高昔(326)铀矿床成矿特征的认识
- 格式:pdf
- 大小:677.07 KB
- 文档页数:5
浅论铀矿床成矿特点及时空分布特征作者:周晓娜来源:《科学导报·学术》2017年第12期摘要:成矿过程是指成矿物质迁移、聚集、沉淀的作用过程。
矿床的形成是通过各种地质作用过程来实现的,它可涵盖不同时空尺度的构造岩浆作用演化、成矿地质体的形成、矿体的形成,以及矿床形成后的保存与破坏等不同阶段的各类复杂地质过程。
矿床形成过程中,有的由一个期次形成,有的经历多次不同的地质作用,多期成矿,即成矿物质由迁移到沉淀的多次过程。
关键词:成矿;矿床;铀矿床类型;特点【中图分类号】P619.4【文献标识码】A【文章编号】2236-1879(2017)12-0232-02在成矿过程中形成了复杂纷繁的各种地质现象,通过对这些地质现象的探究可以破解成矿过程之谜。
1铀矿床介绍1.1铀矿床含义:在某些地质过程中,地壳中特定地质环境中形成的铀矿物,或铀含量聚集体能够满足目前铀工业的要求,并且在目前的经济和技术条件下可以经济开发利用。
铀矿床的概念是动态的,随着社会生产力和科学技术的发展以及矿物原料需求的变化,铀矿床的范围也在变化。
以前没有使用的一些“岩石”或低等级矿化岩可能是经济可回收的铀矿床,这是原位可浸出的砂岩型铀矿床的一个例子。
1.2铀矿床研究概况:铀资源是重要的战略资源和能源矿产资源,也是中国核工业发展的基本原料。
中国的铀资源比较丰富,矿物种类越来越多,分布在23个省,市,自治区。
中国铀矿床种类多样,主要为砂岩型,花岗岩型,火山岩型和碳硅酸盐型,成矿地质条件复杂。
在中国北方,新疆伊犁,吐鲁番哈密盆地内陆砂岩型铀矿开发迅速,内蒙古鄂尔多斯盆地,二连盆地砂岩型铀矿勘查也取得重大突破,鄂尔多斯最典型的成果之一盆地东北部发现大型砂岩型铀矿床。
自从2006年以来,我国南部重点铀成矿带和矿场勘查工作已经恢复,部分重点领域取得初步成效,取得了显着成效。
这表明铀矿勘查潜力巨大。
2铀矿床成矿特点2.1矿床类型:中国的铀矿床多样化,早在20世纪60年代就开始研究铀矿床的类型。
铀矿床含矿岩系组成特征与铀成矿作用摘要:松辽盆地某砂岩型铀矿床自勘查以来不断获得重大发现,已成为超大型铀矿床。
该区矿床地质特征、成矿特点有过不少报道,但就其含矿建造的详细岩石学特征 ( 蚀源区母岩 ) 及有利的成矿条件等还需要随着研究程度的加深不断完善。
铀矿的成矿作用包括导致铀元素集中形成铀矿的各种地质作用,其中,铀含量高且容易析出铀的源岩是铀成矿的物质基础,后期的氧化—还原、矿化蚀变是铀矿形成的关键关键词:铀矿含矿建造;岩石学特征;矿化蚀变;成矿作用含矿建造岩石学及岩石化学特征岩石类型及碎屑组成特点勘查区含矿与赋矿岩石主要为细粒长石岩屑砂岩、中—细粒长石岩屑砂岩、含泥砾长石岩屑细砂岩和泥砾砂砾岩。
砂岩碎屑成分石英与长石之和与岩屑含量相近,岩屑以酸性火山岩为主 ( 流纹岩、流纹质凝灰岩 ),次为粗面岩、正长细晶岩、花岗岩、花岗斑岩、安山岩、硅质岩、泥岩等,偶见石英片岩和硅质板岩等。
含矿主岩岩石化学特征对某砂岩型铀矿Ⅳ块赋矿岩石进行岩石化学全分析)。
SiO2/Al2O3值介于 3.17 ~ 8.71 之间,平均为 6.52,比值低于佩蒂庄的长石砂岩的平均值 (8.86),反映了本区姚家组砂岩的成分成熟度较低。
