时钟周期
- 格式:doc
- 大小:27.00 KB
- 文档页数:1
时钟周期.机器周期.指令周期的含义时钟周期:时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。
在一个时钟周期内,CPU仅完成一个最基本的动作。
对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250ns。
由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。
显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。
8051单片机把一个时钟周期定义为一个节第 1 页拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
机器周期:在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
8051系列单片机的一个机器周期同6个 S周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义第 2 页为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。
例如外接24M晶振的单片机,他的一个机器周期=12/24M 秒;指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成。
指令不同,所需的机器周期也不同。
对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则第 3 页需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
51单片机指令周期,机器周期,时钟周期详解51单片机有指令周期,机器周期,时钟周期的说法,看似相近,但是又都不太一样,很容易混淆。
还是详细分析一下。
时钟周期:单片机外接的晶振的振荡周期就是时钟周期,时钟周期=振荡周期。
比方说,80C51单片机外接了一个11.0592M的晶体振荡器,那我们就说这个单片机系统的时钟周期是1/11.0592M,这里要注意11.0592M是频率,周期是频率的倒数。
机器周期:单片机执行指令所消耗的最小时间单位。
我们都知道51单片机采用的CISC(复杂指令指令集),所以有很多条指令,并且各条指令执行的时间也可能不一样(有一样的哦),但是它们执行的时间必须是机器周期的整数倍,这就是机器周期的意义所在。
8051系列单片机又在这个基础上进行细分,将一个机器周期划分为6个状态周期,也就是S1-S6,每个状态周期又由两个节拍组成,P1和P2,而P1=P2=时钟周期。
这也就是经常说的8051系列单片机的的时钟频率是晶振频率的12分频,或者是1/12,就是这个意思。
现在(截至2012)新的单片机已经能做到不分频了,就是机器周期=时钟周期。
指令周期:指令周期执行某一条指令所消耗的时间,它等于机器周期的整数倍。
传统的80C51单片机的指令周期大多数是单周期指令,也就是指令周期=机器周期,少部分是双周期指令。
现在(截至2012)新的单片机已经能做到不分频了,并且尽量单指令周期,就是指令周期=机器周期=时钟周期。
来看这张8051单片机外部数据,这里ALE和$PSEN$的变化频率已经小于一个机器周期,如果使用C语言模拟这个信号是没有办法做到的一一对应的,所以只能尽量和上面的时序相同,周期延长。
单片机时钟周期、机器周期、指令周期与总线周期时钟周期:时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12us),是计算机中最基本的、最小的时间单位。
在一个时钟周期内,CPU仅完成一个最基本的动作。
对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。
由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。
显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。
具体计算就是1/fosc。
也就是说如果晶振为1MHz,那么时钟周期就为1us;6MHz的话,就是1/6us。
8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
机器周期:在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
8051系列单片机的一个机器周期同6个S周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。
具体计算为:时钟周期Xcycles。
如果单片机是12周期的话,那么机器周期就是T×12。
假设晶振频率为12M,单片机为12周期的话,那么机器周期就是1us。
