活性炭改性方法及其在水处理中的应用
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
活性炭改性方法及其在水处理中的应用一、本文概述活性炭,作为一种广泛应用的吸附剂,因其高比表面积、优良的吸附性能和化学稳定性,在水处理领域扮演着重要角色。
然而,原始的活性炭在某些特定应用场合下可能表现出吸附容量有限、选择性不高等不足,这就需要对活性炭进行改性,以提高其在水处理中的性能。
本文旨在探讨活性炭的改性方法,并分析改性活性炭在水处理中的应用及其效果。
我们将详细介绍活性炭的改性方法,包括物理改性、化学改性和生物改性等多种方法,并阐述其改性原理和效果。
接着,我们将通过案例分析,探讨改性活性炭在水处理中的实际应用,如去除重金属离子、有机物和色度等。
我们将对改性活性炭在水处理中的应用前景进行展望,以期为推动活性炭在水处理领域的应用和发展提供参考。
二、活性炭基础知识活性炭,作为一种多孔性的炭质材料,因其独特的物理和化学性质,被广泛应用于各种领域,尤其是水处理领域。
其基础知识的掌握对于理解活性炭的改性方法以及在水处理中的应用至关重要。
活性炭主要由碳、氢、氧、氮、硫和灰分组成,其中碳元素含量一般在80%以上。
活性炭的多孔结构赋予了其巨大的比表面积和优异的吸附性能。
活性炭的孔结构包括大孔、中孔和微孔,这些孔的存在使得活性炭能够吸附分子大小不同的各种物质。
活性炭的吸附性能主要取决于其表面化学性质和孔结构。
表面化学性质包括表面官能团的种类和数量,这些官能团可以影响活性炭与吸附质之间的相互作用力,从而影响吸附效果。
孔结构则决定了活性炭的吸附容量和吸附速率。
活性炭的制备方法多种多样,包括物理活化法、化学活化法和化学物理联合活化法等。
不同的制备方法可以得到不同性质的活性炭,从而满足不同应用场景的需求。
在水处理领域,活性炭主要用于去除水中的有机物、重金属离子、色度、异味等污染物。
其吸附过程包括物理吸附和化学吸附,通过这两种吸附方式的共同作用,活性炭可以有效地净化水质,提高水的饮用安全性。
活性炭的基础知识包括其组成、结构、性质、制备方法和应用等方面。
活性炭在水处理中的应用一、前言水是人类生活不可或缺的资源,同时也是人类健康和工业生产的关键因素。
然而,随着经济的发展和人口的增加,水污染日益严重成为人类面临的一个严峻问题。
活性炭作为一种有效的水处理材料,其应用越来越广泛,在提高水处理效果、减少污染物排放、保护水资源等方面都具有重要的意义。
本文将结合国内外文献和实际案例,介绍活性炭在水处理中的应用及其优缺点。
二、活性炭概述活性炭(Activated Carbon,简称AC)是一种多孔性的吸附材料,主要由可燃材料制成,如木材、竹材、果壳、煤炭等,通过炭化和活化过程制成。
活性炭的特点是孔隙分布均匀、孔径范围广、比表面积大、吸附性强,广泛应用于气体、液体、固体的吸附和分离。
活性炭根据其制备方法和应用领域的不同,可以分为硬质活性炭、软质活性炭和粉状活性炭等。
三、活性炭在水处理中的应用1. 活性炭在净水中的应用活性炭在水处理中的主要应用是净水。
由于活性炭具有高效的吸附能力和强大的污染物去除能力,能够有效地去除水中的有机物、气味、色度等污染物,提高水的质量,保护人类健康。
在一些传统的净水工艺中,如混凝沉淀法、过滤等方法,都很难去除水中难以分解的有机物和微量污染物,而活性炭能够大量吸附这些污染物,保证水的净化效果。
