橄榄石型磷酸铁锂的研究进展
- 格式:pdf
- 大小:1.39 MB
- 文档页数:6
一、实验目的1. 了解磷酸铁锂的制备方法及其应用。
2. 掌握固相烧结法制备磷酸铁锂的实验步骤。
3. 分析磷酸铁锂的物相结构、形貌及电化学性能。
二、实验原理磷酸铁锂(LiFePO4)是一种橄榄石型结构的正极材料,具有较高的理论容量、稳定的电压平台和良好的安全性,广泛应用于锂离子电池领域。
固相烧结法是制备磷酸铁锂的一种常用方法,通过高温烧结使原料发生固相反应,生成LiFePO4。
三、实验材料与仪器1. 实验材料:Li2CO3、Fe2O3、H3PO4、LiOH·H2O、去离子水。
2. 实验仪器:高温炉、球磨机、电子天平、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电化学工作站。
四、实验步骤1. 配制前驱体:按照化学计量比称取Li2CO3、Fe2O3和H3PO4,加入去离子水溶解,搅拌均匀后,滴加LiOH·H2O溶液调节pH值至8.0,形成前驱体悬浮液。
2. 混合均匀:将前驱体悬浮液置于球磨机中,以200 r/min的转速球磨2小时,使原料充分混合。
3. 固相烧结:将球磨后的前驱体悬浮液倒入模具中,置于高温炉中,以5℃/min 的升温速率升至850℃,保温2小时,然后以3℃/m in的降温速率降至室温。
4. 制备磷酸铁锂:将烧结后的产物进行研磨、筛分,得到所需粒度的磷酸铁锂粉末。
5. 物相结构分析:采用XRD对产物进行物相结构分析。
6. 形貌分析:采用SEM观察产物的形貌。
7. 电化学性能测试:采用电化学工作站对产物进行循环伏安、恒电流充放电等电化学性能测试。
五、实验结果与分析1. XRD分析:XRD图谱显示,产物主要成分为LiFePO4,无其他杂质相。
2. SEM分析:SEM图像显示,产物呈球形,粒径分布均匀,约为1-2μm。
3. 电化学性能测试:(1)循环伏安曲线:产物在3.0-4.0V电压范围内表现出良好的氧化还原峰,对应于LiFePO4的充放电反应。
(2)恒电流充放电曲线:产物在0.1C倍率下的首次放电比容量为140mAh/g,首次充电比容量为142mAh/g,循环稳定性良好。
第29卷 第3期Vo l 29 No 3材 料 科 学 与 工 程 学 报Journal of M aterials Science &Engineering 总第131期Jun.2011文章编号:1673 2812(2011)03 0468 04锂离子电池磷酸铁锂正极材料的制备及改性研究进展俞琛捷1,莫祥银1,康彩荣2,倪 聪2,丁 毅2(1.南京师范大学分析测试中心&江苏省生物功能材料重点实验室,江苏南京 210046;2.南京工业大学材料科学与工程学院,江苏南京 210009)摘 要 橄榄石型磷酸铁锂(LiFePO 4)由于安全性能好、循环寿命长、原材料来源广泛、无环境污染等优点被公认为是最具发展潜力的锂离子动力与储能电池正极材料。
综述了近年来磷酸铁锂正极材料在制备和改性方面的最新进展。
在此基础上,提出了磷酸铁锂正极材料未来的主要研究和发展方向。
关键词 锂离子电池;正极材料;磷酸铁锂;制备;改性中图分类号:T B34 文献标识码:AProgress in Synthesis and Modification of LiFePO 4Cathode Material forLithium Ion Rechargeable BatteriesYU C hen jie 1,MO Xiang yin 1,KANG Cai rong 2,NI C ong 2,DING Yi 2(1.Nanjing Normal University,Analysis and Testing Center &Jiangsu Key Laboratory of Biof unctional Materials,Nanjing 210046,China;2.College of Materials Science and Engineering,Nanjing University of Technology,Nanjing 210009,China)Abstract Olivine lithium iron phosphate (LiFePO 4)is universally r ecognized as a pro mising catho de material for lithium ion recharg eable batteries for electr ic v ehicles due to hig h safety required to traction batteries,long lifespan,plentiful resources,and env ir onm ental friendliness.A systematical r