积分在不等式证明中的应用
- 格式:doc
- 大小:377.50 KB
- 文档页数:9
「用微积分理论证明不等式的方法02762」微积分作为数学的一个重要分支,广泛应用于各个领域。
在证明不等式时,微积分理论可以提供很多有用的方法和手段。
下面,将介绍一些常用的用微积分理论证明不等式的方法。
一、用函数的单调性函数的单调性是研究不等式的一个重要工具。
对于单调递增的函数,可以利用其性质来证明不等式。
设函数f(x)在区间(a,b)上单调递增,若有a≤x<y<b,则有f(a)≤f(x)<f(y)≤f(b)。
同时,根据单调递增函数的性质,对于任意的a<b,有f(x)<f(y),那么对应的不等式也成立。
例如,要证明在区间[0,1]上,f(x)=x(1-x)<1/4,可以利用函数f(x)在该区间上的单调递增性。
当x<1/2时,有f(x)<f(1/2)=1/4;当x>1/2时,有f(x)<f(1/2)=1/4,因此不等式f(x)<1/4在区间[0,1]上成立。
二、用导数或微分的性质导数和微分是微积分的基本概念,它们对研究不等式也起到很大的作用。
通过研究函数的导数或微分的性质,可以得到不等式的证明。
例如,要证明在区间(a,b)上f(x)≤g(x),可以研究函数h(x)=f(x)-g(x),若能证明h(x)≤0,则不等式成立。
对h(x)求导,然后研究导数的正负性即可。
又如,要证明不等式f(x)≥g(x),可以考虑函数h(x)=f(x)-g(x),若能证明h'(x)≥0,则不等式成立。
通过导数或微分的性质,可以简化不等式的证明过程。
三、用积分的性质积分是微积分的重要工具之一,它在证明不等式中也有广泛的应用。
常用的方法有利用积分的性质来证明不等式的区间逐点性、平均值和中值定理等。
例如,若要证明在区间[a,b]上的函数f(x)满足不等式f(x)≥0,可以考虑利用积分的区间逐点性。
即对于任意一个x∈[a,b],都有f(x)≥0成立。
又如,若要证明函数f(x)在[a,b]上的平均值大于等于左端点和右端点的函数值之间的平均值,即(∫[a,b]f(x)dx)/(b-a)≥(f(a)+f(b))/2,可以利用积分的性质,将该不等式转化为函数f(x)-(f(a)+f(b))/2的积分大于等于0,然后再进行证明。
积分不等式的证明方法及其应用一、积分不等式的证明方法:1.使用定积分定义证明:对于一个函数f(x),如果在[a,b]上f(x)≥0,那么可以使用定积分的定义进行证明。
将[a,b]分成n个小区间,每个小区间长度为Δx=(b-a)/n,那么对于每个小区间,存在一个ξi ∈ [x_{i-1}, x_i],使得f(ξi)Δx_i≤∫_{x_{i-1}}^{x_i} f(x)dx。
对于所有小区间,将不等式相加并取极限即可得到定积分不等式。
2.使用导数的性质证明:对于一个函数f(x),如果能够表示出它的导数f'(x),那么可以使用导数的性质进行证明。
首先计算f'(x),然后判断f'(x)的正负性,再根据函数在[a,b]上的取值情况,可以得到相应的不等式。
例如,如果f'(x)≥0,那么f(x)在[a,b]上是单调递增的,可以得到∫_a^bf(x)dx≥∫_a^b f(a)dx=f(a)(b-a)。
3.使用恒等式和变量替换证明:对于一个复杂的积分不等式,有时可以通过引入合适的恒等式或进行变量替换来简化证明过程。
例如,对于形如∫_a^b f(x)g(x)dx≥0的不等式,可以通过将f(x)g(x)拆分为两个函数的平方和,然后应用恒等式a^2+b^2≥0进行证明。
或者,可以通过进行变量替换将不等式转化为更简单的形式,然后再进行证明。
二、积分不等式的应用:1.极值问题:2.凸函数与切线问题:3.平均值不等式:平均值不等式是积分不等式的一种特殊情况,它可以用于证明平均值与极值之间的关系。
例如,对于一个连续函数f(x),可以通过证明(1/(b-a))∫_a^b f(x)dx≥ƒ(ξ)来得到平均值与极值之间的关系。
4.泛函分析问题:总结起来,积分不等式的证明方法包括定积分定义证明、导数性质证明、恒等式和变量替换证明等等。
而积分不等式的应用包括解决极值问题、研究凸函数的性质、平均值不等式以及泛函分析问题等。
不等式与绝对值不等式的证明与推广积分应用不等式与绝对值不等式的证明与推广在数学中,不等式是一种数学语句,用于比较两个量的大小关系。
而绝对值不等式则是一种特殊的不等式形式,主要用于研究绝对值的性质。
本文将探讨不等式与绝对值不等式的证明方法,并展示它们在积分应用中的推广。
一、不等式的证明方法不等式的证明是数学推理的重要部分,通常有以下几种常见的证明方法。
1.1. 直接证明法直接证明法是最常见的证明方法。
我们通过推导和运算,利用已知条件和逻辑推理推导出不等式的结论。
例如,对于形如a > b的不等式,我们可以令c = a - b,然后通过运算得到c > 0的结果,证明a > b。
1.2. 反证法反证法是一种通过假设不等式的反面,然后证明其矛盾来得出结论的方法。
假设不等式的反面成立,然后推导出矛盾的结论,从而证明原不等式是正确的。
例如,对于形如a > b的不等式,我们可以假设a≤ b,然后通过运算得到矛盾的结果,从而证明a > b。
1.3. 数学归纳法数学归纳法是证明关于整数的不等式的有效方法。
它包括两个步骤:首先证明当n = 1时不等式成立,然后假设对于任意n,不等式都成立,再证明对于n + 1时不等式也成立。
通过这种递推的方式,可以证明不等式对于所有整数都成立。
二、绝对值不等式的证明方法绝对值不等式是一类特殊的不等式,其中含有绝对值符号。
在证明绝对值不等式时,我们通常利用绝对值的性质进行推导。
2.1. 基于定义的证明绝对值不等式的定义是:|a| ≤ b等价于 -b ≤ a ≤ b。
我们可以利用这个定义,根据不等式的特点进行推导,来证明绝对值不等式的成立。
2.2. 基于绝对值性质的证明绝对值具有非负性、可加性、三角不等式等性质,我们可以将这些性质应用于绝对值不等式的证明中。
例如,对于形如|a - b| ≥ c的不等式,我们可以利用绝对值的可加性和基本不等式来推导出结果。
三、不等式与绝对值不等式的推广积分应用不等式和绝对值不等式在积分应用中有着广泛的应用。
关于积分不等式的证明积分不等式是高等数学中的一个重要概念,它可以用来研究函数的性质和求解各类数学问题。
下面将对积分不等式进行证明并详细介绍其应用。
首先,我们来证明\[f(x)\geq0, x\in[a,b]\]是一个有界函数,则其积分\[F(x)=\int_a^xf(t)dt\geq0,x\in[a,b]\]也是有界函数。
证明:我们将证明积分\[F(x)=\int_a^xf(t)dt\geq0,x\in[a,b]\]具体分为以下两种情况:情况一:当\(F(x)\geq0,x\in[a,b]\)时,由于函数\(F(x)\)是连续的,所以根据闭区间上连续函数的值域定理,存在\(c\in[a,b]\)使得\(F(c)=M\)(其中,\(M\)是\(F(x)\)在区间\([a,b]\)上的最大值)。
假设\(M<0\),则存在\(\delta>0\),使得当\(x\in[a,b]\)且\(0<,x-c,<\delta\)时,有\(F(x)>F(c)\)。
进一步,根据积分的定义,我们可以找到\(\varphi(x)\)使得\(F(x)-F(c)=\int_c^x\varphi(t)dt\)。
由于函数\(f(x)\geq0,x\in[a,b]\),所以有\(\varphi(t)\geq0\)。
结合前面的不等式,有\[F(x)-F(c)=\int_c^x\varphi(t)dt\geq0,x\in[a,b]\]。
注意到当\(x=c\)时,左边等式成立。
根据积分的唯一性定理,我们可以得到\(\varphi(t)\geq0\)。
因此,当\(x\in[c-\delta,c+\delta)\)时,\(\varphi(t)>0\)。
进一步,根据连续函数局部连续性的定理,我们可以找到\([\alpha,\beta]\subset[c-\delta,c+\delta)\),使得\(\varphi(t)>0\),当\(t\in[\alpha,\beta]\)。
摘要微积分和不等式都是数学学科中极为重要的内容,其证明通常不太客易。
本文回顾了几种常用的证明不等式的初等方法,利用微分中值定理、函数的单调性、极值(最值)的判定法、函数凸凹性质、泰勒公式、定积分的性质等一些微积分知识探究了不等式的证明方法,本文探讨了如何巧妙利用徽积分中的知识和方法来解决一些不等式的问题。
