有理数的运算复习课初一数学
- 格式:ppt
- 大小:581.00 KB
- 文档页数:18
有理数及其运算(复习)一、正负数有理数的分类:_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
正确理解非负数和非正数。
练习:1、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …};正有理数集{ …};负有理数集{ …} 负整数集{ …};自然数集{ …};正分数集{ …} 负分数集{ …}2、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。
二、数轴规定了 、 、 的直线,叫数轴练习:1、如图所示的图形为四位同学画的数轴,其中正确的是( )2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 03、下列语句中正确的是( )A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是 ,最小的正整数是 。
最大的非正数是 。
④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
5、在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-26、画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:⑴ 1,-2,3,-4 ⑵31,0,3,-0.2三、相反数1、像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。
0的相反数是 。
一般地:若a 为任一有理数,则a 的相反数为-a2、相反数的相关性质:a 、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
知识点总结知识点1 常规计算有理数混合运算的运算顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进行;3、如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行.【方法总结】根据有理数的混合运算顺序和运算法则计算即可.本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.注意:绝对值符号有括号的作用.知识点2 运算律、规律计算有理数的混合运算中,常用的运算律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律、加法对乘法的分配律. 【方法总结】本题主要考察了有理数混合运算的运算顺序和分配律的使用,(1)和(3)是乘法分配律的正用,(2)是乘法分配律的逆用,熟练掌握运算律的使用是解本题的关键.知识点3 求代数式的值重要结论:互为相反数的两数和为0,相反数等于自身的数是0;互为倒数的两数积为1,倒数等于自身的数有-1,1,倒数等于自身的自然数是1;最大的负整数是-1,最小的正整数是1,绝对值最小的有理数是0;有理数的混合运算:1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。
2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。
有理数混合运算的四种运算技巧:(1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.(2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.(3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.(4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.知识要点1.计算的基本法则:包括:有理数的加法、减法、乘法、除法、乘方①加法:同号两数相加,取相同的符号,并把绝对值相加. 异号两数相加,取绝对值大的数的符号,并用较大的绝对值减去较小的绝对值. 一个数同0相加,仍得这个数。
初一数学上册重点知识学习参考第一章 有理数一、知识结构有理数: 按定义分 按符号分正整数 正整数 正有理数0 整数 有 正分数(含正有限小数负整数 理 0 和循环小数)有限小数 正分数 数 负整数分数 负有理数无限循环小数 负分数 负分数(含负有限小数和循环小数)注意:常见的不是有理数的数有π和有规律的但不循环的小数。
如:0.0100100010001000010000010000001……二、掌握要点1、了解有理数的概念(什么是有理数、有理数包含的范围有哪些、有理数之间的大小比较)。
(1)大于0的数叫做正数,如3、1.8、5%等。
(2)在正数前面加上负号“—”的数叫负数,即小于0的数,如-3、-2.5、-5%等。
(3)数0既不是正数,也不是负数。
0除了表示一个也没有以外,是正数和负数的分界,是基准。
(4)在同一个问题中,分别用正数与负数表示的量具有相反的意义。