例如外接24M晶振的单片机,他的一个机器周期=12/24M秒;52系列单片机一个机器周期等于12个时钟周期。
设晶振频率为12MHz时,52单片机是12T的单片机,即频率要12分频。
首先明确几个概念:时钟周期、振荡周期、状态周期、机器周期、指令周期1、时钟周期,也称为振荡周期:定义为时钟脉冲的倒数,在单片机中也就等于晶振的倒数。
51单片机中把一个时钟周期定义为一个节拍(用P表示),2个节拍定义为状态周期(用S表示)时钟周期是单片机中最小的时间单位。
eg:12M晶振的单片机,时钟周期=振荡周期=1/12 us。
2、机器周期:定义为完成一项基本操作所需要的时间,称为机器周期。
在计算机中,为了方便管理,把一条指令的执行过程分为若干个阶段,每个阶段去执行一项基本操作。
如:取指令,存储器读,存储器写等。
在51单片机中1个机器周期由6个状态周期组成,也就是12个时钟周期=12 x 1/12 us =1 us定义机器周期是因为时钟周期时间太短,根本做不了什么。
3、指令周期:定义为执行一条指令所需的时间。
通常,包含一个机器周期的指令称为单周期指令,比如 MOV指令,CLR指令等。
包含两个机器周期的指令称为双周期指令。
另外还有四周期指令。
判断指令是单周期指令还是双周期指令,最可靠的是查指令表。
我在网上找到了一个规律总结,此规律应按照顺序进行判断,前一条原则高于后一条(主要指2~6),按顺序检查到哪一条满足,就归属哪一类:1、MUL、DIV:仅有的4周期指令2、包含DPTR和PC的指令均为2周期指令3、所有的绝对跳转和条件转移指令,均为2周期指令4、所有包括A寄存器的指令,均为单周期指令5、位操作指令中,ANL和ORL是2周期指令6、所有包含立即地址的指令,除INC direct及DEC direct外,均为2周期指令7、剩下的均为单周期指令。
定时器工作在16位计数模式的时候有两个个参数TH跟TL 这2个参数都是8位(0-255)的,不能直接接受16位(0-65535)数据为了使高8位赋值到TH里面就要采用除以256的方法,等效于>>8(2的8次方=256),就相当于把高字8位移动到低8位的位置了求余数是为了把低8位赋值到TL里面,当不能被256整除留下的余数范围只有0-255以内。
1.时钟周期即晶振的单位时间发出的脉冲数,12MHZ=12×10的6次方,即每秒发出12000000个脉冲信号,那么发出一个脉冲的时间就是时钟周期,即1/12微秒。
2.一个机器周期等于12个时钟周期,所以是1微秒。
1.时钟周期为晶振频率的倒数:1/12微秒;2.机器周期为12个时钟周期:1微秒;时钟周期也叫震荡周期,就是晶振震荡的周期。
时钟周期=(1/12)uS,机器周期=12*(时钟周期)=1uS (1微秒)时钟周期1/12uS,约0.083微秒机器周期1uS (1微秒)设MCS-51单片机的晶振频率为12MHZ,试编写10ms的延时程序(要求误差不超过0.003ms)。
2011-6-29 13:27提问者:qiicanqiong|悬赏分:5 |浏览次数:726次2011-6-29 13:53最佳答案我们用汇编语言写单片机延时10ms的程序(用的是12MHz晶振的MCS-51),可以编写下面的程序来实现:MOV R5,#5 ①D1: MOV R6,#4 ②D2: MOV R7,#248 ③DJNZ R7,$ ④DJNZ R6,D2 ⑤DJNZ R5,D1 ⑥RET ⑦这个延时程序共有七条指令,现在就每一条指令执行的次数和所耗时间进行分析:第一条,MOV R5,#5 在整个程序中只执行一次,且为单周期指令,所以耗时1μs,第二条,MOV R6,#4 看⑥的指令可知,只要R5-1不为0,就会返回执行这条指令,共执行了R5次,共耗时5μs,第三条,MOV R7,#248 同第二条类似,只要R6-1不为0,就会返回执行这条指令,同时受到外部循环R5的控制,共耗时R5*R6*1=20μs,第四条,DJNZ R7,$ 只要R7-1不为0,就执行这条指令,同时受到外部循环的控制,由于该指令是双周期指令,共耗时为R7*R6*R5*2=9920μs,第五条,DJNZ R6,D2 只要R6-1不为0,就反复执行此条指令(内循环R6次),又受外循环R7的控制,共耗时R6*R5*2=40μs,第六条,DJNZ R5,D1 只要R5-1不为0,就反复执行此条指令,耗时为R5*2=10μs,第七条,RET 此指令为双周期指令,耗时为2μs,我们也要考虑在调用子程序时用到LCALL指令,耗时2μs,最后可以得到总的延时为:1+5+20+9920+40+10+2=9998μs=10ms我们可以总结延时总时间的公式:延时总时间=[(2*一层循环次数+3)*二层循环次数+3]*三层循环次数+3注意此公式只适用于三层以内的循环DELY :MOV R7,#10DELY1:MOV R6,#199DELY2:NOPNOPNOPDJNZ R6,DELY2NOPDJNZ R7,DELY1NOPNOPNOPNOPNOPRET延时时间:1+10*(199*5+4) +5+2=9998 uS,再加上调用指令2uS,正好10mS。