用微积分证明不等式成立, 基本思路是构造一个辅助函数, 然后利用微积分求出该函数的性质来证明不等式.关键词微积分不等式中值定理函数性质泰勒公式定积分性质1AbstractCalculus mathematics and inequality are extremely important, the proof is not usually easily. This paper reviews several commonly used to prove inequality elementary methods, using the differential mean value theorem, monotone of function, extreme value ( maximum ) decision method, function, convex and concave nature of Taylor formula, the nature of definite integral and some knowledge of calculus of the inequality proof method, this paper discusses how clever use of emblem integral knowledge and the method to solve some of the problems of inequality.Using calculus to prove inequality is established, the basic idea is the construction of an auxiliary function, then make use of infinitesimal calculus to derive the properties of function to prove inequality.Key words calculus inequality theorem function Taylor formulaof definite integral character目录摘要 (I)1 Abstract (II)2 前言 (1)3 微积分 (2)2.1微积分的定义 (2)2.2微积分的发展历史 (3)2.3微积分学的创立的意义 (4)2.4微积分不断深化 (5)4 微积分在不等式中的应用 (6)5 利用微分中值定理证明不等式 (7)6 利用函数的单调性证明不等式 (8)7 利用函数的最值(极值)证明不等式 (9)8 利用函数的凹凸性质证明不等式 (10)9 利用泰勒公式证明不等式 (11)10 利用定积分的性质证明不等式 (12)结论 (13)参考文献 (16)附录 (17)致谢......................................................................................................... 错误!未定义书签。
利用积分的性质证明不等式积分是微积分中非常重要的概念,它可以用来计算函数的面积、曲线的弧长、函数的平均值等等。
在解决实际问题时,我们经常会利用积分的性质来证明不等式,这种方法可以简化问题的分析过程,提高解题效率。
下面以证明柯西不等式为例,详细介绍如何利用积分的性质来证明不等式。
柯西不等式是一个非常著名的数学不等式,它的数学表达式如下:对于任意的实数a1、a2、…、an和b1、b2、…、bn,有(a1² + a2² + … + an²)(b1² + b2² + … + bn²) ≥ (a1b1 + a2b2 + … + anbn)²要证明柯西不等式,我们可以利用积分的性质,首先将函数f(x)进行平方,然后对其进行积分,进而推导出柯西不等式。
假设f(x)为定义在区间[a, b]上的连续函数,我们可以定义一个函数g(x) = f²(x)。
接下来我们对g(x)在区间[a, b]上求积分,表示为∫[a,b]g(x)dx。
由于g(x)是f(x)的平方,根据积分的性质,可以得到:∫[a,b]g(x)dx = ∫[a,b]f²(x)dx。
接下来我们对函数f(x)进行两次积分,得到的结果如下:∫[a,b]f²(x)dx = ∫[a,b][∫[a,b]f(x)du]dx。
我们可以看出,这个双重积分相当于对函数f(x)在区域C内进行了两次求面积的操作。
接下来,我们将C内部的每个小矩形区域的面积加起来,即得到整个区域C的面积。
设每一个小矩形的宽度为Δx,在区域C内任意选取一个点(ξ,x)。
根据微积分的定义,存在一点c,使得:f(ξ)-f(c)=f'(c)Δx。
根据上面的表达式,我们可以得到:f(ξ)-f(c)=f'(c)Δx≥0。
我们可以看出,f'(c)代表函数f(x)的导数,而根据导数的定义,它反映了函数f(x)在特定点的变化率,也可以理解为函数f(x)的斜率。
积分不等式如何通过积分不等式解决高中数学问题积分不等式是高中数学中常见的一种重要方法,它通过对不等式两边同时进行积分,将不等式问题转化为求解等式的问题,从而解决高中数学中的各种问题。
本文将介绍积分不等式的概念、求解步骤以及应用案例。
一、积分不等式的概念积分不等式是指在某个区间上满足一定关系的函数不等式。
具体来说,如果在区间[a, b]上,函数f(x)和g(x)满足f(x)≤ g(x),则对于[a, b]上连续函数φ(x),如果有∫[a, b] f(x)φ(x)dx ≤ ∫[a, b] g(x)φ(x)dx,那么就称这个不等式为积分不等式。
二、积分不等式的求解步骤解决积分不等式的一般步骤如下:1. 将积分不等式两边的函数进行积分,得到对应的不等式。
2. 利用已知的数学方法和技巧,对不等式进行简化和变形。
3. 运用数学推理和变换,得到最终的解或结论。
下面通过一个具体的案例来说明积分不等式的求解过程。
案例:已知函数f(x) = x^2sinx在区间[0, π/2]上连续,求证:∫[0, π/2]x^2sinx dx ≥ (π-2)/2π。
解:根据题目中给出的函数f(x)和区间[0, π/2]上的连续函数φ(x),将不等式转化为积分形式:∫[0, π/2] x^2sinx φ(x)dx ≥ ∫[0, π/2] (π-2)/2π φ(x)dx。
由于函数φ(x)的具体形式未知,难以直接求解。
因此我们需要借助于已知条件及数学推理来简化和变形不等式。
首先,根据积分的线性性质,我们可以将不等式右边的积分进行拆分:∫[0, π/2] x^2sinx φ(x)dx ≥ ∫[0, π/2] φ(x)dx - ∫[0, π/2] φ(x)/π dx。
接着,考虑利用积分区间[0, π/2]上函数x^2sinx的特点,我们可以使用分部积分法对不等式左边的积分进行简化。
按照分部积分法的公式,我们令u = x^2,dv = sinxφ(x)dx,那么du = 2xdx,v = -cosxφ(x)。
利用定积分证明数列和型不等式数列和型不等式是数列中项的和与数列项的不等关系之间的一种定理。
利用定积分可以证明数列和型不等式。
首先我们先回顾一下数列和的定义。
对于n个实数a1, a2, ..., an,我们定义它们的和为S = a1 + a2 + ... + an。
数列和型不等式就是研究这种和与数列项的不等关系。
接下来我们将使用定积分来证明数列和型不等式。
定积分是微积分中一个重要的概念。
给定一个函数f(x),我们可以通过定积分来计算函数在一些区间上的面积。
假设我们有一个数列{an},其中每个项an都是一个非负实数。
我们可以定义一个函数f(x),其在区间[0, n]上的积分值就是数列{an}的和。
我们令S = ∫₀ⁿ f(x)dx。
现在我们来看定积分的性质。
对于一个非负函数f(x),如果在区间[a, b]上有f(x) ≤ g(x),那么∫ₐᵇf(x)dx ≤ ∫ₐᵇ g(x)dx。
也就是说,如果函数f(x)在整个区间上都小于等于另一个函数g(x),那么f(x)的积分值一定小于等于g(x)的积分值。
现在我们可以使用定积分来证明数列和型不等式了。
假设{an}是一个非负数列,且存在一个非负函数f(x),使得在整个区间[0, n]上都有0≤ an ≤ f(x)。
我们令S = ∫₀ⁿ f(x)dx。
