第十章安腾高性能处理机体系结构
- 格式:ppt
- 大小:509.50 KB
- 文档页数:1
体系结构名词解释体系结构名词解释1. 计算机系统结构:计算机体系结构包括指令集结构、计算机组成和计算机实现三个方面的内容。
2. CISC:CISC是指采用一整套计算机指令进行操作的计算机。
而后又出现了精简指令集计算机,它精简了指令集,只保留了那些常用的指令,这样计算机能以更快的速度执行操作。
3. 定向技术:将计算结果从其产生的地方直接送到真正需要它的地方,而不是从寄存器文件读出使用,它是一种解决数据相关,避免流水线暂停的技术4. 指令级并行:完成一批任务,不使用流水线所用的时间与使用流水线所用的时间之比称为流水线的加速比5. 多级存储层次:采用不同的技术实现的存储器,处在离CPU不同距离的层次上,目标是达到离CPU最近的存储器的速度,最远的存储器的容量6. 系统加速比:对系统中某部分进行改进时,改进后系统性能提高的倍数。
7. RISC:精简指令集计算机8. 动态流水线:同一时间内,当某些段正在实现某种运算时,另一些段却在实现另一种运算。
9. 指令的动态调度:是指在保持数据流和异常行为的情况下,通过硬件对指令执行顺序进行重新安排,以提高流水线的利用率且减少停顿现象。
是由硬件在程序实际运行时实施的。
10:全相联映象:主存中的任一块可以被放置到Cache中任意一个地方。
10. Amdahl定律:加快某部件执行速度所获得的系统性能加速比,受限于该部件在系统中的所占的重要性。
11. 寻址方式:就是寻找操作数或操作数地址的方式12. 静态流水线:在同一段时间内,多功能流水线中的各个功能段只能按照一种固定的方式连接,实现一种固定的功能。
13. 前瞻执行:解决控制相关的方法,它对分支指令的结果进行猜测,然后按这个猜测结果继续取指、流出和执行后续的指令。
只是指令执行的结果不是写回到寄存器或存储器,而是放到一个称为ROB的缓冲器中。
等到相应的指令得到“确认”(即确实是应该执行的)后,才将结果写入寄存器或存储器14. 替换算法:由于主存中的'块比Cache中的块多,所以当要从主存中调一个块到Cache中时,会出现该块所映象到的一组(或一个)Cache块已全部被占用的情况。
本科生期末试卷(一)一、选择题(每小题1分,共15分)1 从器件角度看,计算机经历了五代变化。
但从系统结构看,至今绝大多数计算机仍属于(冯.诺依曼)计算机。
2 某机字长32位,其中1位表示符号位。
若用定点整数表示,则最小负整数为(-(231-1) )。
3 以下有关运算器的描述,(算术运算与逻辑运算)是正确的。
4 EEPROM是指(电擦除可编程只读存储器)。
5 常用的虚拟存储系统由(主存-辅存)两级存储器组成,其中辅存是大容量的磁表面存储器。
6 RISC访内指令中,操作数的物理位置一般安排在(两个通用寄存器)。
7 当前的CPU由(控制器、运算器、cache)组成。
8 流水CPU是由一系列叫做“段”的处理部件组成。
和具备m个并行部件的CPU相比,一个m段流水CPU的吞吐能力是(具备同等水平)。
9 在集中式总线仲裁中,(独立请求)方式响应时间最快。
10 CPU中跟踪指令后继地址的寄存器是(程序计数器)。
11 从信息流的传输速度来看,(单总线)系统工作效率最低。
12 单级中断系统中,CPU一旦响应中断,立即关闭(中断屏蔽)标志,以防止本次中断服务结束前同级的其他中断源产生另一次中断进行干扰。
13 安腾处理机的典型指令格式为(41位)位。
14 下面操作中应该由特权指令完成的是(从用户模式切换到管理员模式)。
15 下列各项中,不属于安腾体系结构基本特征的是(超线程)。
二、填空题(每小题2分,共20分)1 字符信息是符号数据,属于处理(非数值)领域的问题,国际上采用的字符系统是七单位的(IRA )码。
2 按IEEE754标准,一个32位浮点数由符号位S(1位)、阶码E(8位)、尾数M(23位)三个域组成。
其中阶码E的值等于指数的真值( e )加上一个固定的偏移值(127 )。
3 双端口存储器和多模块交叉存储器属于并行存储器结构,其中前者采用(空间)并行技术,后者采用(时间)并行技术。