时钟周期:时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。
在一个时钟周期内,CPU仅完成一个最基本的动作。
对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。
由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。
显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。
8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
机器周期:在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
8051系列单片机的一个机器周期同6个S周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。
例如外接24M晶振的单片机,他的一个机器周期=12/24M 秒;指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成。
指令不同,所需的机器周期也不同。
对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
总线周期:由于存贮器和I/O端口是挂接在总线上的,CPU对存贮器和I/O接口的访问,是通过总线实现的。
1.时钟周期:(晶振频率倒数、控制计算机节奏)时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12us),是计算机中最基本的、最小的时间单位。
在一个时钟周期内,CPU仅完成一个最基本的动作。
对于某种单片机,若采用了1MHZ 的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。
由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。
显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。
8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
2.机器周期:(指令中单个阶段的执行周期)在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
8051系列单片机的一个机器周期由6个S周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。
(例如外接24M晶振的单片机,他的一个机器周期=12/24M秒)3.指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成。
指令不同,所需的机器周期也不同。
对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
时钟周期、状态周期、机器周期、指令周期、12T、6T、1T 之间关系时钟周期:
又叫振荡周期;是时钟脉冲的倒数;例如22.1184MHz的控制器,其时钟周期就是1/22.1184 us.
状态周期:
8051把1个时钟周期叫做一个节拍。
两个节拍定义为一个状态周期。
机器周期:
完成一个基本操作的时间单元叫做机器周期。
一个机器周期由若干个状态周期构成。
8051的机器周期一般由6个状态周期构成,即12个时钟周期。
指令周期:
完成一条指令所需的时间。
简单的指令是单机器周期指令;复杂的双机器周期指令和多机器周期指令。
指令周期是CPU的关键指标。
ARM的指令一般都是单周期指令。
STC单片机下载时有一个12T和6T模式选择。
12T就是普通的模式,指令周期的时间等于时钟周期的12倍。
而6T则是倍速模式,指令周期的时间等于时钟周期的6倍。
两者的区别会在串口速度上面有体现。
同样的code,以6T模式和以12T模式下载后,串口波特率相差一倍。
1T是12倍速的模式,即指令周期的时间与时钟周期相等。
指令周期机器周期状态周期振荡时钟周期(时钟周期)时钟周期:时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。
在一个时钟周期内,CPU仅完成一个最基本的动作。
对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为0.25us。
由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。
显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。
8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
机器周期:在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
