公务员考试行政能力测验数字推理类解题规律总结
- 格式:doc
- 大小:18.50 KB
- 文档页数:7
公务员行测数字推理必知的30个规律一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、( )92 124 262 343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ()3三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、( )A. 33B. 37C. 39四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、( )五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )A. 165B. 193C. 217七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
【例】118、60、32、20、( )八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。
【例】0、6、24、60、120、( )九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。
一、数字推理题详解当我们看到一组有关系的数字时,需要快速的建立起四则运算关系。
而且还要建立正确的思维模式,即横向递推、纵向延伸、构造网络。
横向递推主要是看一个数与下一个数或者前两个数与下一个数之间的四则运算关系。
纵向延伸是把一个数变成另外一种形式从而找到一种新的规律。
构造网络是一种逐差逐商的想法。
目前比较新的一种考点是“看变化”。
比如看分数的变化。
分数的分子分母有一定的位置关系,可以拆开来看。
例题精讲例题:1,2/3,5/8,13/21各分数的分子分母之间有和数列的关系,1+2=3,2+3=5,5+3=8,8+5=13。
还有小数(包括整数部分和小数部分)、根式的变化(包括底数、指数、根号)。
还有一些更新的考法就是看上去不能拆分但一定要拆分来看的数列。
特别是多位数的拆分。
例题:12,1112,3112,211213表面上看没什么规律,但拆开来看12是由一个1和一个2组成的,那么1112就是在描述前一个数,后面以此类推。
再看例题:1144,1263,1455,1523,(),1966这组数的规律是:中间两位数是首尾两位数的倍数分别是1倍、2倍、3倍、4倍至6倍。
14是14的1倍,26是13的2倍。
以此类推再看数列:22,24,39,28,(),16规律是每个数的十个位数字是数字倍数的倍数分别是1倍、2倍、3倍、4倍至6倍。
再看例题:78,57,36,19,10,()规律是前一个数的十位数字与个位数字相乘再加1就是后面的数字。
因此考生要随时关注考试题型的变化,及一些地方公务员考试的题型变化趋势。
看下面一道数字变化的例题:红花映绿叶×夏=叶绿映花红这种题如果没有选项比较难猜,但是有选项就可以采用代入法把选项逐一代入进行作答。
二、从例题来看数学运算解题方法数学运算在考生眼里比较难,其实在出题时不是很难。
在15道题中约8~9道基本题型,其他几道题是比较有深度的题。
作答时要掌握快算、精算、巧算的方法。
公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1)后面的数字与前面数字之间的差等于一个常数。
如7,11,15,(19)(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
如7,11,16,22,(29)(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
如7,11,13,14,()(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
【例题】7,11,6,12,(5)(5)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。
【例题】7,11,16,10,3,11,(20)备考规律二:等比数列及其变式(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。
【例题】4,8,16,32,(64)(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。
【例题】4,8,24,96,(480)(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2【例题】4,8,32,256,(4096)(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。
【例题】2,6,54,1428,(118098)(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。
【例题】2,-4,-12,48,(240)备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1)“平方数”的数列【例题】1,4,9,16,25,36,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】0,3,8,15,24,(35)【例题变形】2,5,10,17,26,(37)(3)每一个平方数加去一个数值,而这个数值本身就是有一定规律的。
