矩阵特征值问题
- 格式:pdf
- 大小:4.00 MB
- 文档页数:66
第五章 特征值和特征向量一、特征值与特征向量定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。
定义2:()E A f λλ-=,称为矩阵A 的特征多项式,)(λf =0E A λ-=,称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。
性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为0E A λ-=的根。
由此得到对特征向量和特征值的另一种认识:(1)λ是A 的特征值⇔0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量⇔α是齐次方程组(0)=-X E A λ的非零解.计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式,()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量.性质2:n 阶矩阵A 的相异特征值m λλλ 21,所对应的特征向量21,ξξ……ξ线性无关性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到:(1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |.性质4:如果λ是A 的特征值,则(1)f(λ)是A 的多项式f(A )的特征值.(2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ).(2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*,A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn .性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则(1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ);(2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。
矩阵特征值问题的数值方法矩阵特征值设A 是n 阶矩阵,x 是非零列向量. 如果有数λ 存在,满足那么,称x 是矩阵A 关于特征值λ的特征向量. 很显然一般地有主特征值的乘幂迭代法设n 阶矩阵A 的n 个特征值按模从大到小排序为:n 其对应的n 个线性无关的特征向量分别为:设是任意一个非零的n 维向量,则:假设,构造一个向量序列:则:或者:当时:如果是矩阵A 的关于特征值的一个特征向量,特征值个特征那么对于任意一个给定的,也是特征值的特征向量。
所以,是对主特征值对应的特征向量的近似。
如果则会变得很大或者如果,则会变得很大,或者如果,则会变得非常小,在实际计算中,为避免这种情况的出现需对做归一化处理况的出现,需对做归一化处理:由:左乘得:所以主特征值的近似值所以主特征值的近似值:残余误差向量定义为:当迭代次数充分大时,残余误差将充分小。
逆乘幂法:类似地,也可以求模最小特征值和对应的特征向量特征向量。
上述问题的主特征值问题就是矩阵A 的模最小特征值问题。
结果,逆乘幂法的迭代公式为:在实际应用中,无需计算逆矩阵,但需求解线性系统实对称矩阵的基本定理:对实对称矩阵A ,一定存在一个正交相似变换使得为对角矩阵且其对角矩阵P ,使得:为对角矩阵,且其对角的特征值元素为矩阵A 的特征值。
相似变换:相似变换保持矩阵特征值(但不是特征向量)不变不变。
(证明略)正交相似变换:中。
正交相似变换的例子—坐标旋转:叫旋转矩阵。
容易验证:。
适当选择旋转角,可消去xy 项—得到对角阵D 。
矩阵特征值问题的数值方法实对称矩阵的基本定理再看下面的例子:令:O 平面的坐标旋转变换适当同样地有:。
则是在x-O-z 平面的坐标旋转变换。
适当x z —D 。
选择旋转角可消去z 项得到对角阵实对称矩阵的Jacobi 方法:全部特征值和特征向量根据实对称矩阵的基本定理,求得矩阵A 的全部特征值的关键是找到正交相似变换矩阵P 使部特征值的关键,是找到正交相似变换矩阵P ,使得为对角阵。
矩阵特征值问题求解矩阵在数学和工程领域有着广泛的应用,而研究矩阵的特征值是其中一个重要的问题。
矩阵的特征值对于矩阵的性质和行为具有重要的影响,因此求解矩阵的特征值是一项非常重要的任务。
什么是特征值和特征向量在矩阵理论中,矩阵A的特征值(eigenvalue)是一个数λ,满足方程$A\\mathbf{v} = \\lambda\\mathbf{v}$的向量$\\mathbf{v}$存在且不为零。
其中,$\\mathbf{v}$被称为对应于特征值$\\lambda$的特征向量(eigenvector)。