4 虚拟存储器分为页式、(段)式、(段页)式三种。
处理器(CPU)架构CPU架构是CPU厂商给属于同一系列的CPU产品定的一个规范,主要目的是为了区分不同类型CPU的重要标示。
目前市面上的CPU分类主要分有两大阵营,一个是intel、AMD 为首的复杂指令集CPU,另一个是以IBM、ARM为首的精简指令集CPU。
两个不同品牌的CPU,其产品的架构也不相同,例如,Intel、AMD的CPU是X86架构的,而IBM公司的CPU是PowerPC 架构,ARM公司是ARM架构。
一、基本概念总体架构Core架构的Merom处理器确实性能强劲。
在多项测试中,频率2GHz的T7200能战胜频率2.33GHz的T2700就是最好的证明。
但是您同时也注意到了,在移动平台Merom 虽然性能强劲,但并没有给您带来太大的惊喜。
虽然胜过Yonah,但幅度都不大,而且在一些测试项中,频率稍低的T7200也是输给了T2700的。
因此可能在移动平台Core微架构的优势不像桌面平台那样出彩——一颗频率最低的E6300也可以全歼高频率的Pentium D。
究其原因就是Yonah本身就比较优秀,而不像NetBurst那样失败,况且Core微架构本身就是在Yonah微架构改进而来,成绩不会形成太大的反差也在情理之中。
Core微架构是Intel的以色列设计团队在Yonah微架构基础之上改进而来的新一代微架构。
最显著的变化在于在各个关键部分进行强化。
为了提高两个核心的内部数据交换效率采取共享式二级缓存设计,2个核心共享高达4MB的二级缓存。
其内核采用较短的14级有效流水线设计,每个核心都内建32KB一级指令缓存与32KB一级数据缓存,2个核心的一级数据缓存之间可以直接传输数据。
每个核心内建4组指令解码单元,支持微指令融合与宏指令融合技术,每个时钟周期最多可以解码5条X86指令,并拥有改进的分支预测功能。
每个核心内建5个执行单元子系统,执行效率颇高。
加入对EM64T与SSE4指令集的支持。
详述Intel系列CPU架构的发展史Intel系列CPU架构的发展史CPU(Central processing Unit),又称“微处理器(Microprocessor)”,是现代计算机的核心部件。
对于PC而言,CPU的规格与频率常常被用来作为衡量一台电脑性能强弱重要指标。
(一)、4004时代1971年,当时还处在起步阶段的Intel公司推出了世界上第一颗微处理器4004。
是第一个用于计算器的4位微处理器,含有2300个晶体管,功能相当有限,而且速度还很慢,从此以后,INTEL便与微处理器结下了不解之缘。
可以这么说,CPU的历史发展历程一定意义上也就是Intel公司x86系列CPU的发展历程。
4004处理器核心架构图:(二)、8008时代世界上第一款8位处理器C8008共推出两种速度:0.5 Mhz以及0.8 Mhz,虽然比4004的工作时脉慢,但是整体效能要比4004好上许多。
8008可以支持到16KB 的内存。
D8008则是后期出的量产版,发布时间为1972年,8位运算+16位地址总线+16位数据总线,同时它也包含一些输入输出端口,这是一个相当成功的设计,还有效解决了外部设备在内存寻址能力不足的问题。
(三)、8080时代intel推出的8080不仅扩充了可寻址的存储器容量和指令系统,而且指令执行速度是8008的10倍。
另一方面8080可直接与TTL(晶体管-晶体管逻辑)兼容,而8008则不能,这样就使得接口设计更容易,而且价格更便宜。
8080可寻址的范围(64KB)是8008(16KB)的4倍,随后,1974年第一台PC机MITS Altair 8800问世了。
它写的BASIC语言解释程序是由Bill Gates(比尔?盖茨)和Paul Allen于1975年开发的,他们是Microsoft公司的创始人。
(四)、8085时代8085的最低主频3 MHz,最高主频也不过6MHz。
当年使用此CPU的厂商非常多,包括了AMD,FUJI,TOSHIBA,SIEMENS等等。