一.题型:●等差数列及其变式【例题1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前 3 个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数.题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B.【例题2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为C.这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目.顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,...显然,括号内的数字应填13.在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式.●等比数列及其变式【例题3】3,9,27,81()A 243B 342C 433D 135【解答】答案为A.这也是一种最基本的排列方式,等比数列.其特点为相邻两个数字之间的商是一个常数.该题中后项与前项相除得数均为3,故括号内的数字应填243.【例题4】8,8,12,24,60,()A 90B 120C 180D 240【解答】答案为C.该题难度较大,可以视为等比数列的一个变形.题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2,2.5,3,因此括号内的数字应为60×3=180.这种规律对于没有类似实践经验的应试者往往很难想到.我们在这里作为例题专门加以强调.该题是1997 年中央国家机关录用大学毕业生考试的原题.【例题5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B.这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2 倍减2 之后得到后一项.故括号内的数字应为50×2-2=98.●等差与等比混合式【例题6】5,4,10,8,15,16,(),()A 20,18B 18,32C 20,32D 18,32【解答】此题是一道典型的等差、等比数列的混合题.其中奇数项是以5 为首项、等差为5 的等差数列,偶数项是以4 为首项、等比为2 的等比数列.这样一来答案就可以容易得知是C.这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型.●求和相加式与求差相减式【例题7】34,35,69,104,()A 138B 139C 173D 179【解答】答案为C.观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173.在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律.【例题8】5,3,2,1,1,()A -3B -2C 0D 2【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5 与第二项3 的差等于第三项2,第四项又是第二项和第三项之差..所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C.●求积相乘式与求商相除式【例题9】2,5,10,50,()A 100B 200C 250D 500【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10 等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D.【例题10】100,50,2,25,()A 1B 3C 2/25D 2/5【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C.●求平方数及其变式【例题11】1,4,9,(),25,36A 10B 14C 20D 16【解答】答案为D.这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1 的平方,第二个数字是2 的平方,第三个数字是3 的平方,第五和第六个数字分别是5、6 的平方,所以第四个数字必定是4 的平方.对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的.【例题12】66,83,102,123,()A 144B 145C 146D 147【解答】答案为C.这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12 的平方再加2,得146.这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了.●求立方数及其变式【例题13】1,8,27,()A 36B 64C 72 D81【解答】答案为B.各项分别是1,2,3,4 的立方,故括号内应填的数字是64.【例题14】0,6,24,60,120,()A 186B 210C 220D 226【解答】答案为B.这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1 的立方减1,第二个数是2 的立方减2,第三个数是3的立方减3,第四个数是4 的立方减4,依此类推,空格处应为6 的立方减6,即210.●双重数列【例题15】257,178,259,173,261,168,263,()A 275B 279C 164D 163【解答】答案为D.通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,...也就是说,奇数项的都是大数,而偶数项的都是小数.可以判断,这是两项数列交替排列在一起而形成的一种排列方式.在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找.我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式.