特征值和特征向量的求解是矩阵理论和线性代数中的重要问题之一。
特征值问题的求解方法1. 特征值分解我们可以通过特征值分解的方法求解矩阵的特征值。
给定一个方阵A,我们可以将其表示为$A=Q\\Lambda Q^{-1}$的形式,其中Q是由A的特征向量所组成的矩阵,Λ是由A的特征值所组成的对角矩阵。
2. 特征多项式特征值问题的另一种求解方法是通过矩阵的特征多项式。
特征多项式是关于矩阵A的一个多项式,它的根就是矩阵A的特征值。
通过求解特征多项式的根,我们可以得到矩阵的特征值。
3. 幂法幂法是一种常用的求解特征值问题的迭代方法。
通过不断的迭代计算$A\\mathbf{v}^{(k)}$,其中$\\mathbf{v}^{(k)}$是第k次迭代得到的特征向量,我们可以逐渐逼近矩阵的特征值和特征向量。
应用和意义矩阵的特征值问题求解在计算机图形学、信号处理、物理学等领域都有着重要的应用和意义。
通过求解矩阵的特征值,我们可以分析矩阵的性质、系统的稳定性以及模式识别等问题,为我们深入理解和应用矩阵提供了重要的工具和方法。
综上所述,矩阵的特征值问题求解是一个具有重要意义和广泛应用的问题,通过不同的方法和技术,我们可以有效地求解矩阵的特征值和特征向量,为我们更好地理解和利用矩阵提供了重要的支持。
第五章矩阵特征值问题同步复习第五章矩阵特征值问题一、内容提要§5.1 特征值与特征向量1.定义设A 为阶方阵,如果存在数n λ以及一个非零n 维列向量ξ,使得关系式λξξ=A 成立,则称λ为A 的一个特征值,非零向量ξ为A 的属于特征值λ的特征向量。
2.求特征值和特征向量的步骤:(1)计算特征多项式A I -λ;(2)求A 的特征方程A I -λ=0的全部根,它们就是A 的所有特征值;(3)对于A 的每一个特征值λ,求解齐次线性方程组()0=。
设它的一个-X A I λ基础解系为,,,,21r n -ξξξ (其中)(A I r r -=λ),则A 的属于λ的全部特征向量为,2211r n r n k k k --+++ξξξ其中是不全为零的任意数。
r n -21k k k ,,,3.性质● 方阵A 与其转置矩阵T A 有相同的特征多项式,从而有相同的特征值;● )(21A tr n =+++λλλ , A n =λλλ 21;● 可逆矩阵A 与1-A 的特征值互为倒数;● 设λ是矩阵A 的特征值,)(x g 是一个多项式,则)(λg 是)(A g 的特征值;● 如果n 阶矩阵A 有n 个不同的特征值,则A 有n 个线性无关的特征向量;● 设s λλλ,,,21 是矩阵A 的s 个互不相同的特征值,而i in i i ααα,,,21 是A 的分别对应于特征值i λ的线性无关的特征向量组,则向量组111211,,,n ααα ; 222221,,,n ααα ; ...; ssn s s ααα,,,21 线性无关.§5.2 矩阵的相似性1.定义设A ,都是阶方阵,如果阶可逆矩阵B n P ,使B AP P =-1,则称矩阵A 与相似,记为B B A ~。
如果P 为正交矩阵,则称A 与B 正交相似。
2.命题相似矩阵有相同的特征多项式,从而有相同的特征值,相同的行列式和迹。
3.对角化的条件(1)充要条件:n 阶方阵A 可对角化的充分必要条件是A 有n 个线性无关的特征向量。
一、引言Jacobi方法是一种用于计算矩阵特征值和特征向量的迭代数值方法。
它是数值线性代数中的重要算法之一,广泛应用于科学计算、工程技术和金融领域。
本文将通过一个例题来介绍Jacobi方法的原理和求解过程,并分析其在实际问题中的应用。
二、Jacobi方法的原理Jacobi方法是一种通过迭代对矩阵进行相似变换,使得原矩阵逐步转化为对角矩阵的方法。
通过数值迭代,可以逐步逼近矩阵的特征值和对应的特征向量。
其基本原理如下:1. 对称矩阵特征值问题:对于对称矩阵A,存在一个正交矩阵P,使得P^T * A * P = D,其中D为对角矩阵,其对角线上的元素为A的特征值。
所以我们可以通过迭代找到P,使得P逼近正交矩阵,从而逼近A的特征值和特征向量。
2. Jacobi迭代:Jacobi方法的基本思想是通过正交相似变换,逐步将矩阵对角化。
具体来说,对于矩阵A,找到一个旋转矩阵G,使得A' = G^T * A * G为对角矩阵,然后递归地对A'进行相似变换,直到达到精度要求。
三、Jacobi方法求解特征值和特征向量的例题考虑以下矩阵A:A = [[4, -2, 2],[-2, 5, -1],[2, -1, 3]]我们将通过Jacobi方法来计算矩阵A的特征值和特征向量。
1. 对称化矩阵我们需要对矩阵A进行对称化处理。
对称化的思路是找到正交矩阵P,使得P^T * A * P = D,其中D为对角矩阵。
我们可以通过迭代找到逼近P的矩阵序列,直到达到一定的精度。
2. Jacobi迭代在Jacobi迭代的过程中,我们需要找到一个旋转矩阵G,使得A' =G^T * A * G为对角矩阵。
具体的迭代过程是:找到矩阵A中绝对值最大的非对角元素a[i][j],然后构造一个旋转矩阵G,将a[i][j]置零。