强调:用正数、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是他们的意义相反,如向东与向西、收入与支出;二是他们都是数量,而且是同类的量。
(5)正整数、0、负整数统称整数。
整数可以看作分母为1的分数。
(6)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
(7)把一些数放在一起,就组成了一个数的集合,简称“数集”。
所有有理数组成的数集叫“有理数集”,所有整数组成的数集叫“整数集”,所有负数组成的数集叫“负数集”……数集一般用圆圈或大括号表示,因为集合中的数是无限的。
(8)有理数可以按不同的标准进行分类,标准不同,分类结果也不同。
问:有理数可分为正数和负数两大类,对吗?为什么?有理数可分为整数和分数两大类,对吗?为什么?2、有理数与数轴上的点一一对应(数轴的三要素、怎样看数轴、掌握应用数轴来进行去绝对值符号的简单运算)。
(1)通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、正方向、单位长度原点——在直线上任取一点表示数0,这个点叫原点。
知识点总结知识点1:有理数除法法则(1) 除以一个数等于乘以这个数的倒数。
即a÷b=a×1/b(b≠0)。
(2) 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
知识点2:有理数的乘除混合运算除转乘,确定符号。
知识点3:有理数的四则混合运算先乘除,后加减,如果有括号,就先算括号里面的。
同级运算中,要按照从左到右的顺序。
知识点4.有理数的除法考点精讲1.4.2有理数的除法1、有理数除法法则1(课本P34)除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a·1/b(b≠0)2、有理数除法法则2(课本P34)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
3、化简分数(课本P35)-45/-12=(-45)÷(-12)=45÷12=15/44、有理数的加减乘除混合运算先乘除,后加减5、用计算器计算计算器的符号键(-)可以用来表示负数的符号。
用计算器计算:(-1.7)×4-(-2.6)÷(-4)-7.45(如图1.4-1)有理数的除法(习题)1.4.2有理数的除法(-6.5)÷0.13(7/4-7/8-7/12)÷(-7)(-7)÷(7/4-7/8-7/12)(-9)×(-11)÷8÷(-125)42×(-2/7)+(-5/4)÷(-0.25)(2)化简下列分数:-42/7,4/-16,-54/-8,-60/25(3)小商店一周的利润是1400元,平均每天的利润是元;小商店一周共亏损840元,平均每天的利润是元。
(4)用“>”“<”或“=”填空:如果a<0,b>0,那么a/b 0,如果a>0,b<0,那么a/b 0,如果a<0,b<0,那么a/b 0,如果a=0,b≠0,那么a/b 0。
第七讲 有理数的除法运算【知识要点】1.有理数除法法则① 法则一:除以一个数等于乘以这个数的倒数② 法则二:两数相除,同号得正,异号得负,并把绝对值相除。
③ 0除以任何一个非零数,等于0;0不能作除数!2. 1和1-的倒数等于它本身,即倒数等于它本身的有两个,是1±。
3. 1除以非零数,得到它的倒数。
【经典例题】【例1】求下列各数的倒数和负倒数。
①2 ② 431- ③ 20% ④ )0,0(21><-b a ba【例2】计算:① )5()25(-÷- ② )611(431-÷③ )4(4115.2-⨯÷- ④ )85()145()712(-⨯-÷-⑤3)522()213()53(÷-÷-⨯- ⑥3482773⎛⎫⎛⎫÷-⨯÷- ⎪ ⎪⎝⎭⎝⎭⑦ )241()1258343(-÷-- ⑧ )1312()173()1312(1715-÷-+-÷【例3】计算 ① .,14)31415161(m m 求=÷-+- ②11112134---【例4】数学老师布置了一道思考题“计算:⎪⎭⎫ ⎝⎛-+-÷⎪⎭⎫ ⎝⎛-526110132301 ”,小明和小红两位同学经过仔细思考,用不同的方法解答了这个问题: 小明的解法:原式=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-521016132301=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-2165301 =3301⨯-=101- 小红的解法:原式的倒数=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+-301526110132=()30526110132-⨯⎪⎭⎫⎝⎛-+- =-20+3-5+12=-10 故原式=101-①你觉得 的解法更好.②请你用自己喜欢的方法解答下面的问题:计算:⎪⎭⎫⎝⎛-+-÷⎪⎭⎫ ⎝⎛-723214361421。
初一上册数学青岛版第三章有理数的运算知识点归纳(史上最全面的总结)一、有理数的加法1.加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减较小绝对值。
(3)互为相反数的两个数相加得零。
(4)一个数与0相加仍得这个数。