根据定积分的性质,对于任意的项an,有0 ≤ an ≤ f(x)。
因此对于数列的和S,我们有0 ≤ S ≤ ∫₀ⁿ f(x)dx。
根据定义,∫₀ⁿ f(x)dx就是数列{an}的和。
因此我们得到了数列和型不等式:0 ≤ S ≤ a₁ + a₂ + ... + an。
数列和型不等式有一个重要的应用就是用来估计数列的和。
当我们能找到一个函数f(x),使得在整个区间[0, n]上都有an ≤ f(x)成立时,我们可以通过计算∫₀ⁿ f(x)dx来得到数列{an}的一个上界。
这个上界就是数列的和的一个估计值。
总结起来,利用定积分可以证明数列和型不等式。
积分不等式的原理及应用1. 引言积分不等式是数学中一种重要的不等式类型,它广泛应用于求解数学问题和推导相关理论。
本文将介绍积分不等式的基本原理和其在实际问题中的应用。
2. 积分不等式的基本原理积分不等式可以通过对不等式两侧进行积分来推导和证明。
以下是积分不等式的基本原理:•不等式性质:如果函数f(x)在区间[a, b]上满足$f(x) \\leq g(x)$, 那么有$\\int_a^b f(x)dx \\leq \\int_a^b g(x)dx$。
这意味着,如果一个不等式在一个区间内成立,那么该不等式对应的积分不等式也成立。
•积分中值定理:如果函数f(x)和g(x)在区间[a, b]上满足$f(x) \\leq g(x)$, 那么存在一个点$c \\in [a, b]$,使得$\\int_a^b f(x)dx = (b-a)f(c)$和$\\int_a^b g(x)dx = (b-a)g(c)$。
这意味着,如果两个函数在一个区间内满足不等式关系,那么在其中必然存在一个点,通过该点对应的积分值也满足不等式关系。
•积分不等式的运算规则:根据积分的线性性质和积分不等式的性质,我们可以对积分不等式进行常规运算,例如加减乘除、积分变量替换等。
3. 积分不等式的应用案例积分不等式在实际问题中有广泛的应用,以下是几个常见的应用案例:3.1 面积和曲线积分通过积分不等式,我们可以求解曲线下的面积和曲线的弧长。
例如,给定函数f(x)在区间[a, b]上的图像,我们可以构建矩形和函数曲线所夹区域,通过逼近的方法计算出该区域的面积。
通过将曲线切分成若干小段,并将矩形逼近为小矩形,我们可以得到曲线下的面积。
3.2 不等式的推导通过积分不等式的原理,我们可以推导和证明各种数学不等式。
例如,柯西-施瓦茨不等式、霍尔德不等式等都可以通过积分不等式进行证明。
这些不等式在数学和物理等领域起到重要的作用,通过积分不等式的应用可以推广和解释这些不等式的性质和应用场景。
微积分在不等式证明中的应用探究微积分在不等式证明中有着广泛的应用。
本文将从以下几个方面探究微积分在不等式证明中的应用:一、极值法通过求解函数的导数,可以得到函数的极值。
在不等式证明中,如果要证明一个不等式成立,可以通过求解函数的极值来确定函数在一定区间内的取值范围。
例如,对于函数$f(x)=x^2+ax+b$,当$2x+a=0$时,$f(x)$取得最小值,此时$f(x)=b-\\frac{a^2}{4}$。
如果要证明$f(x)\\geq m$,可以先求出$f(x)$的最小值,然后判断最小值是否大于等于$m$。
二、中值定理中值定理是微积分中的重要定理之一。
如果一个函数$f(x)$在区间$[a,b]$上连续,在$(a,b)$内可导的话,那么一定存在一个$c\\in (a,b)$,使得$f(b)-f(a)=f'(c)(b-a)$。
在不等式证明中,可以通过中值定理来判断函数在一定区间内的大小关系。
例如,如果要证明$x^3+3x\\geq 4x^2$,可以令$f(x)=x^3+3x-4x^2$,然后证明$f(x)$在区间$[0,2]$上为非负数。
可以通过求解$f'(x)=3x^2+3-8x$来得到$f(x)$在$x=\\frac{1}{2}$处取得最小值,最小值为$-\\frac{5}{4}$,因此$f(x)\\ge -\\frac{5}{4}$,即$x^3+3x-4x^2\\geq-\\frac{5}{4}$,从而得到$x^3+3x\\geq 4x^2$。
三、积分法在不等式证明中,积分法通常被用来证明一些形如$\\int_a^bf(x)dx\\geq 0$的不等式。
例如,要证明$f(x)$在区间$[a,b]$上为非负数,可以通过证明$\\int_a^bf(x)dx\\geq 0$来得到。
对于一些较为复杂的积分不等式,可以通过换元法、分部积分等方法来进行变形和求解。
四、导数法通过对函数求导,可以得到函数的单调性。
微积分在不等式证明中的应用探究微积分是一门非常重要的数学分支,其在数学、物理、工程以及经济学等各个领域都有广泛的应用。
在不等式证明中,微积分也有着很大的作用,可以帮助我们更好地理解和证明不等式。
本文将探讨微积分在不等式证明中的应用。
一、不等式证明的基本思路不等式证明是数学中的一个重要问题,它的基本思路是通过变形来证明不等式的成立。
通常,我们可以将不等式转化成一个函数的形式,然后利用微积分的思想对函数进行研究,进而得到不等式的证明。
二、微积分在不等式中的应用微积分在不等式证明中有着广泛的应用,下面列举几个例子来说明。
1. 极值法极值法是一种常用的证明不等式的方法。
当我们要证明一个不等式时,我们可以先找到函数的极值点,然后利用函数在极值点处的取值来说明不等式成立。
具体实现方法如下:假设有不等式a≤f(x)≤b,其中f(x)为函数,a、b为已知数。
我们可以通过求解f(x)的导数来找到极值点。
假设f(x)的导数为0,即f'(x)=0,则f(x)在x处取得极值。
根据极值的定义,我们知道当f(x)在极值点处取到最大值或最小值时,不等式a≤f(x)≤b都会成立。
例如,要证明不等式sinx≤x(0≤x≤π/2),我们可以定义函数f(x)=x-sinx,然后求出f'(x)=1-cosx。
当f'(x)=0时,即cosx=1,这时f(x)的极小值为0,因此sinx≤x成立。
2. 积分法积分法也是证明不等式的一种重要方法。
具体方法如下:假设有不等式a≤f(x)≤b,其中f(x)为函数,a、b为已知数。
我们可以通过积分来获得f(x)在[a,b]上的取值。
具体来说,我们可以定义函数g(x)为a≤g(x)≤b且f(x)≤g(x),然后计算g(x)在[a,b]上的积分,即∫[a,b]g(x)dx。
由于a≤f(x)≤g(x)且g(x)在[a,b]上的积分一定小于等于f(x)在[a,b]上的积分,因此就能证明不等式的成立。
微积分证明不等式方法1.极限证明法极限证明法是一种常用的证明不等式的方法。
首先,我们可以取两边的极限,然后通过极限的性质进行推导。
例如,假设我们要证明不等式:$\lim\limits_{x \to +\infty}(f(x)-g(x)) \geq 0$,那么我们可以取两边的极限,得到:$\lim\limits_{x \to +\infty}f(x) \geq\lim\limits_{x \to +\infty}g(x)$,然后通过极限的性质,将不等式推广到更一般的情况。
2.导数证明法导数证明法是一种常用的证明不等式的方法。
我们可以通过计算函数的导数来研究函数的变化趋势,然后判断函数的变化趋势是否与不等式的方向相符。
例如,假设我们要证明不等式:$f(x) \geq g(x)$,那么我们可以计算$f(x)$和$g(x)$的导数,然后通过导数的符号判断函数的变化趋势是否与不等式的方向相符。
3.反证法反证法是一种常用的证明不等式的方法。
假设我们要证明不等式:$f(x) > g(x)$,我们可以假设存在一个$x_0$使得$f(x_0) \leq g(x_0)$,然后通过对$f(x)$和$g(x)$进行一些操作,推导出一个矛盾的结论。
这样就证明了原来的假设是错误的,从而得到了不等式的证明。
4.积分证明法积分证明法是一种常用的证明不等式的方法。
我们可以通过计算函数的积分来研究函数的变化情况,然后判断函数的变化情况是否与不等式的方向相符。
例如,假设我们要证明不等式:$\int_{a}^{b} f(x) dx \geq \int_{a}^{b} g(x) dx$,我们首先通过求积分,得到$\int_{a}^{b}[f(x)-g(x)] dx \geq 0$,然后通过对$f(x)-g(x)$的性质进行分析,判断积分结果的符号是否为非负。
以上介绍的是微积分证明不等式的几种常用方法,每种方法都有其适用的范围和优缺点。