eview of r ecent synthesis and modification research of LiFePO 4cathode material for lithium io n r echarg eable batter ies w as presented.On the basis,main research and developing trends regarding LiFePO 4cathode mater ial w ere pro posed.Key words lithium io n rechargeable batter ies;cathode m aterial;lithium iro n phosphate;synthesis;modification收稿日期:2009 09 02;修订日期:2010 07 19基金项目:国家 973 资助项目(6134501ZT01 004 02);王宽诚德国学术交流研究基金资助项目(K.C.W ong Fellows hip DAAD Section 423 C hina,M ong olia)作者简介:俞琛捷,女,硕士,助理研究员,主要从事材料化学等研究。
LiFePO4正极材料倍率性能改善的研究进展王旭峰;冯志军;张华森;丛欣泉;曾佑鹏【摘要】Olivine-type lithium iron phosphate (LFP) was used as cathode material of lithium ion battery due to its good electrochemical performance,such as stable charging and discharging platform and steady structure during cycling of Li ions.What's more,it had high safety,non-toxic and polluting-free,as well as long cycle life and rich rawmaterial.However,there was a instinct drawback of olive structure that baffles the marketization of LEP in the field of electrical vehicle,and that was the poor rate performance.The main approaches to improve rate performance of LEP include ion doping,surfacecoating,nanocrystallization,ect.On the base of improved approaches mentioned above,the methods in enhancing rate performance of LFP were reviewed in recent years.%橄榄石型磷酸铁锂(LFP)作为锂离子电池正极材料,具有良好的电化学性能、平稳的充放电平台、稳定的充放电结构,而且无毒、无污染、安全性能好、循环寿命长、原材料来源广泛.然而由于其本身结构的缺陷,导致其倍率性能低下,这将直接影响该材料在动力汽车市场的应用.改善其倍率性能的方法主要有离子掺杂、表面包覆、合成纳米材料.以这几类改性方法为主线,综述了近年来LFP倍率性能改善的研究进展.【期刊名称】《电源技术》【年(卷),期】2017(041)008【总页数】4页(P1202-1205)【关键词】锂离子电池;正极材料;磷酸铁锂;倍率性能【作者】王旭峰;冯志军;张华森;丛欣泉;曾佑鹏【作者单位】南昌航空大学材料科学与工程学院,江西南昌330063;南昌航空大学材料科学与工程学院,江西南昌330063;南昌航空大学材料科学与工程学院,江西南昌330063;南昌航空大学材料科学与工程学院,江西南昌330063;南昌航空大学材料科学与工程学院,江西南昌330063【正文语种】中文【中图分类】TM912锂离子电池以其能量密度高、使用寿命长、无记忆效应、可再次充放电、轻巧、工作电压高、无污染等优点,成为便携式产品和动力车载电池发展的主要方向。
格的高昂,使锂钴氧很难满足大众化的锂离子动力电池的需求,而比容量低和高温性能差又成为困扰锂锰氧实行工业化的关键技术难题,作为橄榄石型的磷酸铁锂(LiFePO_4)由于具有价格低廉,热稳定好,对环境无污染而成为一种最有潜力的锂离子动力电池材料。
中南大学冶金学院工业电化学研究所在前期实验基础上,进一步优化合成磷酸铁锂的工艺条件,利用机械化学活化法得到先驱体粉末,合成了具有优良电化学性能的磷酸铁锂材料,又投资200万元,建设了一条年产50吨磷酸铁锂的生产线,利用该生产线,对合成磷酸铁锂的工艺进行了系统研究,得出了最佳工艺条件。
