万有引力定律种典型题完整版
- 格式:docx
- 大小:32.23 KB
- 文档页数:6
万有引力定律 练习题一、选择题1.一个物体在地球表面所受的重力为G ,则在距地面高度为地球半径的2倍时,所受引力为( ) A.2G B.3G C.4G D.9G 2.将物体由赤道向两极移动( )A .它的重力减小B .它随地球转动的向心力增大C .它随地球转动的向心力减小D .向心力方向、重力的方向都指向球心3.宇航员在围绕地球做匀速圆周运动的航天飞机中,处于完全失重状态,则下列说法中正确的是( )A .宇航员不受重力作用B .宇航员受到平衡力的作用C .宇航员只受重力的作用D .宇航员所受的重力产生向心加速度4.绕地球做匀速圆周运动的人造卫星,轨道半径越大的卫星,它的A. 线速度越大B. 向心加速度越大C. 角速度越大D. 周期越大5.设想把一物体放在某行星的中心位置,则此物体与该行星间的万有引力是(设行星是一个质量分布均匀的标准圆球)( )A .零B .无穷大C .无法确定D .无穷小6.由于地球自转,则( )A .地球上的物体除两极外都有相同的角速度B .位于赤道地区的物体的向心加速度比位于两极地区的大C .物体的重量就是万有引力D .地球上的物体的向心加速度方向指向地心7.下列各组数据中,能计算出地球质量的是( )A .地球绕太阳运行的周期及日、地间距离B .月球绕地球运行的周期及月、地间距离C .人造地球卫星在地面附近的绕行速度和运动周期D .地球同步卫星离地面的高度8.绕地球运行的人造地球卫星的质量、速度、卫星与地面间距离三者之间的关系是( )A .质量越大,离地面越远,速度越小B .质量越大,离地面越远,速度越大C .与质量无关,离地面越近,速度越大D .与质量无关,离地面越近,速度越小9.一物体在某行星表面受到的万有引力是它在地球表面受到的万有引力的1/4.在地球上走得很准的摆钟搬到此行星上后,此钟的分针走一整圈所经历的时间实际上是A .1/4小时B .1/2小时C .2小时D .4小时10.地球半径为R ,距地心高为h 有一颗同步卫星,有另一个半径为3R 的星球,距该星球球心高度为3h 处一颗同步卫星,它的周期为72h ,则该星球平均密度与地球的平均密度的比值为( )A .1:9B .1:3C .9:1D .3:1二、填空题11.已知地球半径约为m 6104.6⨯,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地心的距离约为__________________m 。
高中物理万有引力定律的应用题20套(带答案)一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin Rr )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=- 或者202t gR r ω=-【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22Mm Gmr rω= 航天飞机在地面上,有2mMG R mg = 联立解得22gR rω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
b
e i n
g a
r e
g 買鲷鴯譖昙膚遙闫撷凄。
点.卫星在圆弧上运动时发出的信号被遮BE ,万有引力常量为G ,根据万有引力定律有:
n d
g
s i
n t
h e i r 图4-1
绕行方向与地球自转方向相同,某时刻A 、他们再一次相距最近?裊樣祕廬廂颤谚鍘羋蔺。
03
2
)
2ωπ
-h
b
e
i
n
g
由于星体做圆周运动所需要的向心力靠其它两个星体的万有引力的合力提供
l l t h i n g s i n t
g M =2
t
h
e
i
r
b
e
图4-2
i
可等效为位于O点处质量为
、m2,试求m′(用m1、
的速率v、运行周期
恒星演化到末期,如果其质量大于太阳质量m s的2倍,它将有可能成为黑洞
T=4.7π×104 s,质量
灭嗳骇諗鋅猎輛觏馊藹。
高中物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt =;2hRv =【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt =质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月==【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .3.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少?(2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+;【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GTπ+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR② 联立①②解得:g=23224()R h R Tπ+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.4.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
高考物理专题复习:万有引力定律一、单选题1.已知某空间站在距地面高度为h 的圆轨道上运行,经过时间t ,通过的弧长为s 。
已知引力常量为G ,地球半径为R 。