通过迭代地对A'进行相似变换,最终使得A'的非对角元素逼近零,即达到对角化的目的。
3. 计算特征值和特征向量经过一定次数的Jacobi迭代后,得到了对称矩阵A的对角化矩阵D和正交矩阵P。
矩阵特征值求解的分值算法12组1.1矩阵计算的基本问题(1)求解线性方程组的问题•即给定一个n阶非奇异矩阵A和n维向量b,求一个n维向量X,使得Ax =b (1. 1. 1 )(2)线性最小二乘问题,即给定一个mx n阶矩阵A和m维向量b ,求一个n维向量X,使得|AX -b| =min{ | Ay -比严R n} (1.1.2 )(3)矩阵的特征问题,即给定一个n阶实(复)矩阵A,求它的部分或全部特征值以及对应的特征向量,也就是求解方程(1. 1. 3 )一对解(4 X),其中R(C), x- R n(C n),即A为矩阵A的特征值,X为矩阵Ax = ZxA的属于特征值A的特征向量。
在工程上,矩阵的特征值具有广泛的应用,如大型桥梁或建筑物的振动问题:机械和机件的振动问题;飞机机翼的颤振问题;无线电电子学及光学系统的电磁振动问题;调节系统的自振问题以及声学和超声学系统的振动问题•又如天文、地震、信息系统、经济学中的一些问题都与矩阵的特征值问题密切相关。
在科学上,计算流体力学、统计计算、量子力学、化学工程和网络排队的马尔可夫链模拟等实际问题,最后也都要归结为矩阵的特征值问题.由于特征值问题在许多科学和工程领域中具有广泛的应用,因此对矩阵的特征值问题的求解理论研究算法的开发软件的制作等是当今计算数学和科学与工程计算研究领域的重大课题,国际上这方面的研究工作十分活跃。
1.2矩阵的特征值问题研究现状及算法概述对一个nxn阶实(复)矩阵A,它的特征值问题,即求方程(1.1.3)式的非平凡解,是数值线性代数的一个中心问题•这一问题的内在非线性给计算特征值带来许多计算问题•为了求(1.1.3)式中的A ,—个简单的想法就是显式地求解特征方程det (A 一几I)二0 (121 ) 除非对于个别的特殊矩阵,由于特征方程的系数不能够用稳定的数值方法由行列式的计算来求得,既使能精确计算出特征方程的系数,在有限精度下,其特征多项式f〃)二det(A-ZJ)的根可能对多项式的系数非常敏感能•因此,这个方法只在理论上是有意义的,实际计算中对一般矩阵是不可行的数 _ . _ . 人较大,则行列式det (A -几I)的计算量将非常大;其次,根据•首先,右矩即AfbJ阳数大于四的多项式求根不存在一种通用的方法,基于上述原Galois理论对于次因,人们只能寻求其它途径•因此,如何有效地!精确地求解’矩阵特征值问题,就成为数值线性代数领域的一个中心问题.目前,求解矩阵特征值问题的方法有两大类:一类称为变换方法,另一类称为向量迭代方法•变换方法是直接对原矩阵进行处理,通过一系列相似变换,使之变换成 一个易于求解特征值的形式,如Jacobi 算法,Givens 算法,QR 算法等。
第五章 矩阵的特征值与特征向量 习题1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎪⎭⎫ ⎝⎛=931421111) , ,(321a a a ;(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a . 2. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 3. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎪⎭⎫ ⎝⎛----201335212; (2)⎪⎪⎪⎭⎫ ⎝⎛633312321.4. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同.5. 设λ≠0是m 阶矩阵A m ⨯n B n ⨯m 的特征值, 证明λ也是n 阶矩阵BA 的特征值.6. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |.7. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |.8. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化, 求x .9. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;(2)问A 能不能相似对角化?并说明理由.10. 试求一个正交的相似变换矩阵, 将对称阵⎪⎪⎪⎭⎫ ⎝⎛----020212022化为对角阵.11. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.12. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .13. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .14. 设⎪⎪⎪⎭⎫ ⎝⎛-=340430241A , 求A 100.。