2 . 加法运算律(1)加法交换律两个数相加,交换加数的位置,和不变。
a+b=b+a注意事项:对于三个或三个以上的数相加,加法交换律仍使用。
(2)加法结合律三个数相加,先把前两个数相加,或先把后两个数相加,和不变。
(a+b)+c=a+(b+c)注意事项:对于三个以上的数相加,加法结合律仍使用。
(3)常见结合方法a 把正数和负数分别结合。
b 把同分母分数或易通分的分数相结合。
C 把相加得零的几个数相结合。
d 把相加得整数的几个小数相结合。
e几个整数和分数相加,通常整数与分数分别结合。
3.重要结论(1)在有理数范围内,和不一定大于每一个加数。
(2)ba+≠a+b二、有理数的减法1.减法法则减去一个数等于加上它的相反数。
2.数轴上两点间的距离公式设点A表示有理数a,点B表示有理数b,则AB=ba-3.重要结论(1)在有理数范围内,差不一定小于被减数。
(2)任何数减去0仍得这个数。
(3)0减去一个数得这个数的相反数。
(4)ba-≠a-b(5)设a,b为任意有理数a>b ⟺ a-b>0a=b⟺ a-b=0a<b⟺a-b<0三、有理数的乘法1.乘法法则两数相乘,同号得正,异号得负。
并把绝对值相乘。
2.多个数相乘的乘法法则(1)几个不为0的数相乘,积的符号是由负因数的个数决定的,当负因数为偶数个时,积为正。
当负因数的个数为奇数时,积为负,并把绝对值相乘。
(2)几个数相乘,有一个因数为0,积为0.3.乘法运算律(1)乘法交换律两数相乘,交换因数的位置,积不变。
(2)乘法结合律三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
有理数1. 掌握有理数有关分类、数轴、相反数、近似数、有效数字和科学计数法等有关概念 2. 熟练去括号法则,以及有理数的有关运算模块一 正负数与有理数的分类1. 对于正负数的理解不能简单理解为带“+”号的数就是正数,带“-”号的数就是负数。
2. 相反意义的两个量是相互的,也是相对的。
3. 掌握有理数的两种分类:按“定义”分类与按“性质符号”分类☞有理数的分类【例1】 下列说法:①0是整数;②负分数一定是负有理数;③一个数不是整数就是负数;④π-为有理数;⑤最大的负有理数是1-,正确的序号是【难度】2星【解析】考察有理数的分类 【答案】①②【巩固】下列说法:①存在最小的自然数;②存在最小的正有理数;③不存在最大的正有理数;④存在最大的负有理数;⑤不是正整数就不是整数,错误的序号是【难度】2星【解析】考察有理数的分类 【答案】②④⑤模块二 数轴、相反数、倒数1. 数形结合思想是一种重要的数学思想。
数轴就是数形结合的工具。
2. 数轴是条直线,可以向两方无限延伸。
3. 数轴的三要素:原点、正方向、单位长度、三者缺一不可。
4. 所有有理数都可以用数轴上点表示,反过来,不能说数轴上所有的点都表示有理数5. 相反数是成对出现的,不能单独存在。
相反数和为零。
☞数轴例题精讲重难点【例2】 如图所示,小明在写作业时,不慎将两滴墨水滴在数轴上,根据图中的数值,试定墨迹盖住的整数共有几个【难度】1星【解析】考察数轴的有关概念【答案】如图,盖住数中的整数有4-、3-、2-、2、3、4,共有6个【巩固】 数轴上表示整数的点称为整点,某条数轴的单位长度为1cm ,若在数轴上任意画出一条长2006cm 的线段,则线段盖住的整数点共有 个【难度】2星【解析】考察数轴的有关概念 【答案】2006或2007☞相反数与倒数【例3】 已知a 、b 互为相反数,c 、d 互为倒数,1x =±,求2a b x cdx ++-的值 【难度】3星【解析】考察相反数与倒数的有关概念 【答案】解:由相反数、倒数的定义可得 0a b +=,1cd =则当1x =时,原式=01110+-⨯= 当1x =-时,原式=20(1)1(1)2+--⨯-=【巩固】已知a 和b 互为相反数,m 和n 互为倒数,(2)c =-+,求22mna b c++的值 【难度】3星【解析】考察相反数与倒数有关概念 【答案】解:由相反数和倒数的定义可得 0a b +=,1mn =∵(2)c =-+ ∴原式112()022mn a b c =++=+=--【巩固】已知数轴上点A 和点B 分别表示互为相反数的两个数,a 和b ()a b <并且A 、B 两点间的距离是144,求a 、b 【难度】3星【解析】考察相反数有关概念【答案】解:∵a 、b 两数互为相反数 ∴0a b += ∴a b =-∵A 、B 两点间距离有144b a -= ∴1()44b b --=∴178b =,178a =-模块三 有理数的运算1. 在进行有理数加法运算时,优先确定符号,然后在计算绝对值,这样就不容易出错。
有理数及其运算专题知识点一:正数与负数正数:负数:一、怎样区分正数和负数?例1. 读下列各数,并指出其中哪些是正数,哪些是负数:-2,3,0,+3,1.5,-3.14,100,-1.732.正数有:____ _____________. 负数有:__________ ______.二、如何用正数和负数表示的量具有相反意义的量?例2.在下列横线上填上适当的词,使前后构成意义相反的量:(1)收入3500元,______6500元;(2)_______800米,下降240米;(3)向北前进200米,_______300米。
练习:如果某球队一个赛季胜12场,记作+12场,那么该队这个赛季负6场,可记作_______。