所合成的磷酸铁锂材料的电容量达到150mAh/g,循环200次后,容量衰减小于5%。
同时也具有比较优良的高温性能,55℃循环100次后,容量衰减小于10%,55℃循环200次后,容量衰减小于15%。
所合成的材料颗粒分布均匀,粒度呈正态分布,振实密度大,具有良好的加工性能。
合成材料的工艺简单,流程短,材料性能较优良,合成成本低,所用设备和原料在国内都可采购,适合于锂离子电池正极材料磷酸铁锂的规模化生产。
●成果开发阶段产业化阶段●知识产权归属单位拥有●专利类型发明专利●合作方式转让2:本发明涉及一种锂离子电池正极材料球形磷酸铁锂的制备方法,包括:将三价铁化合物与磷源化合物分别溶解于去离子水中,配制水相溶液A和B,将溶液A和B缓慢加入有机油中,形成油包水体系C;经沉淀离心分离后洗涤、干燥,得到球型磷酸铁前驱物;将球型磷酸铁前驱物、锂源化合物和碳源化合物混合,在惰性气体的保护下,于550~850℃煅烧1-24小时,得到振实密度为1.5-2.2g/cm<sup>3</sup>的高堆积密度的球形磷酸铁锂正极材料。
该制备工艺操作简单、易于控制、有利于实现规模化工业生产;且制备的球型磷酸铁锂正极材料振实密度高,可达1.5-2.2g/cm<sup>3</sup>。
锂离子电池正极材料磷酸铁锂研究现状一、本文概述随着全球对可持续能源需求的日益增长,锂离子电池作为一种高效、环保的能源储存系统,已经在便携式电子设备、电动汽车、储能电站等领域得到了广泛应用。
而磷酸铁锂(LiFePO4)作为锂离子电池的正极材料,因其高安全性、长寿命、环保性等优点,正逐渐受到业界的广泛关注。
本文旨在综述磷酸铁锂作为锂离子电池正极材料的研究现状,包括其化学性质、合成方法、改性研究、应用前景等方面,以期为磷酸铁锂材料的研究和发展提供有益的参考和启示。
文章首先介绍了磷酸铁锂的基本化学性质,包括其晶体结构、电化学性能等。
然后,综述了磷酸铁锂的合成方法,包括固相法、液相法、溶胶-凝胶法等,并对比了各种方法的优缺点。
接着,文章重点讨论了磷酸铁锂的改性研究,包括表面包覆、离子掺杂、纳米化等手段,以提高其电化学性能。
文章还探讨了磷酸铁锂在锂离子电池领域的应用前景,包括其在小型电池、动力电池、储能电池等方面的应用。
通过本文的综述,我们期望能够为读者提供一个全面、深入的磷酸铁锂正极材料研究现状的了解,同时也希望能够为磷酸铁锂材料的进一步研究和应用提供有益的借鉴和指导。
二、磷酸铁锂的基本性质磷酸铁锂,化学式为LiFePO4,是一种广泛应用于锂离子电池的正极材料。
它具有独特的橄榄石型晶体结构,这种结构使得磷酸铁锂在充放电过程中具有较高的稳定性。
磷酸铁锂的理论比容量为170mAh/g,虽然相对于其他正极材料如硅酸铁锂(LFP)和三元材料(NCA/NMC)较低,但其实际比容量仍然可以达到150mAh/g左右,足以满足大部分应用需求。
磷酸铁锂具有极高的安全性。
其橄榄石结构中的PO43-离子形成了一个三维网络,这个网络有效地隔离了锂离子和电子,从而防止了电池在充放电过程中的热失控现象。
同时,磷酸铁锂的高温稳定性和良好的机械强度也使得它成为一种理想的电池材料。
除了安全性和稳定性,磷酸铁锂还具有优良的循环性能。
在多次充放电过程中,其晶体结构能够保持相对稳定,使得电池的容量衰减较慢。
磷酸铁锂电池充放电性能研究摘要:最近几年来,伴随着新能源的全面应用,风电、光电并网对电池储能系统的需求量不断的提高,其研究逐步引发人们的关注。
其中技术相对成熟的锂离子电池被全面的应用储能电站等大规模的储能系统之中。
基于此,本文对磷酸铁锂电池充放电的性能进行分析。
引言用橄榄石型磷酸铁锂作为活性物质的锂离子二次电池,其具备比较高的能量密度、比较低的生产制造成本费用还有使用寿命比较长等很多方面的优势,可是成组单体的电池之间性能具有很大的差别,连续性的充放电循环会放电循环会让电池组的容量高速的衰退,造成一些电池比较早的劣质化,直接影响储能系统的正常运转。
现在,锂离子动力电池的重要技术,主要材料与产品研究都获得了重要的发展。
可是,充电、放电还有维护管理等成组的应用技术分析却严重落后于电池技术的全面发展。
LeilaAhmadi,MichaelFowler 等研究了离子电池容量衰退还有能源效率减少的原因还有发展走向,电池的生命周期成本是在SOC还有电池管理系统的条件下,能够对其进行二次运用从而降低电池的高成本的直接影响。
赵淑红等分析了不同的温度、不同功率等级的工况循环的环境下,磷酸铁锂的动力电池容量,内阻等的改变规则,电池正、负极嵌入还有脱嵌能力随着充放电次数增多从而有所减少,负极的衰减更加的多,它的SEI膜阻抗,电荷转移阻抗明显的增多。