同时,活性炭还可以去除水中的异味和氯气,提高水的饮用性。
2. 活性炭在废水处理中的应用除了在净水方面使用,活性炭在废水处理中同样具有广泛的应用。
废水中含有各种有机化合物、氨氮、重金属等高浓度的污染物,废水排放对环境造成严重的污染。
有些高难度的废水处理过程需要借助活性炭的强大吸附能力,才能获得最终的净化效果。
(1)废水的预处理活性炭对废水中的悬浮物、泥沙、颗粒污染物等能够快速吸附,提高废水的澄清度和透明度,为后续的处理提供了便利条件。
(2)去除有机物活性炭能够高效地去除废水中的各种有机物。
可以通过物理吸附和化学反应两种方式来去除有机物。
依据处理工艺的不同,活性炭可以直接置于废水中,或者通过传统的反应槽、活性池、氧化池、生物反应器等方式来进行废水处理。
溶剂中的溶解度和溶质与吸附剂之间的范德华力、化学键力和静电引力。
通常上,活性炭交互作用下是一个非常复杂的过程。
它是一种通过物理吸附、化学吸附、交换吸附、氧化、催化氧化和活性炭还原去除水中污染物的水处理方法。
3 活性炭在水处理方面的应用3.1 活性炭吸附法应用于吸附重金属离子活性炭对重金属离子的吸附除表面积大、孔道发达、空腔容量大外,还取决于活性炭表面的稳定性和可调节性,活性炭表面含氧和含氮官能团的存在可以改变重金属的化学性质。
因现代化工业不断的发展中,大量的重金属离子不断地从工业废水中分散出来,存有极大的安全隐患。
对此,利用活性炭的结构密度特点,可以不断地优化活性炭链接式的密度结构,从而加快对重金属离子的吸附、分解[3]。
近年来,多元化的行业不断新起,工业技术优化中不断产生重金属离子的废水。
活性炭身上有很多的化学、物理性质,可以有效地去除重金属离子,对其进行吸附。
且在重金属离子中六价铬的金属最多,其以各种不一样的形式存在于水中,其结构中所含的pH 值也是不同的。
而且,活性炭微孔结构可以很好地对重金属的阴离子进行吸附,从而改性重金属中含有的元素,使其表面吸附的负价铁、其他正价金属会发生交互作用,尤其是六价铬,会对铬产生化学吸附,从而去除水中的微量铬。
改性活性炭可用于电镀废水中铬的处理,吸附水可达到国家排放标准。
3.2 活性炭吸附法应用于吸附水中有机物活性炭对水中有机污染物具有良好的吸附能力。
活性炭的亲水性优于亲油性炭。
因此,活性炭对含油废水的吸附一般是采用其他方法吸附油脂,然后再用活性炭进行二次吸附。
用这种方法吸附后的废水含油量将降低到0.1~0.2mg/L 。
二是吸附含重金属离子的污水。
例如酚类化合物、苯类化合物、石油和石油产品等具有很强的吸附能力,还可以去除生物法pH 和其它化学法难以去除的有机污染物、除草剂、杀虫剂、农药等异味;亚甲基蓝表面活性剂、合成染料、含有胺类、合成洗涤剂及多元化合成的有机物同时也具备吸附能力,可有效去除水中杂质[4]。
活性炭在污水处理中的应用活性炭在污水处理中的应用一、引言污水处理是保护环境和维持人类健康的重要手段之一。
随着工业化和城市化的快速发展,污水处理技术也逐步得到了提升和完善。
而活性炭作为一种重要的吸附剂,在污水处理中广泛应用。
本文将详细介绍活性炭在污水处理中的应用。
二、活性炭的基本原理活性炭是一种多孔性吸附剂,具有非常高的比表面积和吸附能力。
其原理是通过吸附作用将污水中的有机物、重金属离子、氨氮等有害物质吸附到活性炭颗粒表面,从而达到净化水质的目的。