CaO 含量 0.51% ~ 10.81%,以方解石砂屑及泥晶灰岩岩屑存在砂岩中碳酸盐化碳酸盐化是热液蚀变常见类型,在砂岩型铀矿成矿热液中CO2 - 3、HCO - 3、CO2、CO 是主要组分,可以从深部逸散渗入的油气中带来,也可能来自地表、近地表氧化水的水岩交换产物。
两种成因碳酸盐化可单独出现,也可叠合经还原作用产生。
碳酸盐化蚀变属于中—低温热液作用类型,是重要的矿化剂,与铀矿的成因有密切的成因联系。
高岭石化某Ⅳ块赋矿砂岩中普遍高岭石化。
高岭石化的出现表明成矿热液已转变为弱酸性环境,这种转变预示着 3 种情况 : 其一,蚀源区含矿原岩风化剥蚀的彻底程度,预示着含矿性好的蚀变花岗岩与碱性花岗岩风化彻底; 其二,弱酸性介质条件有可溶性铀的带入有利于成矿; 其三,它的出现造成与碳酸盐化弱酸—弱碱性的交替发生,方可使得可溶性铀的沉淀与富集。
中国铀矿开采技术特点及进展水平1 我国铀矿工业进展过程及特点我国铀矿冶工业是在毛主席、周总理亲切关心和领导下从50 年月末开头创立与进展起来的,经过40 多年努力,在全国十几个省、市、自治区先后建设了假设干座铀矿山和铀水冶厂,以及铀矿冶争论所、设计院、机修厂、建筑公司等,形成了完整的铀矿冶生产系统,为我国原子弹、氢弹、核潜艇准时供给了充分的核燃料,为壮大国威、军威,打破国外敌对势力核讹诈、核垄断作出了历史性奉献,为我国核电工业进展打下了坚实根底。
放射性铀矿在我国属特定矿种,受到国家高度重视,其矿床特点是:①矿床类型较多,可分为八个大类,22 个亚类,但是花岗岩型(占34%),火山岩型(22%),碳硅泥岩(占20%),砂岩型(占15%)为主,这四类合计占90%以上;②成矿年月跨度大,从古生代、中生代、到生代都有;③矿床规模一般较小,埋藏不深;④铀矿石具有放射性。
针对铀矿床特点,经过长期实践与完善,使我国铀矿开采技术也形成肯定特点:①在开采方式中以地下开采为主,地下开采占80%~85%,露天开采仅占15%~20%;②采矿方法种类繁多,但以充填采矿法为主;③回采工艺敏捷,适应性较强;④从勘探到开采全过程都须与放射性物探亲热协作;⑤格外重视放射性的安全防护工作。
铀矿开采上述特点,实际上也是多年来我国铀开采所遵循的根本原则,并且严密围绕这些根本原则完善铀矿开采技术,探讨其进展方向。
例如,在开拓方案选择中承受斜井开拓较多,斜井开拓占50%以上,我国地下开采的铀矿山几乎都有斜井,只是有的作主提升井,有的作关心提升井。
竖井开拓只占35%~40%,平硐开拓占10%左右;为了适合矿体多变状况,中段高度偏小,急倾斜矿体一般为40~50m,缓倾斜矿体一般为15~25m;为了加强生产探矿,采掘比偏大,平均为41m/千t,个别到达90~120m/千t;为了削减放射性对井下作业人员的危害,依据稀释氡及氡子体原则计算风量,加大矿井通风,将开拓工程及局部采准工程尽可能布置在矿脉外,以削减氡及氡子体析出;为削减放射性对环境的影响,一律就矿建厂,要求废水全部达标排放,尽量作到无废水排放等。
铀成矿理论与找矿方法探讨
铀成矿理论与找矿方法是一个复杂而多学科交叉的领域。
以下是对铀成矿理论与找矿方法的一些基本探讨:
一、铀成矿理论
1. 铀成矿的地球化学条件:铀在地球上广泛分布,但并不是所有地区都能形成铀矿床。
铀成矿需要特定的地球化学条件,如适当的温度、压力、酸碱度、氧化还原电位等。
2. 铀成矿的地质条件:铀矿床通常形成于特定的地质环境中,如沉积岩、变质岩和火山岩等。
这些岩石中的铀含量较高,且易于被还原成可溶性的铀化合物。
3. 铀成矿的物理化学过程:铀成矿过程中涉及复杂的物理化学过程,如铀的溶解、迁移、沉淀等。