而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163.顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化.两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式.只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了.●简单有理化式二、解题技巧数字推理题的解题方法数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助.1 快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止.2 推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算.3 空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导.4 若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证.常见的排列规律有:(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减.(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;如:2 4 8 16 32 64()这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128.(4)二级等差:相邻数之间的差或比构成了一个等差数列;如:4 2 2 3 6 15相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5.(5)二级等比数列:相邻数之间的差或比构成一个等比数理;如:0 1 3 7 15 31()相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63.(6)加法规律:前两个数之和等于第三个数,如例题23;(7)减法规律:前两个数之差等于第三个数;如:5 3 2 1 1 0 1()相邻数之差等于第三个数,空缺项应为-1.(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;如:2 3 10 15 26 35()1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为50.(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列.如:1 2 6 15 31()相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=56.公务员考试数字推理题汇总1、15,18,54,(),210A 106B 107C 123D 1121、答案是C能被3 整除嘛2、1988 的1989 次方+1989 的1988 的次方.. 个位数是多少呢?2、答:应该也是找规律的吧,1988 的4 次个位就是6,六的任何次数都是六,所以,1988 的1999 次数个位和1988的一次相等,也就是8后面那个相同的方法个位是1忘说一句了,6 乘8 个位也是83、1/2,1/3,2/3,6/3,( ),54/36A 9/12,B 18/3 ,C 18/6 ,D 18/363、C (1/3)/(1/2)=2/3 以此类推4、4,3,2,0,1,-3,( )A -6 ,B -2 ,C 1/2 ,D 04、c 两个数列4,2,1-〉1/2(依次除以2);3,0,-35、16,718,9110,()A 10110,B 11112,C 11102,D 101115、答案是11112从左往右数第一位数分别是:5、7、9、11从左往右数第二位数都是:1从左往右数第三位数分别是:6、8、10、126、3/2,9/4,25/8,( )A 65/16,B 41/8,C 49/16,D 57/86、思路:原数列可化为1 又1/2, 2 又1/4, 3 又1/8.故答案为4 又1/16 = 65/167、5,( ),39,60,105.A.10B.14C.25D.307、答案B.5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+58、8754896×48933=()A.428303315966B.428403225876C.428430329557D.4284033259688、答直接末尾相乘,几得8,选D.9、今天是星期二,55×50 天之后().A.星期一B.星期二C.星期三D.星期四9 、解题思路:从55 是7 的倍数减1,50 是7 的倍数加1,快速推出少1 天.如果用55×50÷7=396 余6,也可推出答案,但较费时10、一段布料,正好做12 套儿童服装或9 套成人服装,已知做3 套成人服装比做2 套儿童服装多用布6 米,这段布有多长?A 24B 36 C54 D 4810、思路:设儿童为x,成人为y,则列出等式12X=9Y 2X=3Y-6得出,x=3,则布为3*12=36,选B11、有一桶水第一次倒出其中的6 分之一,第二次倒出3 分之一,最后倒出4 分之一,此时连水带桶有20 千克,桶重为5 千克,,问桶中最初有多少千克水?A 50B 80C 100D 3611、答5/6*2/3*3/4X=15 得出,x=36 答案为D12、甲数比乙数大25%,则乙数比甲数小()A 20%B 30%C 25%D 33%12、已X,甲1.25X ,结果就是0.25/1.25=20% 答案为A13、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3 倍,每个隔10 分钟有一辆公交车超过一个行人.