下列说法正确的是( ) A .空间站运行的速度大于第一宇宙速度 B .空间站的角速度为stC .空间站的周期为2)R h tsπ+( D .地球平均密度为. 22234()s G t R h π+2.假设某星球可视为质量均匀分布的球体,已知该星球表面的重力加速度在两极的大小为g 1,在赤道的大小为g 2,星球自转的周期为T ,引力常量为G ,则该星球的密度为( ) A .23GT πB .1223g GT g π⋅ C .12123g GT g g π⋅- D .12213g g GT g π-⋅ 3.某探测器在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t ,已知引力常量为G ,关于土星质量M 和平均密度ρ的表达式正确的是( ) A .2324()R h M Gt π+=,3233()R h G Rπρ+= B .2224()R h M Gtπ+=,2233()R h Gt R πρ+= C .2324()R h M Gt π+=,3233()R h Gn R πρ+=D .22324()n R h M Gt π+=,23233()n R h Gt R πρ+=4.某探测器在距火星表面高度为h 的轨道上绕火星做周期为T 的匀速圆周运动,再经多次变轨后成功着陆,着陆后测得火星表面的重力加速度为g ,已知火星的半径为R ,万有引力常量为G ,忽略火星自转及其他星球对探测器的影响,以下说法正确的是( ) A .火星的质量为2324πR GTB .火星的质量为()3224πR h gT +C .火星的密度为23πGT D .火星的密度为34πgG R5.宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于宇宙四星系统,下列说法错误的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为2aC .四颗星表面的重力加速度均为2GmR D.四颗星的周期均为2π6.质量为m 的着陆器在着陆火星前,会在火星表面附近经历一个时长为0t 、速度由0v 减速到零的过程。
四、万有引力定律的练习题一、选择题1、关于地球同步通讯卫星,下列说法中正确的是[]A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间2、设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是[]3、人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是[]A.R不变,使线速度变为 v/2B.v不变,使轨道半径变为2RD.无法实现4、两颗靠得较近天体叫双星,它们以两者重心联线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是[]A.它们做圆周运动的角速度与其质量成反比B.它们做圆周运动的线速度与其质量成反比C.它们所受向心力与其质量成反比D.它们做圆周运动的半径与其质量成反比5、由于地球的自转,地球表面上各点均做匀速圆周运动,所以[]A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心6、以下说法中正确的是[]A.质量为m的物体在地球上任何地方其重力都一样B.把质量为m的物体从地面移到高空中,其重力变小C.同一物体在赤道上的重力比在两极处重力大D.同一物体在任何地方质量都是相同的7、假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pq8、假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则[]A.根据公式v=ωr,可知卫星的线速度将增大到原来的2倍9.如图为某行星绕太阳运动的轨道,下列关于太阳位置的描述正确的是 ( )A .太阳的位置在O 点B .太阳的位置一定在C .太阳的位置一定在C 1、C 2两点中的一点D .太阳的位置可以在C 1、O 、C 2任意一点 10. 地球绕太阳的运行轨道是椭圆形,因而地球与太阳之间的距离岁季节变化。
高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。
万有引力定律·典型例题解析【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下:(1)g (2)(3)r 60R 地面上物体的重力加速度=;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GMR GMrg 22αα(4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ;(5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果,求的值.αg解析:(1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力GMmr mg G Mmrm 22α的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目的条件可以用、ω或来表示.v r r T2224r 2π【例】月球质量是地球质量的,月球半径是地球半径的,在2181138.距月球表面14m 高处,有一质量m =60kg 的物体自由下落.(1)它落到月球表面需用多少时间?(2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)?