这些过程受到多种因素的影响,如温度、压力、pH值、氧化还原电位等。
二、找矿方法
1. 地质调查:通过地质调查,了解区域的地质背景、岩石类型、构造特征等,为寻找铀矿床提供线索。
2. 地球化学测量:利用地球化学测量技术,测定岩石中的铀含量,判断是否有铀矿床存在。
3. 地球物理测量:通过地球物理测量技术,如重力测量、磁法测量等,可以发现地下隐伏的铀矿床。
4. 遥感技术:利用遥感技术对地表进行成像和分析,可以发现与铀矿床相关的地质信息和异常。
5. 探矿工程:通过探矿工程,如钻探、坑探等,可以直接揭露地下矿体,确定铀矿床的规模和品位。
总之,铀成矿理论与找矿方法是一个不断发展和完善的领域。
随着科学技术的进步和研究的深入,我们对铀成矿理论的认识将更加深入,找矿方法也将更加高效和准确。
铀元素及铀矿物的基本特征1. 铀元素性质及铀的分布铀的性质(同位素、氧化态、稳定条件、离子性质);+3、+4、+5、+6几种价态铀的稳定氧化态只在自然界只有+4和+6价两种,并且+4价在还原条件下稳定,+6价在氧化条件下稳定。
U4+—(0.97—1.01Å) UO22+(铀酰)呈哑铃型,U4+呈绿色, UO22+呈黄色。
U4+呈弱碱性,当pH=2时,U4+发生水解,水解结果具酸性反应,并最后生成U(OH)4沉淀。
U6+显两性,但酸性较强,碱性较弱,在酸性溶液中呈UO22+,在碱性溶液中呈U2O72-U4+在还原条件下稳定,UO22+在氧化条件下稳定,两者可以相互转化。
碱性溶液中铀以高价态的形式可稳定存在铀在自然界的分布及存在形式。
①在岩浆岩中的分布由超基性岩到酸性岩含量逐渐增高,一般变化是自超基性岩中的0.00nppm到酸性岩中的n 个ppm(10-6)②铀在沉积岩中的分布沉积岩中铀含量的变化幅度很大,从0.nppm到n×10ppm,一般随沉积物粒度变细铀含量升高,通常与沉积物中的P、H2S和有机质含量密切相关,且呈正消长关系。
③铀在变质岩中的分布:铀矿床在变质岩中的产出通常是产在中低级变质程度的,在高级变质相的岩石中则很少见,它与铀在变质岩中的分布规律相关。
但一般来说,不同的变质岩类有不同的铀含量。
长英质岩类要比铁镁质岩类和碳酸盐岩类要高;同一岩类中,不同变质岩石的含铀性也有差异。
2.在地壳中的存在形式:①铀矿物形式②类质同象置换形式③分散吸附状态形式:二.铀矿物的晶体化学特点(四价铀矿物、六价铀矿物)1.四价铀矿物的晶体化学特点①四价铀矿物的晶体结构类型四价铀在矿物中的离子形式存在,形成离子键化合物,多数属离子晶格,在晶体结构中铀具有较高的配位数,为8和6晶,体结构类型有三种:a、配位型(或称萤石型)b、岛状型(或称锆石型)c、层状型②类质同象在四价铀矿物中广泛发育着U4+和Th4+和TR3+之间的类质同象④变生作用变生作用系指在铀、钍衰变过程中放出的射线作用下和核裂变碎片的作用下某些含铀、钍矿物的晶体结构遭到破坏从而呈非晶态的现象。
铀矿成矿条件与找矿预测技术研究铀矿成矿条件与找矿预测技术研究是地质学中一个重要的研究领域。
铀是一种重要的放射性矿产资源,具有广泛的应用价值。
然而,铀资源的分布非常不均衡,因此寻找并确定铀矿床的成矿条件和预测技术对于提高铀矿资源的利用效率具有重要意义。
铀矿的成矿条件是指形成铀矿床所需要的一系列地质环境条件。
首先,地壳中含有较高浓度的铀元素是形成铀矿的基础条件。
然而,铀元素在地壳中分布极不均匀,主要集中在特定的地质构造带和区域中。