1引言微积分学是微分学和积分学的总称.它是一种数学思想,无限细分就是微分,无限求和就是积分.微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,可以根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 文献[7],[10],[17] [20]介绍微积分在不等式证明中的应用,得到一些一般结论.不等式的证明在数学学习中既是一个重点也是一个难点,方法也很多,在此提出了求证不等式的几种方法,其在实际应用中具有较高的价值. 1.1 微积分的定义 1.1.1微分的定义定义1 设函数()y f x =定义在0x 的某领域0()x 内.当给0x 一个增量x ∆,0x x +∆∈0()U x 时,相应地得到函数的增量为00()()y f x x f x ∆=+∆-. 如果存在常数A ,使得y ∆能表示成0()y A x x ο∆=∆+, (1)则称函数f 在点0x 可微,并称(1)式中的第一项A x ∆为f 在点0x 的微分,记作0x x A x ==∆dy |或0x x A x ==∆df(x)|. (2)由定义可见,函数的微分与增量仅相差一个关于x ∆的高阶无穷小量,由于dy 是x ∆的线性函数,所以当0A ≠时,也说微分dy 是增量y ∆的线性主部.容易看出,函数f 在点0x 可导和可微是等价的. 1.1.2 积分的定义定义2 设f 是定义在[],a b 上的一个函数,J 是一个确定的实数.若对任何给的正数ε,总存在某一正数δ,使得对[],a b 的任何分割T ,以及在其上任意选取的点集{}i ξ,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数f 在区间[],a b 上可积或黎曼可积;数J 称为f 在[],a b 上的定积分或黎曼积分,记作()ba J f x dx =⎰.其中,f 称为被积函数,x 称为积分变量,[],a b 称为积分区间,a 、b 分别称为这个定积分的下限和上限. 2 微积分在不等式证明中的应用 2.1微分在不等式证明中的应用 2.1.1用导数的定义例1 设12()sin sin 2f x a x a x =++…+sin ,n a nx 已知()sin ,f x x ≤证明122... 1.n a a na ++≤证明:方法1:因为(0)0,f = 由已知()(0)sin (0)0f x f xx x x -≤≠-,'0()(0)lim1(0)10x f x f f x →-∴≤⇒≤-,即122... 1.n a a na ++≤导数的定义是微积分的基础,此题还可运用两个重要极限及变形进行证明.方法2:由()sin ,f x x ≤得()sin (0),f x xx x x≤≠即12sin sin 2sin sin ...n x x nx xa a a x x x x+++≤ .两端同时取x →0 时的极限得 lim x →∞12sin sin 2sin ...n x x nxa a a x x x+++≤lim x →∞sin x x .由重要极限及其变形知:0sin limx kxk x→=. ∴122... 1.n a a na ++≤证毕.2.1.2利用微分中值定理定理1(罗尔定理):设函数f(x)满足条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b )内可导; (3)f(a)=f(b);则在(a,b )内至少存在一个点ξ,使得f'(ξ)=0.定理2(拉格朗日中值定理):设函数f(x)满足条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b )内可导;则在(a,b )内至少存在一个点ξ,使得f'(ξ)=0 .定理3(柯西中值定理):设函数f(x),g(x)满足条件: (1)在闭区间[a,b]上连续;(2)在开区间(a,b )内均可导且g'(x)≠0;则在(a,b )内至少存在一个点ξ,使得a b a f b f --)()(=)('ξf 或)()()()()()(''ξξg f a g b g a f b f =--. 例2 已知b>a>0, 证明b a b -<a b ln <aab -. 证明:设f(x)=lnx, 它在[]b a ,(a >0)上连续且可导,,1)('xx f =又),,(b a ∈ξ根据微分中值定理的条件, 有ξ1ln ln =--a b a b ,而b 1<ξ1<a 1,因此b 1<ab a b --ln ln <a 1,即b a b -<a b ln <aab -. 例3 设- 11,≤≤y x ,证明 |arcsin arcsin x y -|≥|x-y |. 证明:设f(z)= arcsin z ,它在[ - 1 ,1 ]上连续且可导,2'11)(zz f -=,又ξ∈( - 1 ,1) ,根据微分中值定理的条件,有arcsin arcsin x yx y --,而1≥,因此|arcsin arcsin x y -|≥|x-y |.如果要证明的不等式或将要证明的不等式简单变形后,与微分中值公式的结构有相似性,就可以利用微分中值定理来证明,采用这种方法要注意的是构造一个辅助函数,然后利用公式证明. 2.1.3利用函数的单调性函数不等式是判断函数之间的大小关系.基于这种思想,可以利用函数单调性证明不等式.基本思想:将不等式两边的函数移到同一端,并作辅助函数;利用函数一阶导数的符号判断函数在所给区间的单调性;根据函数的单调性,得到所求不等式.定理4:设函数y=f(x)在[a,b]上连续,在(a,b )内可导(1)若在(a,b )内,f'(x)>0,那么函数y=f(x)在[a,b]上单调增加; (2)若在(a,b )内,f'(x)<0,那么函数y=f(x)在[a,b]上单调减少. 由定理1 我们总结出运用单调性证明不等式的一般方法与步骤:(1)移项,使不等式一端为“0”,另一端即为所作的辅助函数f(x); (2)求出f'(x),并判断f(x)在指定区间的增减性; (3)求出区间端点的函数值,作出比较即得所证.根据导数判断函数单调性的特点,直接构造一个函数,使得被证明的不等式中含有这个函数的两个端点值,然后利用单调性即可证明.例4 证明不等式1+x 21>x +1,x>0.证明:构造函数f(x)= 1+x21-x +1 (x>0), 则'1()2f x =.当x > 0 时,有11-+x >0,从而xx x f +-+=1211)('>0,,所以函数在(0 , + ∞)内单调增加,即当x > 0时,有f ( x) > f (0) ,而f (0) = 0 ,所以1+x 21-x +1(x>0), 即1+x 21>x +1,(x>0).例5 当x > 0 时,证明不等式xx+1<ln(1+x) <x.证明: (1) 令函数f(x)=ln(1+x)- x x+1,因为当x > 0 时,'()f x =x +11-2)1(1x +=2)1(x x +>0, 且f (0) = 0 ,所以函数在(0 , + ∞) 内单调增加,因此)1ln(x +-x x +1>0, 即1n (1 + x) >xx +1;(2) 设g ( x) = 1n (1 + x) - x ,类似可证明g ( x) 在区间(0 , + ∞) 内从0 开始单调减少,因此当x > 0时,有g ( x) < 0 ,即1n (1 + x) < x. 综上所述,可知xx+1 <)1ln(x +<x )0(>x . 运用函数的单调性证明不等式,关键在于构造适当的辅助函数,并研究它在指定区间内的单调性. 若在(a ,b)上总有f '(x) > 0,则f( x) 在( a ,b) 单调增加;若在( a ,b)上总有f '(x) < 0,则f(x) 在(a ,b) 单调减少.构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对( a ,b)进行分割,分别在小区间上讨论. 2.1.4利用函数的极值与最值定理5 (极值的第一充分条件)设f 在点0x 连续,在某领域0U 0(;)x δ内可导.(1)若当00(,)x x x δ∈-时'0()0f x ≤,当00(,)x x x δ∈+时'0()0f x ≥,则f 在点0x 取得极小值.(2)若当00(,)x x x δ∈-时'0()0f x ≥,当00(,)x x x δ∈+时'0()0f x ≤,则f 在点0x 取得极大值.