磷酸铁锂电池不同放电倍率与不同截止电压下的容量情况,如表1可知:表1 磷酸铁锂电池不同放电倍率和不同截止电压下的容量对比(A·h)放电倍率截止电压(v)2.7 2.6 2.51/4c38.9640.8241.561/3c38.4140.8741.491/2c37.6340.0940.321c36.7138.8839.721.5c36.2538.9839.671磷酸铁锂电池的充电特性磷酸铁锂电池对电压的精准度要求十分的高,误差不能够多于1%。
现在,离子电池的额定电压是3.2V的磷酸铁电池,这个电池的充电终止电压是3.65V,其允许的误差范围为0.0365V。
关于锂离子电池正极材料磷酸铁锂的研究发表时间:2019-09-11T13:32:06.157Z 来源:《基层建设》2019年第17期作者:李泳[导读] 摘要:橄榄石型磷酸铁锂(LiFePO4)具有原料来源广泛、循环性能好、对环境无污染等特点,尤其是在高温下的安全性能,使其成为一种应用前景非常广阔的锂电池正极材料。
汕头市毅和电源科技有限公司 515000摘要:橄榄石型磷酸铁锂(LiFePO4)具有原料来源广泛、循环性能好、对环境无污染等特点,尤其是在高温下的安全性能,使其成为一种应用前景非常广阔的锂电池正极材料。
本文主要对动力锂离子电池正极材料磷酸铁锂进行了初步进展研究,阐述了磷酸铁锂的制作准备程序与研究成果,并对当下出现的相关问题进行了策略探讨。
关键词:磷酸铁锂;锂电池正极材料前言:目前,我国小容量锂电池——如手机电池、笔记本电脑电池等的生产已基本趋于饱和,但是大容量的动力锂离子电池却依然没有进入市场。
电动车及大型移动电源应用领域仍是铅酸体系电池占据着主导地位。
锂离子电池自问世以来一直以钴酸锂、锰酸锂正极材料为主导,钴酸锂及锰酸锂材料由于自身安全性差,循环寿命短、价格昂贵等缺点,都不能真正适用锂离子动力电池产业需要。
新一代锂电正极材料磷酸铁锂逐步粉墨登场后,真正为大容量锂动力电池的发展和更新展现了广阔空间,开辟了新天地。
锂电池取代铅酸、镍氢等电池体系的局面将成为电池产业发展的必然趋势。
1 锂离子电池正极材料的优劣评估锂离子电池正极材料的优劣,大致可以从以下几个方面进行评估:(1)正极材料应有较高的电极电位,使电池有较高的输出电压;(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;(3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;(4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电;(5)正极材料在锂离子的嵌入/脱嵌过程中材料结构不发生塌陷,使电池的电压不会发生显著变化,以保证电池安全性;(6)正极材料应有较高的电导率,能使电池大电流地充电和放电;(7)正极不与电解质等发生化学反应;(8)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;(9)价格便宜,对环境无污染。
2014年新疆有色金属磷酸铁锂制备工艺及改性研究进展叶向果(新疆有色金属研究所乌鲁木齐830000)摘要概述了合成LiFePO 4的多种方法,主要有高温固相法、微波法、水热法和喷雾热解法等,同时,从掺杂导电碳或在磷酸铁锂颗粒表面包覆碳、金属包覆、金属离子掺杂和粒径控制等方面介绍了磷酸铁锂材料改性研究的最近进展,提出了磷酸铁锂未来的发展方向。
关键词磷酸铁锂合成方法改性项目资助:自治区科研机构创新发展专项资金《新疆有色金属科研与产业化创新基地建设》,项目编号2013005。
随着能源和环境问题日益突出,人们在努力寻找无污染、可循环使用的新能源。
锂离子电池因具有高的能量密度、高电压、低的自放电率、循环寿命长等优点,因而受到广泛的应用和大量的研究。
在现有商品化锂离子电池正极材料中,橄榄石结构的磷酸铁锂(LiFePO 4)被认为是最具潜力的锂离子电池正极材料,因为它的高安全性、稳定的循环寿命以及价格低、对环境无污染等优点[1]。
1LiFePO 4的合成方法LiFePO 4正极材料的性能在一定程度上取决于材料的形态、颗粒的尺寸以及原子排列,因此制备方法尤为重要。
目前,磷酸铁锂的合成方法很多,规模化的如高温固相法和碳热还原法,少量研究中也有采用如微波合成法、水热合成法、喷雾热解法等。
1.1高温固相法高温固相法是目前发展最为成熟的方法。
将铁源、锂源和磷源按化学计量比在球磨机中进行均匀混合后,在惰性气氛下(N 2、Ar 等),首先在较低温度(300~350℃)下处理5~10h ,使原材料初步分解,然后再在高温下(600~750℃)处理10~20h 后就可以得到橄榄石型的LiFePO 4。
高温固相法合成LiFePO 4工艺简单,易实现工业化,制备条件容易控制,缺点是晶体尺寸较大,产品倍率特性差[2]。
1.2碳热还原法碳热还原法通常是于高温固相法一起使用的,就是在原材料的混合球磨中加入碳源(如蔗糖、葡萄糖)还原剂,在高温煅烧中利用还原剂分解得到的碳使Fe 3+还原为Fe 2+,同时在磷酸铁锂颗粒表面包覆一层碳来提高材料的导电性能。