每个隔20 分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A 10B 8C 6 D413、B14、某校转来6 名新生,校长要把他们安排在三个班,每班两人,有多少中安排方法?A 18B 24C 36D 4614、无答案公布sorry 大家来给些答案吧15、某人把60000 元投资于股票和债券,其中股票的年回报率为6%,债券的年回报率为10%.如果这个人一年的总投资收益为4200 元,那么他用了多少钱买债券?A. 45000B. 15000C. 6000D. 480015、0.06x+0.1y=4200 , x+y=60000, 即可解出.答案为B16、一粮站原有粮食272 吨,上午存粮增加25%,下午存粮减少20%,则此时的存粮为( )吨.A. 340B. 292C. 272D. 26816、272*1.25*0.8=272 答案为C17、3 2 5\3 3\2 ( )A.7/5 B.5/6 C.3/5 D.3/417、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/518、1\7 1\26 1\63 1\124 ( )18、依次为2^3-1,3^3-1,..,得出6^3-119、-2 ,-1,1,5 ()29(2000 年题)A.17B.15C.13D.1119、依次为2^3-1,3^3-1,..,得出6^3-120、5 9 15 17 ( )A 21B 24C 32D 3420、思路:5 和15 差10,9 和17 差8,那15 和( ?)差65+10=15 9+8=17 15+6=2121、81301512(){江苏的真题}A10B8C13D1421、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为132222、3,2,53,32,( )A 75B 5 6C 35D 3422、思路:小公的讲解2,3,5,7,11,13,17.....变成2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由2 和3 组成的),53,32(这是第二段,由2、3、5 组成的)75,53,32(这是第三段,由2、3、5、7 组成的),117,75,53,32()这是由2、3、5、7、11 组成的)不是,首先看题目,有2,3,5,然后看选项,最适合的是75(出现了7,有了7 就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而A 符合这两个规律,所以才选A2,3,5,后面接什么?按题干的规律,只有接7 才是成为一个常见的数列:质数列,如果看BCD 接4 和6 的话,组成的分别是2,3,5,6(规律不简单)和2,3,5,4(4 怎么会在5 的后面?也不对)质数列就是由质数组成的从2 开始递增的数列23、2,3,28,65,( )A 214B 83C 414D 31423、无思路!暂定思路为:2*65+3*28=214,24、0 ,1,3 ,8 ,21,( ) ,14424、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3.得出?=55.25、2,15,7,40,77,( )A96 ,B126,C138,,D15625、这题有点变态,不讲了,看了没有好处26、4,4,6,12,(),9026、答案30.4/4=1,6/12=1/2,?/90=1/327、56,79,129,202 ()A、331B、269C、304D、33327、不知道思路,经过讨论:79-56=23 129-79=50 202-129=73因为23+50=73,所以下一项和差必定为50+73=123-202=123,得出?=325,无此选项!28、2,3,6,9,17,()A 19B 27C 33D 4528、三个相加成数列,3 个相加为11,18,32,7 的级差则此处级差应该是21,则相加为53,则53-17-9=27 答案,分别是27.29、5,6,6,9,(),90A 12,B 15,C 18,D 2129、答案为C思路:5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=1830、16 17 18 20 ()A21B22C23D2430、思路:22、23 结果未定,等待大家答复!31、9、12、21、48、()31、答案为1299+3=12 ,12+3 平方=21 ,21+3 立方=4832、172、84、40、18、()32、答案为7172/2-2=84 84/2-2=40 40/2-2=18 18/2-2=7答案分成三部分:。
公务员考试行测数字推理必知的30个规律公务员考试中,数字推理是一个非常重要的考试科目。
数字推理是指通过对数字、图形、文字等信息的分析和推理,得出正确的结论。
在数字推理中,有很多规律需要掌握。
本文将介绍公务员考试行测数字推理必知的30个规律。
一、数字规律1. 数字序列规律数字序列规律是指在一组数字中,数字之间的关系所遵循的规律。
常见的数字序列规律有等差数列、等比数列、斐波那契数列等。
2. 数字排列规律数字排列规律是指在一组数字中,数字的排列顺序所遵循的规律。
常见的数字排列规律有逆序、顺序、交替等。
3. 数字替换规律数字替换规律是指在一组数字中,数字被替换成其他数字的规律。
常见的数字替换规律有加减乘除、平方、开方等。
4. 数字组合规律数字组合规律是指在一组数字中,数字之间的组合所遵循的规律。
常见的数字组合规律有排列组合、加减乘除等。
二、图形规律图形旋转规律是指在一组图形中,图形的旋转方向和角度所遵循的规律。
常见的图形旋转规律有顺时针旋转、逆时针旋转等。