三、活性炭的种类活性炭有多种不同的种类,常见的有颗粒状活性炭、颗粒状活性炭、粉状活性炭等。
不同种类的活性炭在污水处理中具有不同的应用场景和效果。
⑴颗粒状活性炭颗粒状活性炭是最常见的活性炭种类之一,其具有较大的孔隙和比表面积,适用于大规模工业污水处理和生活污水处理。
通过将颗粒状活性炭置于污水中,通过吸附作用去除有机物和重金属离子。
⑵柱状活性炭柱状活性炭是一种形状呈柱状的活性炭,常用于小型污水处理装置和饮用水净化设备。
其具有较高的吸附效率和去除异味的能力。
⑶粉状活性炭粉状活性炭是一种细粉末状的活性炭,常用于废水处理和污水处理中的微污染物去除。
其具有较大的比表面积和高度分散性,能够有效去除微量难降解有机物。
四、活性炭在污水处理中的应用⑴污水处理厂中的应用活性炭广泛应用于污水处理厂中,用于去除污水中的有机物、重金属离子和其他难降解物质。
一般采用颗粒状活性炭填充污水处理设备,如活性炭滤池、活性炭吸附装置等。
⑵工业废水处理中的应用在工业废水处理过程中,活性炭被广泛应用于重金属离子的去除、有机物的去除和颜料废水的处理等。
通过调整活性炭的种类和用量,可以实现不同污水的处理效果。
⑶饮用水净化中的应用活性炭常用于饮用水净化中,主要用于去除异味、有机物和有害物质。
通过将柱状活性炭置于饮用水处理设备中,可以提高水质的口感和安全性。
五、本文涉及附件本文涉及的附件包括污水处理厂的流程图、活性炭滤池的设计图纸、活性炭的技术参数表等。
活性炭吸附技术在水处理中的应用活性炭吸附技术在水处理中的应用引言:随着人口的增加和工业化的快速发展,水污染问题日益严重。
而水是人类生存的基本需求,水质的安全与否直接关系到人们的健康和生活质量。
因此,水处理成为当今社会重要的环保问题之一。
活性炭吸附技术作为一种有效的水处理方法,被广泛应用于水污染控制和治理中。
本文将从活性炭吸附技术的原理、应用领域以及未来发展等方面进行探讨。
一、活性炭吸附技术的原理活性炭是一种具有高吸附性能的材料,其主要成分是碳元素。
活性炭的表面积极大,可提供大量的吸附位点,因此能够吸附溶液中的各种有机和无机物质。
活性炭吸附的基本原理是通过表面的微孔和介孔结构,以及吸附性能强的活性炭微观孔隙对水中的杂质进行吸附和分离。
一般来说,活性炭吸附的过程可分为物理吸附和化学吸附两种方式。
物理吸附是指杂质与活性炭之间的静电作用和凡德华力等非化学性吸附力作用,而化学吸附则是指活性炭表面的官能团与杂质之间形成化学键。
二、活性炭吸附技术的应用领域1.水处理中的有机污染物去除:活性炭吸附技术广泛应用于饮用水、工业废水和城市污水处理中,能有效去除水中的有机污染物,如有机溶剂、农药、臭味物质等。
活性炭能够与这些有机物发生吸附作用,有效减少水中有机物质的含量,提高水质。
2.重金属离子的吸附:活性炭对重金属离子具有良好的吸附能力,能够吸附水中的汞、铅、铬等重金属离子。
这些重金属离子对人体健康有害,如果直接排放到环境中,会对生态系统产生不可逆转的损害。
因此,利用活性炭吸附技术对重金属离子进行去除是一种非常有效的方法。
3.药物残留的去除:随着人们在医疗和畜牧业中广泛应用的药物,药物残留问题日益突出。
这些药物残留可能对人类和生态系统造成潜在的风险。
通过活性炭吸附技术,可以有效去除水中的药物残留物,保障饮用水和水环境的安全。
三、活性炭吸附技术的未来发展尽管活性炭吸附技术已经在水处理中取得了显著效果,但仍然存在一些挑战和限制。