定理6(极值的第二充分条件)设f 在点0x 的某领域U 0(;)x δ内一阶可导,在0x x =处二阶可导,且'0()0f x =,0''()0f x ≠. (1)若0''()0f x <,则f 在0x 取得极大值. (2)若0''()0f x >,则f 在0x 取得极小值.例6 设,10≤≤x ,p >1,证明不等式121-p ≤p x +p x )1(-≤1.证明:令f ( x) =p x +p x )1(-,则)('x f =p 1-p x +p 1)1(--p x (-1)=p []11)1(----p p x x , =)(''x f p(p-1)2-p x +p(p-1)2)1(--p x .令)('x f =0, 得x =21,则)21(''f =p(p-1)]22)21()21(--+⎢⎣⎡p p >0,)1(>p ; 所以f(x)在x=21处取得极小值. 因为,1)0()1(==f f =)21(f 121-p ,所以)(x f 在[]1,0上最大值为1 ,最小值为121-p . 因此121-p ≤p x +p x )1(-≤1.例7 求证:当0x ≥ 时, 1(1)10n n nx n x ----≤ (1,)n n N >∈. 证明:令()f x =1(1)1n n nx n x ----,则 '212()(1)(1)(1)(1).n n n f x n n x n n x n n x x ---=---=--令 '()0f x = 得驻点: 1(0x x ==因为是端点,所以不是驻点). 且当1x <时,'()0,f x >当1x >时,'()0,f x <(1)0f =是极大值也是最大值,所以()(1)0f x f ≤=,即当0x ≥时, 1(1)10n n nx n x ----≤.当我们构造好函数)(x f 后,如果无法得到0)('>x f (或)0)('<x f .即当函数不具有单调性时,可以考虑用极值与最值的方法进行证明,也是一种行之有效的方法. 若函数在某闭区间上连续,根据最值定理,函数必在该区间上取得最大值和最小值.令f( x) 在区间[b ,a ]上连续,则f( x) 在区间[b ,a ]存在最大值M 和最小值m ,那么: m ≤f(x)≤M. 2.1.5 利用函数的凹凸性定义3 设f 为定义在区间I 上的函数,若对I 上的任意两点1x ,2x 和任意实数(0,1)λ∈总有1212((1))()(1)()f x x f x f x λλλλ+-≤+-, (1)则称为上的凸函数.反之,如果总有1212((1))()(1)()f x x f x f x λλλλ+-≥+-, (2)则称f 为I 上的凹函数.如果(1)、(2)中的不等式改为严格不等式,则相应的函数称为严格凸函数和严格凹函数.定理7 设f 为区间I 上的二阶可导函数,则在I 上为凸(凹)函数的充要条 件是''()0(''()0),f x f x x I ≥≤∈.定理8 若f 为[],a b 上凸函数,则对任意[]1,,0(1,2,,),ni i i i x a b i n λλ=∈>=⋅⋅⋅∑=1,有11()()nni i i i i i f x f x λλ==≤∑∑.例8 设0,1,2,3...i x i n >=.12...nx x x n+++≤,其中的等号成立当且仅当所有的i x 全相等.证明:当所有的i x 全相等时等号显然成立,因此只需证明当i x 不全相等时上式是严格不等式. 考虑函数,ln )(x x f =x x f 1)('=>0,)(''x f =-21x<0x (>)0. 因此函数在),0(∞上是严格单调增加且是严格凸函数, 根据严格凸函数的定义,可知: 12...ln nx x x n+++ >11212ln ln ...ln ln(...)n n n x x x x x x n +++=⋅⋅⋅,又根据严格递12...nx x x n+++≤.例9 证明不等式)ln ln (y y y x +>2ln)(yx y x ++x (>y ,0>y x ≠,0). 证明: 构造函数x x x f ln )(=,),0(+∞∈x ,则=)('x f 1ln +x ,=)(''x f x1>0,),0(+∞∈x .因此,函数在),0(+∞∈x .上是凹函 数,由凹函数的定义有: 12()2x x f +<12()()2f x f x +即2ln 2y x y x ++<2ln ln y y x x +,所以)ln ln (y y y x +>2ln )(yx y x ++. 利用函数的凹凸性来证明不等式就是根据函数凹凸性定义中的不等式关系,即12()2x x f +<12()()2f x f x +或12()2x x f +>12()()2f x f x +,构造一个凸函数或凹函数来证明.2.1.6利用泰勒公式定理9 (泰勒定理) 若函数f 在[],a b 上存在直至n 阶的连续导函数,在(),a b 内存在()1n +阶导函数,则对任意给定的[]0,,x x a b ∈,至少存在一点ξ,使得'200000''()()()()()()2!f x f x f x f x x x x x =+-+-+ ()(1)1000()()()()!(1)!n n nn f x f x x x x n n ξ++⋅⋅⋅+-+-+.例10 如果f(x)在[],a b 上二阶可导,''()()f a f b ==0,则存在(,)c a b ∈使得''24()()().()f c f b f a b a ≥-- 证明:'''21()()()()()(),222!2f a b a b a b f f a f a a a ξ+++=+-+-(a<1ξ<2a b +). '''22()()()()()(),222!2f a b a b a b f f b f b b b ξ+++=+-+-(2a b +<2ξ<b ).所以''''212()()()()(),42f f b a f b f a ξξ---=, 取c 满足''''''12()max{(),()}f c f f ξξ=,2''()()()()4b a f b f a fc --≤, 即''24()()()()f c f b f a b a ≥--.在高等数学中的证明,尤其是题设中含有高阶导数二阶和二阶以上的大小或上下界的函数不等式,Taylor 公式是一个强有力的工具,而应用这一工具证明这类不等式的关键所在,就是正确地写出比题设条件低一阶的函数Taylor 的展开式,恰当选择Taylor 公式两边的x 与0x ,由给出的高阶导数的大小或上下界对展开式进行放大或缩小.泰勒展开式的证明常用的是将函数()f x 在所给区间端点或一些特定点(如区间的中点、零点) 进行展开,通过分析余项在ξ点的性质,而得出不等式,另外若余项在所给区间上不变号,也可将余项舍去而得到不等式.2.2积分在不等式证明中的应用 2.2.1 利用积分的定义主要思想:设()f x 在[],a b 上是严格增,0a x =<1x <…<n x 1,,n n b x x l +=-=则[]01()...()n l f x f x -++< ()ba f x dx ⎰<[]1()...();n l f x f x ++ (1)11()n f x dx -⎰<[]11()...()n l f x f x -++<()baf x dx ⎰, (2)适当选取()f x l 及可得各种不等式与估值例11 证明11p n p ++<12...p p pn +++<1(1),1p n p p +++>0.证明 : 对增函数()p f x x = (0x ≤< 2∞应用()):101p p p n x dx p +=+⎰<(1)...()f f n ++<110(1)1p p pn x dx p +++=+⎰. 此题还可将微分中值定理用到(1)p p k k +-来证. 2.2.2利用积分的性质性质1 若f 在[],a b 上可积,κ为常数,则f κ在[],a b 上也可积,且 ()()bbaaf x dx f x dx κκ=⎰⎰,性质2 若f 、g 都在[],a b 上可积,则f g ±在[],a b 上也可积,且 . []()()()()b bbaaaf xg x dx f x dx g x dx ±=±⎰⎰⎰.性质3 若f 、g 都在[],a b 上可积,则f g 在[],a b 上也可积.性质4 f 在[],a b 上可积的充要条件是:任给(,),c a b f ∈在[],a b 与[],c b 上都可积.