8051系列单片机的一个机器周期由6个S周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期==6个状态周期==12个时钟周期。
例如外接24M晶振的单片机,他的一个机器周期=12/24M 秒;指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成。
指令不同,所需的机器周期也不同。
对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
总线周期:由于存贮器和I/O端口是挂接在总线上的,CPU对存贮器和I/O 接口的访问,是通过总线实现的。
时钟周期的名词解释时钟周期是计算机内部同步运行和各种操作的基本单位。
在计算机中,时钟周期指的是CPU时钟发生一个完整的振荡的时间。
一个时钟周期包括一系列的时钟信号变化,这些变化驱动着计算机内部的各种操作和指令执行。
在计算机中,时钟是一个重要的组成部分,它通过定时发出信号来控制系统的节奏。
每一次时钟信号的变化都标志着计算机内部各个元件的状态改变和操作的进行。
时钟周期是由时钟信号的上升沿和下降沿组成的,表示从一个状态到下一个状态所需要的时间。
时钟周期的长度是指完成一个时钟周期需要的时间。
它通常以纳秒(ns)或皮秒(ps)为单位来衡量。
在不同的计算机系统中,时钟周期的长度不尽相同,主要取决于计算机的硬件设计和时钟频率。
时钟频率指的是时钟每秒钟所振荡的次数,以赫兹(Hz)为单位表示。
时钟周期的长度与计算机的性能和速度密切相关。
通常情况下,时钟周期越短,计算机执行指令的速度就越快。
因此,一台运行频率较高、时钟周期较短的计算机往往能够更快地完成任务。
随着技术的不断进步,计算机的时钟频率也不断提高,从几百兆赫兹(MHz)发展到现在的几千兆赫兹(GHz)甚至更高。
时钟周期的长短还会对计算机的功耗和散热产生影响。
较高的时钟频率会产生更多的热量,需要更加强大的散热系统来保持计算机的稳定运行。
同时,较高的时钟频率也会导致计算机的功耗增加,这对笔记本电脑和移动设备等对能源消耗有限的设备来说是一个挑战。
除了时钟周期的长度,还有一个重要的概念是时钟速度。
时钟速度指的是时钟频率乘以时钟周期的长度,用来表示计算机的整体运行速度。
时钟速度越高,计算机的整体性能越好,但同时也带来了更高的功耗和散热需求。
总之,时钟周期是计算机内部同步运行和各种操作的基本单位,它决定了计算机执行指令的速度和系统的整体性能。
时钟周期的长度取决于时钟频率和硬件设计,较短的时钟周期可以提高计算机的运行速度,但同时也增加了功耗和散热的要求。
随着技术的不断进步,时钟周期不断缩短,计算机的性能也不断提升。
指令周期、时钟周期、总线周期概念辨析在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
通常用内存中读取一个指令字的最短时间来规定CPU周期,(也就是计算机通过内部或外部总线进行一次信息传输从而完成一个或几个微操作所需要的时间)),它一般由12个时钟周期组成。
而时钟周期=1秒/晶振频率,因此单片机的机器周期=12秒/晶振频率 .指令周期(Instruction Cycle):取出并执行一条指令的时间。
总线周期(BUS Cycle):也就是一个访存储器或I/O端口操作所用的时间。
时钟周期(Clock Cycle):又称节拍周期,是处理操作的最基本单位。
(晶振频率的倒数,也称T状态)指令周期、总线周期和时钟周期之间的关系:一个指令周期由若干个总线周期组成,而一个总线周期时间又包含有若干个时钟周期。
指令周期CPU每取出一条指令并执行这条指令,都要完成一系列的操作,这一系列操作所需要的时间通常叫做一个指令周期。
换言之指令周期是取出一条指令并执行这条指令的时间。
由于各条指令的操作功能不同,因此各种指令的指令周期是不尽相同的。
例如一条加法指令的指令周期同一条乘法指令的指令周期是不相同的。
指令周期常常用若干个CPU周期数来表示,CPU周期也称机器周期。
指令不同,所需的机器周期数也不同。
对于一些简单的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
总线周期1.微处理器是在时钟信号CLK控制下按节拍工作的。
8086/8088系统的时钟频率为4.77MHz,每个时钟周期约为200ns。
单片机:时钟周期,机器周期,指令周期
时钟周期:
时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。
在一个时钟周期内,CPU仅完成一个最基本的动作。
对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。
由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。
显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。