活性炭纤维及其在水处理中的应用活性炭纤维(ACF) 是继粉状活性炭( PAC) 和颗粒活性炭( GAC) 之后的第三代活性炭产品,是20世纪70 年代后期发展起来的一种高效活性吸附材料和环保工程材料。
ACF 的前驱体是炭纤维,是由有机纤维原料经炭化、活化而成。
根据生产中前驱体的不同,目前实现工业化生产的活性炭纤维产品主要分为粘胶基ACF、酚醛基ACF、聚丙烯腈基ACF、沥青基ACF等。
由于前驱体的差异,不同的ACF 产品具有不同的功能。
实际工作中应根据需要选取相应的ACF。
1、ACF的特点及性能ACF有丰富的微孔结构和巨大的比表面积,它有多种形式的制成品, 与粉末状和颗粒状吸附材料相比,吸附和脱附速率更快,而且使用更灵活方便。
另外, ACF在震动下不产生装填松动和过分密实的现象,克服了在操作过程中形成沟槽和沉降的问题。
与AC相比, ACF的优势极其明显。
首先, ACF的细孔结构不同于AC, ACF的微孔结构丰富且孔径分布集中(1-2nm), 微孔体积占总孔体积的90%左右, 没有过渡10 %左右; ACF的比表面积较大, 一般都在1000m2/g以上, 甚至可达3000m2 / g , 从而具有更大的吸附容量;ACF的微孔直接分布于纤维的表面,因而吸附质扩散的路径短、时间短,其吸附和再生的速率快,可在较温和条件下再; AC的细孔由大孔(控制扩散速率)、中孔和微孔组成,吸附质扩散要相继经过大孔、中孔和微孔,其扩散路径长、时间长,吸附和再生的速率慢, 因而ACF具有比AC大的吸附动力系数,吸附速率较AC高2 -3个数量级, 再生容易且再生率高, 可重复使用上千次, 使用寿命达数年之久。
其次, ACF的化学组成与AC有差别。
不同原料或相同原料但不同方法制得的ACF, 其表面有不同的官能团,如胺基、亚胺基及磺酸基等,它们对某些吸附质具有特殊的吸附能力和氧化还原及催化特性。
因为ACF具有电性能, 可利用ACF的导电性,将其作为电极,通过电杀菌作用解决细菌繁殖问题。
活性炭在饮用水处理中的应用目前我国大部分水源受到不同程度的水质污染,然而常规处理除对浊度有较好的去除外,对其他水质指标的去除率都较低。
在这种情况下,活性炭可作为饮用水处理的有效手段,愈发受到重视。
文章概述了活性炭的基本性质、制备、改性及在饮用水处理中的应用,并对其今后的发展方向进行了分析。
标签:活性炭;饮用水处理;应用近年来,有机物污染的加重以及饮用水污染突发事件的增加,时刻提醒着人们关注饮用水的水质安全问题。
研究表明[1-4],常规水处理工艺对TOC的去除率不到30%,氨氮的去除率依原水水质而定,大多在25%以下,而且面对一些突发性的水源水质污染,常规处理工艺很难应对,如两虫、藻类、内分泌干扰物等。
这就要求我们寻求新的技术来完善传统的常规处理工艺。
活性炭能够有效地去除污染物及消毒副产物的前体物,提高和保障饮用水质,是至今饮用水深度处理中最为有效的方法[5]。
1 活性炭基本性质活性炭属于固体炭质的一种,其颜色呈黑色,结构多微孔(直径多为1×10-10~1×10-9μm)。
大量的微孔致使活性炭的比表面积高达1000m2/g,远远高于其它固体材料,这一特质使活性炭具有强大的吸附能力。
活性炭的吸附根据吸附力的不同分为物理吸附、化学吸附、离子吸附,而活性炭对有机物的去除以物理吸附为主,范德华力在物理吸附中起决定性作用[6]。