此时又有等式()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.性质5 设f 为[],a b 上的可积函数.若[]()0,,f x x a b ≥∈,则()0baf x dx ≥⎰.推论 (积分不等式性) 若f 与g 为[],a b 上的两个可积函数,且()(),f x g x ≤[],x a b ∈,则有()()bbaaf x dxg x dx ≤⎰⎰.性质6 若f 在[],a b 上可积,则f 在[],a b 上也可积,且()()bbaaf x dx f x dx ≤⎰⎰.例12 已知)(x s =0cos x t ⎰dt, ,当n 为正整数,且ππ)1(+≤≤n x n 时,证明2n≤s(x) <)1(2+n .证明: | cos x| ≥0 且n π≤x < ( n + 1)π, ∴(1)0cos ()<cos ;n n x dx s x x dx ππ+≤⎰⎰又∵cos x 是以π为周期的函数,在每个周期上积分值相等, ∴(1)0cos cos 2;cos 2(1).n n x dx n x dx n x dx n πππ+===+⎰⎰⎰因此,当n π≤x < ( n + 1)π时,有2 n ≤s ( x ) < 2 ( n + 1) .例13 设f ( x) 在(0 ,1) 上有连续导数,且f (0) = f (1) = 0 ,证明:2112'1()().4f x dx f x dx ⎡⎤≤⎣⎦⎰⎰. 证明: 由于(0)0,f =则'0()(),xf x f x dx =⎰于是212'2220000()()1()(1)(),xx x f x f x dx dx f x dx x f x dx ⎡⎤=≤⋅≤-⎢⎥⎣⎦⎰⎰⎰⎰从而11111122222210021()()(1)()()().4f x dx xdx f x dx x dx f x dx f x dx f x dx ≤⋅+-⋅=⎰⎰⎰⎰⎰⎰ 例14证明不等式22ππ<<⎰ 证明:因为1≤≤=0,2x π⎡⎤∈⎢⎥⎣⎦,在0,2π⎡⎤⎢⎥⎣⎦上连续,且不恒等于1,所以由积分不等式2200dxππ<<⎰⎰,即22ππ<<⎰例15 设()f x在[],a b上连续,且()f x不恒等于零,证明2(())0baf x dx>⎰.证明:由()f x不恒等于零知,存在x∈[],a b,使0()0f x≠,故2()0f x>.由2()f x连续及连续函数的局部保号性,存在x的某领域00(,)x xδδ-+(当x a=或x b=时,则为右领域或左领域),使得在其中[][]220()()02f xf x≥>.由性质4和性质5,得[][][][]00002222()()()()b x x ba a x xf x dx f x dx f x dx f x dxδδδδ-+-+=++⎰⎰⎰⎰[][]22()0()02xxf xdx f xδδδ++≥+=>⎰.2.2.3利用积分中值定理定理10 (积分第一中值定理)若f在[],a b上连续,则至少存在一点ξ∈[],a b,使得()()()baf x dx f b aξ=-⎰.定理11 (积分第二中值定理)设函数f在[],a b上可积.(1)若函数g在[],a b上减,且()0g x≥,则存在[],a bξ∈,使得()()()();ba af xg x dx g a f x dxξ=⎰⎰;(2)若函数g在[],a b上增,且()0g x≥,则存在[],a bη∈,使得()()()();b baf xg x dx g b f x dxη=⎰⎰.定理12 (推广的积分第一中值定理)若f与g都在[],a b上连续,且()g x在[],a b上不变号,则至少存在一点[],a bξ∈,使得()()()();bbaaf xg x dx f g x dx ξ=⎰⎰例16 设122()sin ,()xxf x t dt f x x+=≤⎰试证 (x >0).证明: 令2,u t =则12()sin xxf x t dt +=⎰=22(1)x x+⎰. 被积函数满足第二积分中值定理的条件:()f u =单调, ()sing u u =可积,于是22(1)()sin sin x x f x udu udu ξξ+=⎰,2(1)11()sin sin 22(1)x xf x udu udu xx ξξ+≤++⎰⎰1121x x x≤+≤+ ,(x >0) 证毕. 2.2.4利用积分上限函数定义4 设()f x 在[],a b 上可积,对任何[],x a b ∈,()f x 在[],a x 上也可积.于是,由 ()(),xa x f t dt Φ=⎰ [],x ab ∈定义了一个以积分上限为自变量的函数,称为变上限的定积分.当命题中出现条件()f x 在[],a b 上连续时,可构造积分上限函数,将数值不等式或积分不等式转化为积分上限函数不等式,然后利用函数单调性或定积分性质或泰勒公式解题.例17 设函数()f x 在[],a b 上连续,在(,)a b 内可导,'()f x 单调减少.证明[]1()()()()2b a f x dx b a f a f b >-+⎰.证明: 令[]1()()()()()2x a F x f x dx x a f a f x =--+⎰,[],x a b ∈,则由已知条件,得[]11'()()()()()'()22F x f x f a f x x a f x =-+--= []11()()()'()22f x f a x a f x ---= 11()'()()()'()22x a f x a x a f x ξ----= []1()'()'()2x a f f x ξ--,其中 (,)a x ξ∈;又'()f x 单调减少,所以'()'()f f x ξ>,故[]1'()()'()'()02F x x a f f x ξ=-->,从而[]1()()()()()2xa F x f x dx x a f a f x =--+⎰在[],ab 上单调增加,又()0,F a =,故()()0F b F a >=,即[]1()()()()2b a f x dx b a f a f b >-+⎰.2.2.5 转化为重积分, 再用积分方法进行估计例18 设()(),f x a b 在连续,且f(x)>0,试证21()()()bba af x dx dx b a f x ⋅≥-⎰⎰. 证明: 左端=1()()()()b bb b aaa a f y f y dy dx dxdy f x f x =⎰⎰⎰⎰交换积分次序,左端=()()()()bbb b aaa a dyf x f x dx dxdy f y f y =⎰⎰⎰⎰ 因此,左端=221()()()()2()()2()()b b b b a a a a f y f x f y f x dxdy dxdy f x f y f x f y ⎡⎤++=⎢⎥⎣⎦⎰⎰⎰⎰2().b b a a dxdy a b ≥=-⎰⎰证毕. 2.2.6 利用Cauchy-Schwarz 不等式定理13 对于闭区间[],a b 上的可积函数(),f x g(x),有如下不等式:222()()()()b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⎢⎥⎣⎦⎰⎰⎰.这就是著名的Cauchy-Schwarz 不等式,它在数学分析、高等代数等学科以及许多初等数学的问题中都经常用到.因此,学会并灵活掌握这个定理的证明方法和思想是非常重要的,下面介绍它的证法及在不等式中的运用.证明: 由微积分学基本定理知:()ta f x dx ⎰是()f t 在[],ab ]上的一个原函数,不妨设222()()()()(),tttaa a F t f x dx g x dx f x g x dx ⎡⎤=-⎢⎥⎣⎦⎰⎰⎰ [],t a b ∈则有'2222()()()()()2()()()()ttbaaaF t f t g x dx g t f x dx f t g t f x g x dx =+-⎰⎰⎰=[]2()()()()0taf tg x g t f x dx -≥⎰.因为[],,t a b ∈所以t a ≥, 又[]2()()()()0f t g x g t f x -≥,所以'()0,F t ≥从而()F t 是[],a b 上的增函数. 