具体计算就是1/fosc。
也就是说如果晶振为1MHz,那幺时钟周期就为1us;6MHz的话,就是1/6us。
8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
机器周期:
在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周。
计算机时序的名词解释计算机时序是一个与计算机硬件和软件紧密相关的概念,它主要描述了计算机内部各个组件之间操作的顺序和时间间隔。
在计算机体系结构中,时序是确保计算机各个部件正确协同工作的重要因素之一。
本文将对计算机时序的一些关键名词进行解释,以便读者更好地理解这个领域。
时钟周期(Clock Cycle)是计算机时序的重要指标之一。
它是计算机中最基本的计时单位,也被称为时钟振荡器的一个完整周期。
时钟周期通常以纳秒(ns)为单位,用来描述计算机的工作频率。
现代计算机的时钟周期可以达到几纳秒甚至更低。
时钟周期的频率越高,计算机执行指令和处理数据的速度也就越快。
时钟信号(Clock Signal)是计算机体系结构中的一个核心元素。
时钟信号通过时钟发生器产生,它在计算机内部各个组件之间传递,驱动着计算机的工作。
时钟信号从发生器发出后,在整个计算机系统中以恒定的频率传递,确保各个组件按照同步的方式进行操作。
在一个时钟周期内,各个指令的执行和数据的传输必须与时钟信号的上升沿和下降沿对齐。
时序逻辑(Sequential Logic)是计算机中一种重要的逻辑设计方式。
相对于组合逻辑,时序逻辑引入了时钟信号的概念,通过时钟信号的作用来实现状态的存储和转换。
时序逻辑中的触发器和寄存器等元件能够将当前的输入和上一个状态共同决定输出的数值。
这种状态存储和转换的方式使得计算机能够处理更复杂的问题。
时序调度(Timing Scheduling)是计算机操作系统中的一个关键概念。
它涉及到任务的启动、执行和结束的时序控制。
在多任务系统中,时序调度通常通过调度算法来实现。
这些算法能够合理地分配和调度计算机资源,使得各个任务能够按照一定的时序顺序执行,从而提高系统的效率和响应速度。
时序性能(Timing Performance)是评估计算机系统性能的重要指标之一。
时序性能描述了计算机处理和执行指令的速度和效率,通常以时钟周期的数目来衡量。
简介指令周期(Instruction Cycle):取出并执行一条指令的时间。
总线周期(BUS Cycle):也就是一个访存储器或I/O端口操作所用的时间。
时钟周期(Clock Cycle):又称节拍周期,是处理操作的最基本单位。
(晶振频率的倒数,也称T状态)指令周期、总线周期和时钟周期之间的关系:一个指令周期由若干个总线周期组成,而一个总线周期时间又包含有若干个时钟周期。
时钟周期时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。
在一个时钟周期内,CPU仅完成一个最基本的动作。
对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250ns。
由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。
显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。
但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不一定相同。
我们学习的8051单片机的时钟范围是1.2MHz-12MHz。
在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
8051系列单片机的一个机器周期同6 个S 周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6 个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。
指令周期指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。
指令不同,所需的机器周期数也不同。
对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
时钟周期及秒(s)毫秒(ms)微秒(µs)纳秒(ns)⽪秒
(ps)之间转换
时钟周期是⼀个时间的量,⼈们规定10纳秒(ns)为⼀个时钟周期。
时钟周期表⽰了SDRAM所能运⾏的最⾼频率。
更⼩的时钟周期就意味着更⾼的⼯作频率。
对于PC100规格的内存来说,它的运⾏时钟周期应该不⾼于10纳秒。
纳秒与⼯作频率之间的转换关系为:1000 /时钟周期 = ⼯作频率。
例如,标称10纳秒的PC100内存芯⽚,其⼯作频率的表达式就应该是1000 / 100 = 100MHZ,这说明此内存芯⽚的额定⼯作频率为100MHZ。