因制作活性炭的原料不同,所以活性炭具有不同的结构和化学性质,应用也各不相同。
比如,由木材制作的活性炭为粉末状,孔隙结构较大,能够吸附分子量较大的物质;由椰壳制作的活性炭为不定型颗粒状,大孔少,多用于吸附分子量较小的物质[7]。
2 活性炭制备活性炭的制備工艺十分成熟,为了获得优质的活性炭,一般采用以下制备方法[8]:(1)原料预处理,包括脱灰和预氧化。
脱灰可以通过去除原料中的Ca、Mg等杂质来提高活性炭性能,但费用较高。
预氧化不仅能够使活化温度降低,活化时间缩短,还能够使原料的表面活性增加,使活化作用更为深入。
生物活性炭水质净化理论和技术
生物活性炭水质净化理论与技术
1、介绍
生物活性炭水质净化是一种有效的净化技术,它利用生物活性炭表面特殊的结构和生物应用介质的特性,利用厌氧条件来对有机污染物进行去除、处理,它可以有效地解决水质中污染物的去除,它可以用于废水的净化处理,建立清洁的水生态系统。
2、原理
生物活性炭的处理原理主要有生物改性、吸附化学作用和生物成分的吸收作用。
其中,生物改性是指生物活性炭表面的特殊性,在使用时进行生物改性,形成的一种吸附性生物膜能够效果表面的污染物,从而达到净化的效果。
生物成分的吸收作用是指生物活性炭表面含有大量的酶,可以吸收污染物从而降低水质污染。
3、应用
生物活性炭水质净化技术是一种优于传统活性炭净化技术的先进工艺,它既满足了净化的要求,又能有效的控制臭味的产生。
将此工艺应用到水处理中,可以更有效的处理水质污染,破坏了水、气和土壤环境的平衡,受到社会からのご支持をいただけました。
它还可以应用于自来水净化、工业废水处理、游泳池水净化等水质净化处理,确保水质净化质量稳定、可靠。
4、优点
生物活性炭水质净化技术具有一定的优势,在净化速度上可以提高3~5倍以上,同时还可以有效抑制有毒有害气体的产生,并具有良好的维护效果。
它的处理方式也运行稳定,可靠性高,且不存在散发异臭的情况,还能改善水体有毒有害物质的污染,是一种优质的水质净化工艺。
5、结论
总之,生物活性炭水质净化技术对水质污染的净化效果很好,可以更有效的处理水
质污染,改善水质环境,保护人们的健康。
它的净化效率高,操作方便、安全性好,社会效益很大,是一种很好的水质改善方案。
活性炭的吸附机理及其在水处理方面的应用活性炭的吸附机理及其在水处理方面的应用一、引言随着人口的增加和工业化进程的加速,水资源的污染问题日益严重。
水污染不仅直接危害人类健康,而且对生态环境造成严重破坏。
因此,如何有效地治理水污染问题成为当今社会面临的重要任务。
活性炭作为一种常用的水处理材料,因其高效吸附性能而备受关注。
本文将重点介绍活性炭的吸附机理及其在水处理方面的应用。
二、活性炭的吸附机理活性炭是一种多孔材料,具有高度发达的孔隙结构。
孔隙结构决定了活性炭具有较大的比表面积和吸附能力。
活性炭的吸附机理主要包括物理吸附和化学吸附两个方面。
物理吸附是指通过静电作用、范德华力等各种分子间力将目标物质吸附到活性炭表面。
活性炭表面的孔隙提供了大量的吸附位点,通过分子间的吸引力将目标物质吸附在孔隙表面上。
物理吸附是一个可逆的过程,吸附的静电力较小。
在水处理中,物理吸附主要用于去除溶解有机物、重金属离子和氯等。
化学吸附是指通过化学键将目标物质与活性炭表面结合。
化学吸附是一个不可逆的过程,吸附的化学键较强。