故()().F b F a ≥而()0,F a =所以()0,F b ≥ 即222()()()()()0,bbba aa Fb f x dx g x dx f x g x ⎡⎤=-≥⎢⎥⎣⎦⎰⎰⎰故. 222()()()()b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⎢⎥⎣⎦⎰⎰⎰2.2.6.1Cauchy-Schwarz 不等式的运用定理14 设111,1,1p qp q >>+=,如果()f x 为[],a b 上的p 次可积函数,()g x 为[],a b 上的q 次可积函数,那么()()f x g x 在[],a b 上可积,且有11()()()()pqbbbpaa a f x g x dx f x dx g x dx ⎡⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰.为证上述定理,先证如下引理:引理 对任意非负实数A ,B ,都有11q P A B A p B q ≤+成立,其中1,1,p q >>11 1.p q +=证明: 设()(0)y x x φ=≥是严格增加的连续函数,且(0)0,()(0)x y y φϕ==≥是φ的逆函数①()a b φ= , ②()a b φ>, ③()a b φ<.不论()a φ与b 的关系如何,都成立着不等式()()abx dx y dy ab φϕ+≥⎰⎰.其中当且仅当()b a φ=时等号成立. 在上式中取1111(),(),,,q Pp q x xy y a A b B φϕ--====就得到11p q A B A p B q ≤+. 从而引理得证.下证定理.当11(),()pqbbpqa a f x dx g x dx ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰,之中有一个是零时,不等式显然成立.不妨设1()0pbpa f x dx ⎡⎤>⎢⎥⎣⎦⎰,1()0qbqa g x dx ⎡⎤>⎢⎥⎣⎦⎰.作辅助函数1()(),()pbpa f x x f x dx φ=⎡⎤⎢⎥⎣⎦⎰1()()()qbqa g x x g x dx ϕ=⎡⎤⎢⎥⎣⎦⎰.令 (),()p qA xB x φϕ==, 由引理得()()()()pqx x x x pqφϕφϕ=+, (1)因为(),()pqx x φϕ为[],a b 上的可积函数,由上述不等式知()()x x φϕ为[],a b 上的可积函数,因此()()f x g x 为[],a b 上的可积函数,且对(1)式两端积分得 ()()()()pqbbba aax x x x dx dx dx pqφϕφϕ≤+⎰⎰⎰=()()111()()b b pqaabbpqaaf x dxg x dx p qp f x dxq g x dx+=+=⎰⎰⎰⎰. (2)而11()()()()()()pqbbaabbpqa a f x g x dxx x x f x dx g x dx φϕ=⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰,将它代入(2)式即得 11()()()()pq b b b p q aa a f x g x dx f x dx g x dx ⎡⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰. 即为所要证的不等式.证毕.例19 利用施瓦茨不等式证明:若f 在[],a b 上可积,且()0f x m ≥>,则 21()()()bbaaf x dx dx b a f x ⋅≥-⎰⎰; 证明: 由()f x 可积,且()0f x m ≥>知,1()f x1()f x ,可积,于是根据Schwarz 不等式,有 1()()bb a af x dx dx f x ⋅⎰⎰222()()()b a adx b a ≥==-⎰⎰.致谢在完成论文的过程中,得到了x xx老师的精心指导和大力帮助,在此,衷心感谢x老师的悉心指导!参考文献【l】李大华, 胡适耕, 林益.高等数学典型问题100类[M].华中理工大学出版社1987.【2】钱吉林.数学分析解题精粹[M].崇文书局,2009.【3】裘卓明、葛钟美、于秀源.研究生人学考试指导. 数学分析[M].山东科学技术出版社,1985.【4】陈纪修,於崇华,金路.数学分析[M].高等教育出版社,2004.【5】华东师范数学系.数学分析[M].高等教育出版社,2001.【6】同济大学应用数学系,高等数学( 上册) [M] .高等教育出版社,2000. 【7】刘玉琏,傅沛仁. 数学分析讲义[M].人民教育出版社,1981.【8】吉米多维奇.数学分析习题集题解[M].山东科学技术出版社,2003.【9】菲赫金哥尔茨. 微积分学教程( 第一卷) ( 第8 版) [M].高等教育出版社,2001.【10】罗幼芝.微积分在不等式中的应用[J].泰山学院学报,2004,第6期:20~21.【11】同济大学数学教研室.高等数学:上册[M].上海人民教育出版社,1979. 【12】裴礼文.数学分析中的典型问题与方法[M].高等教育出版社,1993. 【13】寇业富. 不等式的证明[J ] . 数学的实践与认识,2003,第6期:112~116. 【14】萧树铁. 大学数学[M] . 高等教育出版社,2003.【15】徐荣贵,叶红. 微积分的基本思想[J ]. 四川工程职业技术学院学报, 2008,第4~5期,54~55.【16】李以渝. 高等数学(新编本) [M ]. 北京邮电大学出版社, 2006.【17】李光英. 用辅助函数证明不等式[J ] . 安庆师范学院学报(自然科学版) ,1999,第5期:63~64.【18】高汝熹.高等数学一微积分[M ].高等教育出版社,1992.【19】复旦大学数学系. 数学分析(第二版) [M ]. 北京:高等教育出版社, 1983.【20】韩宝燕.应用微积分理论证明不等式[J].中国新科技新产品,2009,第08期:203.【21】L.A.zadeh.“Fuzzy sets,”Information and control,vol.3,no.8, 1965.【22】Lin,T.Y.,Neighborhood systems and approximation in relational databases and knowledge bases,proceedings of the 4th Internationnal symposium on Methodologies of Intelligent systems 1988.。
积分在不等式证明中的应用摘 要:本文是根据积分的有关概念与性质,采用举例的方法归纳并总结了积分在不等式证明中的几种比较常见的技术和手法,同时重点突出了积分在不等式证明中的基本的思想与方法。
关键词:积分 不等式 应用Application of integral in proving inequalityAbstract:This article is based on concepts and properties about integral, several common techniques andpractices of the integral in the proving inequalities are concluded and summarized using the example of the way, while highlighting the integral in the proving inequalities of basic ideas and methods.Keywords:integral; inequality; application不等式证明不但是初等数学的重要课题,同时也是解决其他相关数学问题的基础知识。
在初等数学领域中有许多种证明不等式的方法,比如综合法、分析法、放缩法、归纳法、函数法、几何法等,但用这些初等方法证明不等式时证明过程比较繁琐,而常用的高等方法如微分法,则往往忽略了积分在不等式证明中的重要作用,本文着重从积分的一些定理和相关性质的方面来说明不等式证明的几种技术和手法,以便于从整体上更好地掌握证明不等式基本的思想方法。
1. 积分的定义在不等式证明中的应用从积分的定义出发来证明不等式,是很容易被忽略的一种方法,但是这种比较原始的证明方法有时却是一种很有效的证明方法。