其次,地质构造活动是形成铀矿床的重要条件。
地质构造的发育程度和类型对于铀矿床的形成有着至关重要的影响。
例如,断裂带和隆起带常常是铀矿床的良好成矿构造,因为它们可以提供相对较高的流体运移空间。
此外,适宜的岩石类型和矿床形成环境也是形成铀矿床的重要条件。
在这些岩石类型和矿床形成环境中,铀元素能够与其他元素结合形成矿石矿物。
为了准确地预测和寻找铀矿床,研究人员不断开发和改进各种找矿预测技术。
其中,地球物理勘探技术是最常用的方法之一。
地球物理方法主要通过测量地壳中各种物理场的参数变化,来寻找和确定铀矿床的存在和分布。
地球物理方法主要包括地震勘探、重力勘探、磁力勘探和电磁勘探等。
通过对地球物理场参数的精确测量和分析,可以确定铀矿床的潜在位置和规模。
除了地球物理勘探技术外,地球化学勘探技术也是寻找铀矿床的重要手段。
地球化学勘探主要通过分析地球表层物质中的元素含量和组分,来推断地下矿床的存在和分布。
地球化学方法主要包括土壤、水体和植物等样品的采集和分析。
通过对这些样品中铀元素含量和特征的分析,可以确定铀矿床的丰度和分布。
近年来,随着遥感技术的快速发展,遥感勘查技术也成为铀矿床寻找的重要手段之一。
遥感勘查主要通过对地表和地下物质的反射、辐射和散射等特征进行遥感观测和分析,来推断铀矿床的存在和分布。
通过对遥感数据的解译和分析,可以确定地表和地下的特征性反射和发射特征,从而判断铀矿床的潜在位置。
铀矿床地质特征与资源评价研究铀矿床地质特征与资源评价研究摘要:铀矿床作为一种重要的能源矿产资源,对于国家经济发展和能源供应具有重要作用。
铀矿床的地质特征与资源评价研究对于寻找潜在的铀资源、合理利用已发现的铀矿床以及制定有效的采矿方案具有重要意义。
本文将系统综述铀矿床的地质特征,包括成岩成矿环境、矿床类型、矿石特征等。
同时,对铀矿床的资源评价方法进行了详细介绍,包括矿产地质调查、开采试验、测量评估等多个方面。
最后,对目前铀矿床地质特征与资源评价研究的热点与前沿问题进行了探讨,并给出了未来的研究方向。
关键词:铀矿床,地质特征,资源评价,矿产地质调查,矿石特征第一章引言1.1 背景与意义铀资源是一种重要的矿产资源,在核能发展和国家能源供应中具有重要作用。
随着国家经济的快速发展,对能源需求的不断增长,寻找铀资源、合理开采铀矿床具有重要意义。
铀矿床的地质特征与资源评价研究对于铀矿床的合理利用、高效开采以及资源的保护和可持续利用具有重要意义。
了解铀矿床的成岩成矿环境、矿床类型、矿石特征等地质特征,可以为找矿预测提供重要依据。
而资源评价可以帮助确定铀矿床的产量、品位、开采方法等,为有效开发铀资源提供科学依据。
本文旨在系统综述铀矿床的地质特征与资源评价研究,为相关研究领域提供参考,并为今后铀矿床的研究与开发提供理论指导。
1.2 研究目的与内容本文旨在系统综述铀矿床的地质特征与资源评价研究,具体研究目的与内容如下:(1)系统梳理铀矿床的地质特征,包括成岩成矿环境、矿床类型、矿石特征等,为铀矿床的研究与找矿提供参考。
(2)详细介绍铀矿床的资源评价方法,包括矿产地质调查、开采试验、测量评估等,为铀矿床的开发利用提供科学依据。
(3)探讨当前铀矿床地质特征与资源评价研究的热点与前沿问题,并给出未来的研究方向。
第二章铀矿床的地质特征2.1 成岩成矿环境铀矿床的形成与特定的成岩成矿环境密切相关。
目前,国内外学者对铀矿床成岩成矿环境进行了大量研究。