其中最常见的化学吸附方式是氧化还原反应。
活性炭表面含有丰富的活性基团,如羟基、羧基和酚基等。
这些活性基团通过氧化还原反应与目标物质发生化学反应,形成较为稳定的化合物。
化学吸附主要适用于去除有机物中的某些特定成分。
三、活性炭在水处理方面的应用1. 去除溶解有机物活性炭具有较好的吸附性能,能够有效去除水中的溶解有机物。
溶解有机物是水污染的主要来源之一,其中包括药物残留、农药、有机溶剂等。
这些有机物不仅对人类健康造成潜在威胁,而且对水生生物和生态环境造成破坏。
活性炭利用其强大的吸附能力,能够将溶解有机物快速、高效地去除,从而提高水质的净化效果。
2. 去除重金属离子重金属离子是水污染的另一个主要问题。
如铅、镉、汞等重金属离子对人体健康具有严重威胁,甚至可能导致中毒。
活性炭能够通过静电吸附和离子交换的方式去除水中的重金属离子。
活性炭改性方法及其在水处理中的应用
活性炭是用生物有机物质(包括煤、石油和沥青等在内)经过炭化、活化等过程制成的一种无定形炭。
它具有多孔结构、巨大的比表面积、吸附容量大、速度快和饱和可再生等特点,能够有效地去除水中的臭味、天然和合成溶解的有机物、微污染物以及一些大气中的污染气体等,但是普通活性炭比表面积小、孔径分布不均匀和吸附选择性能差,故普通活性炭需要进一步的改性,满足实验和工程需要。
现在常采用工艺控制和后处理技术对活性炭的孔隙结构进行调整,对表面化学性质进行改性,进而提高其吸附性能。
标签:活性炭;改性方法;水处理
活性炭是一种吸附性很强的环境友好型吸附剂,有很好的吸附性能和催化性能。
活性炭的原料来源广泛并且具有很高的安全性和稳定性,具有耐酸碱、耐热、易再生等特点。
实践表明,活性炭对水中溶解的有机溶剂有很好的吸附性能,对水质浑浊有明显的澄清作用,并且能够去除水中的异味、臭味等,还能够过滤水中的微生物,因此在水处理行业中有着非常广泛的应用。
本文就活性炭的改性方法和其在水处理方面的应用进行了简述,旨在为活性炭及其改性产物在水处理行业中的应用提供一定参考。
1、活性炭的改性方法
1.1表面氧化改性
表面氧化改性是通过氧化剂对活性炭进行处理,从而使活性炭表面的官能团发生氧化,提高含氧的官能团(羧基、酚羟基、酯基等)数量,增强活性炭的亲水性能,即极性,增强对极性物质的吸附能力的改性方法,常用的氧化剂主要是双氧水、硝酸、臭氧、高氯酸等。
其中硝酸的氧化性最强,能够产生许多的酸性基团,其他氧化剂则相对温和,可以用于调整活性炭的表面酸性。
氧化改性后的活性炭材料表面几何形状更加均匀,并且使用不同的氧化剂能够得到韩阳官能团数量和极性不同的活性炭材料,其中,酸性含氧官能团含量的多少与氧化程度有很大的关系。
1.2 活性炭表面化学性质的改性方法
活性炭表面化学性质的改变主要是通过一定的方法改变活性炭表面的官能团以及表面负载的离子和化合物,从而改变其表面的化学性质达到活性炭的吸附能力的提高。
活性炭表面化学性质改性方法可分为:表面氧化法、表面还原法、负载原子和化合物法、酸碱法等。
在改性过程中常常联合不同的改性方法对活性炭进行改性,从而达到更好的改性效果。
1.2.1 表面氧化法
活性炭在适当条件下经过氧化剂进行表面处理,以提高酸性基团的含量,可以增强对极性物质的吸附能力。
氧化剂不同,改性后表面所含官能团的种类和数量也不同,一般氧化程度越高,含氧官能团越多。