如果存入3万元记作+3万元,那么支取2万元应记作,不存不支应记作,-4万元表示。
三、正数、负数的实际生活中的应用例3.某种面粉袋上对面粉的重量这样描述:重量(+50±0.2)kg,下面的理解正确的是() A.一袋面粉的重量是50kg B.一袋面粉的最大重量是50.2kgC.一袋面粉的最小重量是50.2kgD. -0.2kg表示的是比最大重量少0.2kg例 4.小明小学毕业了,他发现自己小学12个学期的数学成绩如下:91,89,88,93,94,90,97,94,87,94,85,86;那么他小学数学的平均成绩是多少?通过我们今天学习了正负数,你觉得有没有更简便的计算方法?知识点二:有理数的概念及分类有理数包含五种数:正整数、0、负整数、正分数、负分数,若将这五种数归类,可有两种方法。
(1) 按整数分数分类 (2)按正负分:那么,你知道有理数是什么了吗?【注意】分数包括所有有限小数,无限循环小数,假分数、带分数和百分数;正整数、0、负整数、正分数、负分数都是有理数。
1.判断,并说明理由。
(1)分数都是有理数。
( ) (2)小数都可以写成分数。
( ) (3)任何有理数不是整数就是分数。
人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。
三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。
四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。
另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。
2.使学生提高区分概念的能力,正确运用概念解决问题。
3、能正确比较两个有理数的大小。
二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。
三、教学难点:对绝对值概念的理解与应用。
四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。
)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。
新人教版七年级数学上册有理数的加减法(复习)【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系,体会其中蕴含的转化的思想;3.熟练地将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并且会解决简单的实际问题.【要点梳理】 要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.语言要点二、有理数的减法1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.过程:堂上小测,看谁又准又快化简-(+9)=___;②、化简-(-8)=__。
③、(-3)+(-4)=____;④、8+(-2)=____。
⑤、(-7)+ 2 = ___;⑥、(-1)-(-5)=____。
⑦、(-1)- 2 = ___;⑧、1-(-1) =_____。
有理数总复习【知识点一】正数与负数1.正数:像+1.8,+420、+30、+10%等带有“+”号的数叫做正数。
为了强调正数,前面加上“+”号,也可以省略不写。
2.负数:像-3、-4754、-50、-0.6、-15%等带有“-”号的数叫做负数。
而负数前面的“-”号不能省略。
3.零:既不是正数也不是负数,它是正数与负数的分界点。
归纳:正数与负数概念:大于0的叫正数,小于0的叫负数,0既不是正数也不是负数非负数:正实数与零的统称。
(表示为:x≥0)几个特殊的数:最小的自然数是0;绝对值最小的数是0;同时0也最小的非负整数是0;最小的正整数是1;最大的负整数是-1。
注意:对于正数与负数,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数。
例如-a不一定是负数,因为字母a代表任何一个有理数,当a是0时,-a是0,当a是负数时,-a是正数;能用正数与负数表示相反意义的量,习惯上把增加、盈利等规定为正,它们相反意义的量规定为负,正、负是相对而言有理数。
【典例精析】例1 把下列各数填在相应额大括号内:-0.1,-789,25,0,-20,-3.14,-590,6/7 ,π,-5/3, +3.65, π/2正数集{}负数集{}自然数集{}非负数集{}例2 下列说法正确的是:()A.正数都带有“+”号,不带“+”号的数都是负数。
B.带“-”号的数不一定是负数.C.一个数不是正数就是负数.D.0℃表示没有温度.【知识点二】有理数及其分类:有理数:整数与分数统称为有理数。
整数包括三类:正整数、零、负整数。
分数包括两类:正分数和负分数。
按整数、分数的关系分类:按正数、负数、零的关系分类:注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,不是有理数,除和与有关的数外,其他的数都是有理数;引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大到整数。