解析:(1)4s (2)588N点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设mg GM m R mg GM m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的万有引力,设=.以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 22122214175S g .(2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N .跟踪反馈1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为:[ ]A .Gm 1m 2/r 2B .Gm 1m 2/r 12C .Gm 1m 2/(r 1+r 2)2D .Gm 1m 2/(r 1+r 2+r)22.下列说法正确的是[ ] A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的3.已知太阳质量是1.97×1030kg,地球质量是5.98×1024kg,太阳和地球间的平均距离1.49×1011m,太阳和地球间的万有引力是_______N.已知拉断截面积为1cm2的钢棒力4.86×104N,那么,地球和太阳间的万有引力可以拉断截面积是_______m2的钢棒.4.下列说法正确的是[ ] A.行星绕太阳的椭圆轨道可以近似地看作圆形轨道,其向心力来源于太阳对行星的引力B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转C.万有引力定律适用于天体,不适用于地面上的物体D.行星与卫星之间的引力,地面上的物体所受的重力和太阳对行星的引力,性质相同,规律也相同参考答案1.D 2.CD 3.3.54×1022;7.28×134.A。
万有引力定律种典型题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】万有引力定律12种典型题【案例1】下列哪一组数据能够估算出地球的质量()A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。
月球也是地球的一颗卫星。
设地球的质量为M,卫星的质量为m,卫星的运行周期为T,轨道半径为r根据万有引力定律:【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。
总之,牛顿万有引力定律是解决天体运动问题的关键。
【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。
“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12h,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24h。
问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少?解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T2∝r3知:“风云二号”卫星的轨道半径较大⑴所有运动学量量都是r的函数。
我们应该建立函数的思想。
⑵运动学量v、a、ω、f随着r的增加而减小,只有T随着r的增加而增加。
⑶任何卫星的环绕速度不大于7.9km/s,运动周期不小于85min。
⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。
【案例3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上D、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。
解析:本题考察地球同步卫星的特点及其规律。
同步卫星运动的周期与地球自转周期相同,T=24h,角速度ω一定【探讨评价】通讯卫星即地球同步通讯卫星,它的特点是:与地球自转周期相同,角速度相同;与地球赤道同平面,在赤道的正上方,高度一定,绕地球做匀速圆周运动;线速度、向心加速度大小相同。
三颗同步卫星就能覆盖地球。
【案例4】“双星”问题天文学中把两颗距离比较近,又与其它星体距离比较远的星体叫做双星,双星的间距是一定的。
设双星的质量分别是m1、m2,星球球心间距为L。
问:⑴两星体各做什么运动?⑵两星的轨道半径各多大?⑶两星的速度各多大?解析:本题主要考察双星的特点及其运动规律⑴由于双星之间只存在相互作用的引力,质量不变,距离一定,则引力大小一定,根据牛顿第二定律知道,每个星体的加速度大小不变。
因此它们只能做匀速圆周运动。
【探讨评价】双星的特点就是距离一定,它们间只存在相互作用的引力,引力又一定,从而加速度大小就是一个定值,这样的运动只能是匀速圆周运动。
这个结论很重要。
同时利用对称性,巧妙解题,找到结论的规律,搞清结论的和谐美与对称美对我们以后的学习也很有帮助。
【案例5】“两星”问题如图是在同一平面不同轨道上运行的两颗人造地球卫星。
设它们运行的周期分别是T1、T2,(T1<T2),且某时刻两卫星相距最近。
问:⑴两卫星再次相距最近的时间是多少?⑵两卫星相距最远的时间是多少?解析:本题考察同一平面不同轨道上运行的两颗人造地球卫星的位置特点及其卫星的运动规律⑴依题意,T1<T2,周期大的轨道半径大,故外层轨道运动的卫星运行一周的时间长。
设经过△t两星再次相距最近【探讨评价】曲线运动求解时间,常用公式φ=ωt;通过作图,搞清它们转动的角度关系,以及终边相同的角,是解决这类问题的关键。
【案例6】同步卫星的发射问题发射地球同步卫星时,先将卫星发射至近地圆形轨道1运行,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆形轨道3运行。
