跨度约50m。
本工程基坑围护采用深33~34.5mφ1200钻孔排桩挡土外加深29mφ850三轴水泥土搅拌桩止水,内设四道混凝土支撑的围护形式;在钻孔桩区域设置宽1.9m、深20m的搅拌桩预加固坝体,以确保挡土钻孔桩和坑底加固搅拌桩的可靠内力传递,并形成辅助封闭止水帷幕。
深基坑工程变形监测实例分析
要:本文结合工程实例,在介绍深基坑变形监测的主要内容的基础上,从围护结构水平位移监测、周围建筑物沉降监测、锚索应用监测及周围环境监测等方面探讨了深基坑变形监测工作,为类似工程变形监测作参考。
关键词:深基坑;变形监测;实例分析
随着我国城市进程的不断加快,建筑行业得到了进一步的发展,许多建筑空间逐渐向地下室发展,基坑的开挖深度越来越大,对深基坑工程的施工技术和施工质量要求也有所提高。
在深基坑工程施工中,由于受到地质条件、周边环境、降水不到位和施工环境等复杂因素的影响,基坑施工必然会影响到周围建筑物、地下设施和周围环境,因此,施工人员有必要加强深基坑工程变形监测工作,通过运行专业的仪器和各种方法对深基坑变形进行监测,能够准确掌握深基坑工程施工情况和预测基坑施工未来发展的趋势,对确保深基坑工程的质量安全具有重要的意义。
1基坑变形监测的内容
深基坑监测的主要内容有围护结构的水平位移监测、沉降监测、应力监测,及地下水位监测、护坡监测和周围环境监测等,一般通过设定监测项目的报警值来保障基坑施工和周边环境的安全。
在监测过程中,不仅要提供精确的监测数据,还应加强对基坑水文地质的了解与分析、基坑与周边相邻建筑物关系的分析研究。
1.1围护结构的监测。