常用的氧化剂有:HNO3 、HClO、H2 SO4 、Cl2 、H2O2、(NH 4 )S2O8等。
1.2.2 表面还原法
活性炭表面在适当温度下通过用还原剂对表面官能团进行还原改性,提高碱性基团的相对含量,增强表面的非极性,从而提高活性炭对非极性物质的吸附能力。
常用的还原改性方法是通过H2 和N2 等惰性气体对活性炭进行的高温处理得到含量较多碱性基团和在NO3 ·H20 水中的浸渍处理得到含量丰富的含氮官能团。
1.2.3 负载原子和化合物法
负载原子和化合物法主要是根据活性炭的具有吸附性
和还原性,把活性炭浸渍在一定的溶液中,通过液相沉积的方法在活性炭表面引入特定的原子和化合物,把金属离子进入到活性炭表面,主要是利用活性炭的还原性,将金属离子还原成单质或低价态的离子。
负载原子和化合物法是利用负载在活性炭上的原子和化合物与吸附质之间的结合作用从而增强活性炭的吸附能力。
常用的浸渍液有:Cu(NO3 )2、CuCl2 、Na2CO3 、FeSO4 、FeCl3等水溶液。
2、改性活性炭在水处理中的应用
2.1 去除水中有机物
Maruyama 等报道了用载有铂的各种活性炭在氧化还原过程中,可以达到增强有机酸吸附作用的效果;潘红艳等采用不同浸渍液对活性炭进行改性,研究了去对苯酚的吸附,结果表明浸渍液改变了活性炭的脱附活化能,从而影响了吸附效果。
李晶等也用不同浸渍液对活性炭进行改性,研究了去对苯的吸附,结果也表明了改性后脱附活化能的改变。
同时采用不同的改性方法对活性炭进行改性,往往能够达到更好的去除效果。
2.2 去除水中重金属及重金属离子
改性活性炭既可对水体中的无机污染物(如重金属离子等)予以去除,又可对水体中的有机物予以去除(吸附作用机理)。
通常而言,若引入氨基、羟基和羧基官能团到粉末活性炭的表面,那么所得的吸附材料性能更佳,能够更好地对污水中的重金属离子进行吸附。
有学者对改性活性炭的吸附性能进行了实验研究,将活性炭与HNO3溶液(溶液浓度为13.2mol.L-1)以4:1的比例来进行混合,回流1h(回流温度为100℃)之后,改变煤质活性炭的性质,研究结果表面:这种方法能够将活性炭对于Pb2+ 离子的吸附量明显提高,改性前后的饱和吸附
量相差巨大,可以达到105倍。
有学者在沸腾温度下,将活性炭与HNO3 溶液(溶液浓度为13.2mol.L-1)以1:1的比例来进行混合、氧化改性,然后再进行加热处理(加热温度为300-400℃),得出改性活性炭,这种改性活性炭的离子交换能力较强、阳离子交换容量较高,尤其是能够很好地吸附交换Cr(Ⅲ)。
有学者对活性炭用二乙基二硫代氨基甲酸钠和四丁基铵来进行化合物改性、负载原子改性,以便能够将电镀废水中的锌元素、铬元素、铜元素等全部去掉。
吸附气体类无机物的活性炭常采用负载原子和化合物法或微波进行改性。
结语:
总之,改性活性炭能够较好地吸附水体中的石油产品、酚类化合物、苯类化合物等有机污染物,而且还能够有效地去除掉人工有机化合物、合成染料、亚甲基蓝表面活性物质、杀虫剂、除草剂等其他方法难以去除的有机污染物,值得推廣应用。
参考文献:
[1]黄伟,贾艳秋,孙盛凯.活性炭及其改性研究进展[J].化学工业与工程技术,2006(05).
[2]谭淑月.活性炭在水处理中的应用探讨[J].资源节约与环保,2016(07).
[3]张小康,蒋豫,赵军,吴光前.活性炭的表面改性技术及其应用研究进展[J].污染防治技术,2012(01).。