6. 图形翻转规律图形翻转规律是指在一组图形中,图形的翻转方向和方式所遵循的规律。
常见的图形翻转规律有水平翻转、垂直翻转等。
7. 图形平移规律图形平移规律是指在一组图形中,图形的平移方向和距离所遵循的规律。
常见的图形平移规律有水平平移、垂直平移等。
8. 图形缩放规律图形缩放规律是指在一组图形中,图形的缩放比例所遵循的规律。
常见的图形缩放规律有放大、缩小等。
9. 图形填充规律图形填充规律是指在一组图形中,图形的填充方式和颜色所遵循的规律。
常见的图形填充规律有交替填充、渐变填充等。
三、文字规律10. 文字替换规律文字替换规律是指在一组文字中,文字被替换成其他文字的规律。
常见的文字替换规律有字母替换、数字替换等。
文字排列规律是指在一组文字中,文字的排列顺序所遵循的规律。
常见的文字排列规律有逆序、顺序、交替等。
12. 文字组合规律文字组合规律是指在一组文字中,文字之间的组合所遵循的规律。
行政能力测试数字推理小结数字推理考察的是对数字的理解和对数字之间关系的洞察力。
现总结规律如下:1、混二级等差数列:一般不会考最简单的等差数列,而是考前后项的和、差、积、商成等差数列,在这里我称之为混二级等差数列。
例如:2,4,12,48,(240),又如:1,1,2,6,(24)。
此数列的后项除以前项的商成等差数列。
2、三级等差数列:数列前后项的差算第一级,相邻差的差算第二级,相邻差的差的差算第三级,第三级的数列成等差,就算三级等差数列了。
这类数列有点难度,光看是看不出来的。
这样的数列一般给出的项也比较多,6个左右。
例如:1,3,6,12,25,51,(98)。
再加上点变化,那就更难了。
3、和数列的变式:和数列也叫斐波那契数列,就是数列的某项是前几项的和。
基于这类数列的特征,所以给出的项一般在6个以上。
例如:0,1,1,2,4,7,13,(24)。
这个数列的第四项就是前3项的和。
另一种变式就是这样的,例如:1,2,5,12,29,70,(1 69)。
这个数列的第三项就是第二项的2倍+第一项。
4、幂数列:这类数列的特征比较明显:基于幂函数的特点,给出的项比较少,一般4个,数列项的大小变化幅度有突越。
例如:0,3,26,255,(3124)。
N的N次-1,就是这个数列的通项了。
5、质数数列:这类数列比较简单,就是给出的项都是质数,选项中只有一个质数满足条件。
例如:2,3,7,11,17,(41)。
6、分项函数:这类函数特点也比较明显,一般给出的项比较多,需要2项一组,3项一组分开考虑,故取名分项函数。
例如:2,3,5,4,5,9,6,9,15,3,17,(20)。
也有变式的,例如:1,4,3,5,2,6,4,7,(3)。
这个数列的第2、4、6、8项分别是其前后项的和。
7、奇偶数列:这类数列给出的数较多,需填两空,奇偶需分别对待。
例如:1,3,3,5,7,9,13,15,(21),(23)。
8、多层组合数列:由简单的数列多层组合的复杂数列。
公务员行政能力测试数字推理答题技巧(非常有用)数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。
自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1 基本思路:第一反应是两项间相减,相除,平方,立方。
所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。
相减,是否二级等差。
8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。
4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2 特殊观察:项很多,分组。
三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。
400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。
87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。
1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。
公务员考试行测数字推理做题技巧很多考生无论是在国考行测题目中还是在省考行测题目中都会选择放弃数量关系以及资料分析的题目,然而在数量关系中的数字推理题目,考生只要掌握了正确的做题顺序和基本的解题思路,就会很容易的在极短的时间和用很少的精力解出3-4数字推理题目。
下面公务员考试研究中心就为广大考生介绍数字推理题目的基本做题技巧。
一、特征明显的数列(一)分数数列什么是分数数列?当一个数列中大部分数为分数时这个数列就是分数数列。
在数字推理题目中,考生一眼就可以看出,整个5道数字推理题目中是否有分数数列。
如果有分数数列,那么首先的方法就是反约分法,反约分的突破口就是整个数列中与数列变化趋势不符的分数。
如果题目中有几分之一的分数,首先想到负幂次。
如果数列中有少数分数,想到的解题方法就是多级数列的做商或递推数列的做商。
例:1/3,4/7,7/11,2/3,13/19( )A. 16/23B. 16/21C. 18/21D.17/21解析:首先,此数列很明显是一个分数数列,然后观察数列的特征,考生可以发现2/3与整个数列的增长趋势不符,那么2/3就是做这道题的突破口,利用反约分,分子分母同乘以4,分子数列为:1,4,7,8,13;分母数列为:3,7,11,12,19两个数列都没有明显的推理关系。
那么2/3的分子和分母再同乘以5,则分子数列为:1,4,7,10,13;分母数列为:3,7,11,15,19,考生可以看出分子数列是以公差为3的等差数列,则分子数列的下一项为16,同样,考生也可以看出分母数列是以公差为4的等差数列,则分母数列的下一项为23,因此下一项的分数为16/23,选A项。