设轨道1、2相切于Q点,轨道2、3相切于P点,则卫星分别在1、2、3轨道上正常运行时,⑴比较卫星经过轨道1、2上的Q点的加速度的大小;以及卫星经过轨道2、3上的P点的加速度的大小⑵设卫星在轨道1、3上的速度大小为v1、v3,在椭圆轨道上Q、P点的速度大小分别是,比较四个速度的大小解析:同步卫星的发射有两种方法,本题提供了同步卫星的一种发射方法,并考察了卫星在不同轨道上运动的特点。
【探讨评价】卫星运动的加速度是由地球对卫星的引力提供的,所以研究加速度首先应考虑牛顿第二定律;卫星向外轨道运行时,做离心运动,半径增大,速度必须增大,只能做加速运动。
同步卫星是怎样发射的呢?通过上面的例题及教材学习,我们知道:同步卫星的发射有两种方法,一是直接发射到同步轨道;二是先发射到近地轨道,然后再加速进入椭圆轨道,再加速进入地球的同步轨道。
【案例7】“连续群”与“卫星群”土星的外层有一个环,为了判断它是土星的一部分,即土星的“连续群”,还是土星的“卫星群”,可以通过测量环中各层的线速度v 与该层到土星中心的距离R之间的关系来判断:【探讨评价】土星也在自转,能分清环是土星上的连带物,还是土星的卫星,搞清运用的物理规律,是解题的关键。
同时也要注意,卫星不一定都是同步卫星。
【案例8】宇宙空间站上的“完全失重”问题假定宇宙空间站绕地球做匀速圆周运动,则在空间站上,下列实验不能做成的是:A、天平称物体的质量B、用弹簧秤测物体的重量C、用测力计测力D、用水银气压计测飞船上密闭仓内的气体压强E、用单摆测定重力加速度F、用打点计时器验证机械能守恒定律解析:本题考察了宇宙空间站上的“完全失重”现象。
宇宙飞船绕地球做匀速圆周运动时,地球对飞船的引力提供了向心加速解得:F=0,这就是完全失重在完全失重状态下,引力方向上物体受的弹力等于零,物体的重力等于引力,因此只有C、F实验可以进行。
其它的实验都不能进行。
【探讨评价】当物体的加速度等于重力加速度时,引力方向上物体受的弹力等于零,但物体的重力并不等于零;在卫星上或宇宙空间站上人可以做机械运动,但不能测定物体的重力。
【案例9】黑洞问题“黑洞”问题是爱因斯坦广义相对论中预言的一种特殊的天体。
它的密度很大,对周围的物质(包括光子)有极强的吸引力。
根据爱因斯坦理论,光子是有质量的,光子到达黑洞表面时,也将被吸入,最多恰能绕黑洞表面做圆周运动。
根据天文观察,银河系中心可能有一个黑洞,距离可能黑洞为6.0×1012m远的星体正以2.0×106m/s的速度绕它旋转,据此估算该可能黑洞的最大半径是多少(保留一位有效数字)解析:本题考察“黑洞”的基本知识,这是一道信息题。
黑洞做为一种特殊的天体,一直受到人们广泛的关注,种种迹象表明,它确实存在于人的视野之外。
黑洞之黑,就在于光子也逃不出它的引力约束。
光子绕黑洞做匀速圆周运动时,它的轨道半径就是黑洞的最大可能半径。
设光子的质量为m,黑洞的质量为M,黑洞的最大可能半径为R,光子的速度为c【探讨评价】通过上面的数据分析我们知道,黑洞是一种特殊的天体,它的质量、半径都很大,因此它对周围星体的引力特别大,任何物质(包括光子)都将被它吸入,这就是“黑洞”命名的缘由。
黑洞是否真正存在,其运动特点和规律到底怎么样,同学们可以上网查资料,充分考查研究。
希望同学们将来成为真正的宇宙探秘科学家。
我们要认真学习课本的阅读材料,能用中学物理知识分析解决科技中的问题。
【案例10】宇宙膨胀问题在研究宇宙发展演变的理论中,有一种学说叫做“宇宙膨胀说”,这种学说认为万有引力常量G在缓慢地减小,根据这一理论,在很久很久以前,太阳系中地球的公转情况与现在相比较,⑴公转半径如何变化?⑵公转周期如何变化?⑶公转线速度如何变化?要求写出必要的推理依据和推理过程。
解析:这也是一道信息题,主要考察同学们运用万有引力定律推理分析的能力。
所提供的信息就是“引力常量在缓慢地减小”。
在漫长的宇宙演变过程中,由于“G”在减小,地球所受的引力在变化,故地球公转的半径、周期速度都在发生变化。
即地球不再做匀速圆周运动。
但由于G减小的非常缓慢,故在较短的时间内,可以认为地球仍做匀速圆周运动——引力提供向心力。
设M为太阳的质量,m为地球的质量,r为地球公转的半径,T为地球公转的周期,v为地球公转的速率。
【探讨评价】本题是根据信息推理论证题。
既然要求写出推理依据以及推理过程,这就要求我们充分利用“引力提供向心加速度”的重要规律,了解信息,明确规律,搞清变量,严密推理。
【案例11】月球开发问题科学探测表明,月球上至少存在氧、硅、铝、铁等丰富的矿产资源。
设想人类开发月球,不断地月球上的矿藏搬运到地球上,假定经过长时间开采以后,月球和地球仍看做均匀球体,月球仍然在开采前的轨道运动,请问:⑴地球与月球的引力怎么变化?⑵月球绕地球运动的周期怎么变化?⑶月球绕地球运动的速率怎么变化?解析:本题主要考察数学在天文学上的应用。
【探讨评价】这也是一道信息题。
了解题目信息,明确变量,充分利用数学上求极值的几种方法去思考问题,利用函数的思想去解决问题,这种方法十分重要。
【案例12】“宇宙飞船”及能量问题宇宙飞船要与正在轨道上运行的空间站对接。
⑴飞船为了追上轨道空间站,应采取什么措施?⑵飞船脱离原来的轨道返回大气层的过程中,重力势能如何变化动能如何变化机械能又如何变化解析:本题主要考察飞船运行过程中的能量问题。
由于飞船离地的高度逐渐降低,因此飞船的重力势能减小;由于飞船需要克服大气阻力和制动力做功,因此飞船的机械能减小。
【探讨评价】宇宙飞船在空间轨道上运动,是靠地球的引力产生向心加速度维持的,轨道一定,则速率一定。
要想往外轨道运动,必须加速,使它做离心运动;要想往内轨道运动,必须减速,使它做向心运动。
研究飞船的能量问题,既要从功的角度去考虑,又要从实际出发去研究,必须抓住矛盾的主要方面去分析。