⽬前市场上⼀些质量优秀的内存通常可以⼯作在⽐额定频率⾼的频率下,这为⼀些喜欢超频的朋友带来了极⼤的⽅便。
例如KingMAX的PC100内存,此类内存多采⽤8纳秒的芯⽚,相对于其100MHZ的频率来说,频率提⾼的余地还很⼤,许多⽤户都可以让它们⼯作在133MHZ甚⾄更⾼的频率下。
能不能超频使⽤很⼤程度上反应了内存芯⽚以及PCB板的质量。
不过,仅仅凭借时钟周期来判断内存的速度还是不够的,内存CAS的存取时间和延迟时间也在⼀定程度上决定了内存的性能。
时间的单位换算 1秒=1000毫秒(ms) 1毫秒=1/1,000秒(s) 1秒=1,000,000 微秒(μs) 1微秒=1/1,000,000秒(s) 1秒=1,000,000,000 纳秒(ns) 1纳秒=1/1,000,000,000秒(s) 1秒=1,000,000,000,000 ⽪秒(ps)。
时钟周期(Clock Cycle):又称节拍周期,是处理操作的最基本单位。
(晶振频率的倒数,也称T状态) 时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。
在一个时钟周期内,CPU仅完成一个最基本的动作。
对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。
由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。
显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。
但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不一定相同。
我们学习的8051单片机的时钟范围是1.2MHz-12MHz。
在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
机器周期
在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
8051系列单片机的一个机器周期同6个S 周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。
指令周期(Instruction Cycle):取出并执行一条指令的时间。
指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。
指令不同,所需的机器周期数也不同。
对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
机器周期:通常从内存中读取一个指令字的最短时间来规定CPU周期,(也就是计算机通过内部或外部总线进行一次信息传输从而完成一个或几个微操作所需要的时间
),它一般由12个时钟周期组成。
而时钟周期=1秒/晶振频率,因此单片机的机器周期=12秒/晶振频率。
总线周期(BUS Cycle):也就是一个访存储器或I/O端口操作所用的时间。
指令周期、总线周期和时钟周期之间的关系:一个指令周期由若干个总线周期组成,而一个总线周期时间又包含有若干个时钟周期。
问:某处理器时钟频率250MHZ,每4个时钟周期组成一个机器周期,执行一条指令,平均需要3个机器周期,则该处理器一个机器周期为_ns?
在运算的过程中,单位是怎样换算的,1s除250MHz是什么?
答:250MHZ=250000000HZ,就是一秒钟震动的次数,1S=1000ms=1000000μs=1000000000ns,你的周期数算出来了,1S/250MHZ=1000000000ns/250000000HZ=4ns,就是说一个频率周期需要4ns,那么,每四个时钟周期一个机器周期,那么一个机器周期等于4*4ns=16ns.
若处理器的时钟频率为500MHz ,每4个时钟周期组成一个计算机周期,执行一条指令
平均需要三个机器周期, 则该处理器的一个机器周期为________ns ,平均执行速度为____________MIPS .指令周期是一条指令执行的时间,一个指令周期分成若干机器周期,一个机器周期中又有若干个时钟周期。
时钟周期= 1 / 时钟频率,
上题中:
时钟周期= 1 / 500 ×1000000000 = 2 ns
机器周期=时钟周期× 4 =8 ns
指令周期=机器周期× 3 =24 ns
平均执行速度为:1 ÷指令周期= 1 ÷24 ×1000000000 ÷1000000 =41.67 MIPS 若处理器的时钟频率为500MHz 时钟周期为1000 / 500 = 2 ns 每4个时钟周期组成一个计算机周期机器周期为2*4 = 8 ns 执行一条指令平均需要三个机器周期1000/(8*3)=41.667 MIPS 或500(时钟频率) / 4 /3 相关公式
执行最快指令所需时间即CPU指令周期=(1个机器(计算机)周期) 转换成(时钟周期数)÷CPU 主频(单位ns 十亿分之一秒纳秒)CPU的MIPS(每秒百万条指令)即最高速率= CPU指令周期的倒数÷1M * 1个机器(计算机)周期执行的指令数。