(二)多重数列多重数列的特征相对于其它数列也是比较明显的,其显著特征就是数列包含的项比较多,一般包括选项在内能达到8项或者数列中有两个括号。
多级数列的主要方法有两种,第一种事交叉,第二种是分组。
例:3,3,4,5,7,7,11,9,( ),( )A.13,11B.16,12C.18,11D.17,13解析:这个数列题目中有两个括号,考生很容易判断这个数列是多重数列。
行测数字推理题技巧数字推理题是公务员考试中常见的题型之一,包含数字序列、数字关系、数字分类等多种形式。
数字推理题不仅考察了考生的数学能力,更重要的是考察了考生的逻辑思维和推理能力。
本文将从四个方面为大家介绍数字推理题的技巧和方法。
一、数字序列题数字序列题是指给出一组数字序列,要求考生根据规律推断出下一个数字或者缺失的数字。
数字序列题考察的是考生的数学能力和逻辑推理能力。
下面介绍一些数字序列题的常见规律和解题方法。
1.等差数列等差数列是指每一项与前一项之差相等的数列,例如1、3、5、7、9……。
在等差数列中,每一项与前一项之差都相等,这个差值称为公差。
在数字序列题中,等差数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公差,然后根据公差推断出下一项或者缺失的项。
2.等比数列等比数列是指每一项与前一项之比相等的数列,例如1、2、4、8、16……。
在等比数列中,每一项与前一项之比都相等,这个比值称为公比。
在数字序列题中,等比数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公比,然后根据公比推断出下一项或者缺失的项。
3.斐波那契数列斐波那契数列是指第一项和第二项都为1,从第三项开始,每一项都是前两项之和的数列,例如1、1、2、3、5、8……。
在斐波那契数列中,每一项都是前两项之和,这个规律称为递推关系。
在数字序列题中,斐波那契数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是根据递推关系推断出下一项或者缺失的项。
二、数字关系题数字关系题是指给出一组数字之间的关系,要求考生根据这些关系推断出其他数字之间的关系。
数字关系题考察的是考生的逻辑推理能力和数学能力。
下面介绍一些数字关系题的常见关系和解题方法。
1.加减乘除加减乘除是数字关系题中最为常见的关系,例如1+2=3,2-1=1,2×3=6,6÷2=3等。
在数字关系题中,加减乘除的规律通常是给出部分数字和运算符号,要求考生推断出其他数字和运算符号。
数字推理有分数思路顺序:(答案或需约分,分子分母特征、观分子分母反约分趋势、观分子或分母通分尝试先后)。
约分无规律。
〔前项分子分母组合作积、和差与后项分母、分子、分母分子之和、差、积、商、质数、合数建立联系。
不全分数项且整体非单调或难以辨识单调考虑〕。
〔观分子分母不成(自然数序3,4,5),分母成倍数,分母通分。
分子易通先考虑通分。
直接观察或做差观察。
不全分数项且整体单调考虑〕。
反约分成明显邻近,差一邻比( )、等比、等差,等增差(公差+3,+5,+7, +9),再者递推。
若爆发增长,则等比、幂次、等增比公比x1,x2,x3,x4, x5)。
反约没思路时,推理线索技法1. 反约分常用的公差为1的,邻比类型2. 必须结合选项来判断趋势,答案是否约分,通过分子分母是否能限制范围。
或者本身值与数列单调趋势一致。
3. 没思路的情况下,按升序,常只以乘2来试。
4. 没思路的情况下,有整数,整数部分给分母1。
5. 没思路的情况下,前面整数较大,序列分母按升序。
6. 没思路的情况下,二桥作差的公差认为一致。
7. 没思路的情况下,从很明显看到的东西入手,避免灯下黑。
8. 不要看到连续就,直接选答案连续。
9. 连续负号项,一般反约分使分子或分母成等差、等增差。
7566574839210,,,,,7566574839210,,,,,无分数思路顺序:因式分解、幂次没有作差、倍数做商频繁考,但是按这个顺序思考,你不会漏,实际上也就几秒就能排除这两个方向。
优先预设前三类,其他数列不分先后,哪类标志明显,趋势明显就先考虑,选了就走。
1.因式分解数列(1x2,2x3,3x4,4x5.....)都是些比较多因数的数多为偶数,单调趋势明显。
2、6、12、202.机械拆分机械拆分以作和、积尾数为主,差和商较少3.数列呈爆发式增长或整体均值大→幂次规律脑海中预设5题中,会有1题幂次,即便没有。
这样可以让你更好从那些平方数敏感放心,有意识的分析。
公务员考试行政能力测验数字推理类解题规律总结
数量关系测验类
一、考点分析
数量关系测验主要是测验考生对数量关系的理解与计算的能力,体现了一个人抽象思维的发展水平。
在行政职业能力测验中,数量关系测验主要是从数字推理和数学运算两个角度来考查考生对数量关系的理解能力和反应速度。
数量关系测验含有速度与难度的双重性质。
在速度方面,要求考生反应灵活,思维敏捷;在难度方面,其所涉及的数学知识或原理都不超过小学与初中水平,甚至多数是小学水平。
如果时间充足,获得正确答案是不成问题的。
但在一定的时间限制下,要求考生答题既快又准,这样,个人之间的能力差异就显现出来了。
可见,该测验难点并不在于数字与计算上,而在于对规律与方法的发现和把握上,它实际测查的是个人的抽象思维能力。
因此,解答数量关系测验题不仅要求考生具有数字的直觉能力,还需要具有判断、分析、推理、运算等能力。
1.数字推理
数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,
1
来填补空缺项,使之符合原数列的排列规律。
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。
一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。