例题1:设)(x ψ是[]a ,0上的连续函数,)(x f 二阶可导,0)(≥''x f ,试证:))(1()]([100dt t af dt t f a aa ⎰⎰≥ψψ. 证明:由题意知,0)(≥''x f ,故对于[]a x x x n ,0,,,21∈∀ ,有)()()()(2121nx x x f n x f x f x f nn +++≥+++ .若令n i a nix i ,,2,1),( ==ψ.则有)].(1[])([111a nin f a n i f n n i n i ∑∑==≥ψψ 故由根据题意可知,当+∞→n 时,有dt t f a n a a n i f a a n i f n an i n i ⎰∑∑→===011)]([1}])([{1])([1ψψψ, ⎰∑∑→⎪⎭⎫ ⎝⎛===a ni n i dt t a f n a a n i a f a n i n f 011].)(1[])([1)](1[ψψψ 从而))(1()]([100dt t a f dt t f a aa ⎰⎰≥ψψ. 值得注意的是,此题还可以采用积分中值定理来证明。
例题2:设[]0)(,)(≥x fb a x f 上的连续函数,且是在.试证:dx x f ab eb a dxx f ab ba ⎰-≤⎰-)(1)(ln 1. 证明:取,10b x x x a n =<<<= 且.,,2,1,1n i nab x x x i i i =-=-=∆-则 ∑===n i i n n x f nx f x f x f nn eex f x f x f 121)(ln 1)()()(ln 21)()()(])(ln [1])(ln [111i ni i ni i x x f a b na b x f a b ee∆---∑=∑===,])([1])([1)(1)()()(11121i ni i n i i n i i n x x f a b n a b x f a b x f n n x f x f x f ∆-=--==+++∑∑∑=== .又由于)(ln )(x f x f 和的连续性,故由积分的定义知:当+∞→n 时,有⎰→∑-∆-=bani i i dx x f a b x x f a b ee)(ln 1])(ln [11,⎰∑-→∆-=b an i i i dx x f a b x x f a b )(1])([11. 又由于1a-1bx图1 例题3nx f x f x f x f x f x f n nn )()()()()()(2121+++≤.从而dx x f ab eb a dxx f ab ba ⎰-≤⎰-)(1)(ln 1. 2. 积分的几何意义在不等式证明中的应用我们知道,定积分、二重积分等积分都有其几何意义,对于某些特殊的不等式,就可以从积分的几何意义出发,进行比较,从而给出证明。
例题3:若1,≥b a 时.试证:b b e ab a ln 1+≤-. 证明:.1,1ln ln 111+=+-=⎰⎰--dx e eb xdx b b a x a b且如图1,可以看出矩形的面积()b a 1-一定不会超过1s 和2s 的面积之和,即().ln ln 1111--+-=+≤-⎰⎰a a y be b b b dy e xdx b a从而.ln 1b b e ab a +≤- 例题4:若dx x x I ⎰-=122,(){}1,,)1(2222≤+=+-=⎰⎰y x y x D dxdy y x J D.试证:J I <.证明:dx x dx x x I ⎰⎰--=-=12102112)( .又由于10,11102≤≤--=⎰x dx x y )(的几何意义表示圆心为()0,1,半径为1的圆的面积的四分之一,故由积分的几何意义知4π=I .同理,由二重积分的几何意义知,J 表示高和底面半径都为1的圆锥的体积,故可知3π=J .从而J I <.3. 积分中值定理在不等式证明中的应用当所要求证的不等式中同时出现了形如)(x f 和dx x f ba ⎰)(的式子,其中)(x f 是[]b a ,上的连续函数,此时可以考虑利用积分中值定理。
定理1[1]:设)(x f 是[]b a ,上的函数连续,则至少存在一点[]b a ,∈η,使得).)(()(a b f dx x f ba-=⎰η定理2[1]:设)(x f 和)(x g 是[]b a ,上的函数连续,且)(x g 在[]b a ,上不变号,则至少存在一点[]b a ,∈η,使得.)()()()(dx x g f dx x g x f baba⎰⎰=η定理3[1]:设)(x f 是[]b a ,上的可积函数,(1) 若函数)(x g 在[]b a ,上递减,且0)(≥x g ,则存在一点[]b a ,∈η,使得dx x f a g dx x g x f aba⎰⎰=η)()()()(,(2) 若函数)(x g 在[]b a ,上递增,且0)(≥x g ,则存在一点[]b a ,∈ξ,使得dx x f b g dx x g x f bba⎰⎰=ξ)()()()(.例题5:求证不等式11083+>+.[3]试题分析:此题若用一般的方法证明也比较简单,这里我们可以用积分中值定理来证明,首先我们需要将其转换成可以利用积分中值定理的形式。
证明:不等式11083+>+可变形为81013->-.由于⎰⎰==-313112113dx x x d ,又因为[]3,11)(在xx f =上连续,故由定理1可得,[]3,11∈∃η,使得dx xf ⎰==31111211)(ηη. 同理可知,[]10,82∈∃η,使得⎰⎰==-108108121810dx x x d 21η=. 由于211ηη<<,故2111ηη>,即81013->-.从而11083+>+.例题6:设)(x f 是[]b a ,上的递增连续函数,试证:⎰⎰+≥ba badx x f b a dx x xf )(2)(. 证明:⎰⎰⎰+++-++-=+-b b a ba a ba dx x fb a x dx x f b a x dx x f b a x 22)()2()()2()()2( .又由于)(x f 在[]b a ,上连续,且⎥⎦⎤⎢⎣⎡+∈∀2,b a a x ,有02≤+-b a x ,故由定理2可知,⎥⎦⎤⎢⎣⎡+∈∃2,1b a a η,使得 ⎰⎰+++-=+-212)2()()()2(ba a ba adx b a x f dx x f b a x η,同理,⎥⎦⎤⎢⎣⎡+∈∃b b a ,22η,使得 ⎰⎰+++-=+-b b a ab a dx ba x f dx x fb a x 222)2()()()2(η. 从而=+-++-⎰⎰++b b a ba adx x f ba x dx x fb a x 22)()2()()2(⎰++-21)2()(b a adx b a x f η⎰++-+b b a dx ba x f 22)2()(η)]()([2)(122ηηf f a b --=.又 )(x f 在[]b a ,上递增,且12ηη>,故0)()(12≥-ηηf f .0)()2(≥+-∴⎰ba dx x f ba x . 从而⎰⎰+≥ba badx x f b a dx x xf )(2)(. 例题7:若0>c .试证:当0>x 时有不等式xdt t cx x1sin 2≤⎰+. 证明:若令2t u =,则du u dt u t 2121,==,则⎰⎰++=22)(2.2sin sin c x xcx xdu uu dt t设[]0)()(,)(,21)(,sin )(22>+==u g c x x u f uu g u u f 上连续,在则且递减,故由定理3可知,[]22)(,c x x +∈∃ξ,使得⎰⎰++=22)(22sin sin c x xcx xdu uu dt t ⎰=ξ2sin 212x udu x)cos (cos 212ξ-=x x. 从而xx x dt t cx x1cos cos 21sin 22≤-=⎰+ξ. 4. 积分的性质在证明不等式中的应用利用积分的性质证明不等式时,我们首先要判断出需要证明的不等式是否存在基本初等函数的积分值。
其次,根据题意设出相应的积分不等式和定义区间。
最后,运用相应的积分性质对已设积分不等式在定义区间内求值。
证明这种类型的题目需要掌握一定的初等不等式的积分公式。
定理4[1]:设)(x f 和)(x g 是在[]b a ,上的两个可积函数。