只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。
由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,具体来说,将相邻的两个数相加或相减,相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。
只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
需要说明一点:近年来数字推理题的趋势是越来越难,即需综合利用两个或者两个以上的规律。
因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。
这样处理不但节省了时间,保证了容易题目的得分率,
而且会对难题的解答有所帮助。
有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度思考问题。
此时,与其“卡”死在这里,不如抛开这道题先做别的题。
在做其他题的过程中也许就会有新的解题思路,从而有助于解答这些少量的难题。
在做这些难题时,有一个基本思路:“尝试错误”。
很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。
2.数学运算
数学运算题主要考查解决四则运算等基本数字问题的能力。
在这种题型中,每道试题中呈现一道算术式子,或者是表述数字关系的一段文字,要求考生迅速、准确地计算出答案,并判断所计算的结果与答案各选项中哪一项相同,则该选项即为正确答案,并在答卷纸上将相应题号下面的选项字母涂黑。
数学运算的试题一般比较简短,其知识内容和原理多限于小学数中的加、减、乘、除四则运算。
尽管如此,也不能掉以轻心、麻痹大意,因为测验有时间限制,需要考生算得既快又准。
二、解题技巧及规律总结
数字推理主要是通过加、减、乘、除、平方、开方等方法来
3
寻找数列中各个数字之间的规律,从而得出最后的答案。
在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:
1、相邻两个数加、减、乘、除等于第三数
2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数
3、等差数列:数列中各个数字成等差数列
4、二级等差:数列中相邻两个数相减后的差值成等差数列
5、等比数列:数列中相邻两个数的比值相等
6、二级等比:数列中相邻两个数相减后的差值成等比数列
7、前一个数的平方等于第二个数
8、前一个数的平方再加或者减一个常数等于第二个数;
9、前一个数乘一个倍数加减一个常数等于第二个数;
10、隔项数列:数列相隔两项呈现一定规律,
11、全奇、全偶数列
12、排序数列
二、数列中每一个数字本身构成特点形成各个数字之间的规律。
1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成
2、每一个数字都是n的立方构成或者是n的立方加减一个
常数构成,或者是n的立方加减n
3、数列中每一个数字都是n的倍数加减一个常数
以上是数字推理的一些基本规律,必须掌握。
但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?
这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答
第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。
第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。
当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。
这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案
三、题型分析
1.数字推理
【例1】 257,178,259,173,261,168,263,( ) A.275 B.279 C.164 D.163
5
【解析】
答案为D。
通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小……也就是说,奇数项的都是大数、而偶数项的都是小数。
可以判断,这是两项数列交替排列在一起而形成的一种排列方式。
这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。
我们可以看出,奇数项是一种等差数列的排列方式,而偶数项也是一个等差数列,所以括号中的数应为168-5=163。
顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。
2.数学运算
【例2】 425+683+544+828的值是( )。
A.2488
B.2486
C.2484
D.2480
【解析】答案为D。
在四则运算中,如果几个数的数值较大,又似乎没有什么规律可循,可以先利用个位进行运算得到尾数,再与选项中的尾数进行对比,如果有唯一的对应项,就可立即找到答案。
如果对应项不惟一,再进行按部就班的笔算也不迟。
该题中各项的个位数相加=5+3+4+8=20,尾数为0,4个选项中只有一个尾数也为0,故正确选项为D。
【例3】有一只青蛙在井底,每天爬上4米,又滑下3米,这井有9米深,那么它爬上这口井一共需要多少天?( )
A.2
B.6
C.4
D.7
【解析】:这是一道跳井类型的问题,在答题时有人还误认为每天爬上4米后又滑3米,两者之间的差额就是每天能爬上去的量,这样一算,井有9米深,共需要9天。
但这是一个错误,因为青蛙爬到5米之后,后一天再爬上4米的话,就可以到井口了,所以一共需要6天,即答案为B。
在解这种类型的题目时,应该画一个初步的解析图,这有利于对题目的正确地理解和解答。
7。