数学物理方程模拟试卷
- 格式:doc
- 大小:292.00 KB
- 文档页数:5
数学物理方程试卷一、选择题1.在一个匀速运动中,物体的速度v与物体的位移s的关系是:A.v=s/tB.v=s/t^2C.v=s*tD.v=s*t^22.以下哪个物理量属于标量?A.速度B.力C.加速度D.距离3.物体质量为m,重力加速度为g,物体所受重力的大小为:A. mgB. mg/2C. 2mgD. mg^24.物体自由落体下落t秒后的位移s与时间t的关系为:A. s=gtB. s=gt^2C. s=gt^3D. s=1/gt5.以下哪个物理量属于矢量?A.面积B.速度C.力D.质量二、填空题1.一辆车以10m/s的速度匀速行驶了20秒,那么它的位移是_____________米。
2.物体在一个小时内匀速运动40千米,速度为_____________米每秒。
3.物体在水平地面上受到10牛的推力,质量为2千克,加速度为_____________。
4.一个物体从100米高的地方自由落体,下落10秒后的速度是_____________米每秒。
5.物体质量为5千克,重力加速度为10米每秒的平方,所受重力的大小是_____________牛。
三、解答题1.用物理公式解释为什么月亮绕地球运动?答:根据万有引力定律,任意两个物体之间都存在引力。
月球的质量相对较小,在地球的引力作用下,它会受到向地心的引力,从而绕着地球进行运动。
2.一个物体以10m/s的速度沿水平方向运动,另一个物体以5m/s的速度沿同一方向追赶第一个物体,如果第二个物体和第一个物体质量相同,两个物体发生碰撞后,它们的速度是多少?答:根据动量守恒定律,两个物体的总动量在碰撞前后保持不变。
因此,第一个物体的动量为10 kg·m/s,第二个物体的动量为5 kg·m/s。
由于两个物体质量相同,碰撞后它们的速度将相等。
设碰撞后的速度为v,则第一个物体的动量为10v kg·m/s,第二个物体的动量为5v kg·m/s。
一、填空题1、物理规律反映同一类物理现象的共同规律,称为___________。
2、在给定条件下求解数学物理方程,叫作____________________。
3、方程20tt xx u a u -=称为_________方程4、方程20t xx u a u -=称为_________方程5、静电场的电场强度E是无旋的,可用数学表示为_____________。
6、方程0j Ñ×=称为_____________的连续性方程。
7、第二类边界条件,就是______________________________________。
8、第一类边界条件,就是______________________________________。
9、00(0,)(0,)x x u x t u x t -=+称为所研究物理量u 的_____________。
10、00(0,)(0,)u x t u x t -=+称为所研究物理量u 的_____________。
11、对于两个自变量的偏微分方程,可分为双曲型、________和椭圆型。
12、对于两个自变量的偏微分方程,可分为双曲型、抛物线型和________。
13、分离变数过程中所引入的常数l 不能为_____________。
14、方程中,特定的数值l 叫作本征值,相应的解叫作_____________。
15、分离变数法的关键是________________________代入微分方程。
16、非齐次振动方程可采用______________和冲量定理法求解。
17、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。
18、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。
数学物理方程试题(一)一、填空题(每小题5分,共20分)1.长为π的两端固定的弦的自由振动,如果初始位移为x sin 2x ,初始速度为cos2x 。
则其定解条件是2.方程∂u ∂u -3=0的通解为∂t ∂x⎧X "(x )+λX (x )=03.已知边值问题⎨',则其固有函数X n(x )=⎩X (0)=X (π)=04.方程x y +xy +(αx -n )y =0的通解为2"'222二.单项选择题(每小题5分,共15分)∂2u ∂2u1.拉普拉斯方程2+2=0的一个解是()∂x ∂y (A )u (x ,y )=e sin xy (B )u (x ,y )=(C )u (x ,y )=x x 2+y 2x 2+y 21x 2+y 2(D )u (x ,y )=ln2.一细杆中每点都在发散热量,其热流密度为F (x ,t ),热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是()∂2u F (x ,t )∂u ∂2u F (x ,t )2(A )(B )=a 2+=a +22∂t c ρc ρ∂x ∂t ∂x 2222∂F∂F u (x ,t )∂F ∂F u (x ,t )(其中2k )22(C )(D)=a +=a +a =222c ρ∂t c ρc ρ∂t ∂x ∂x 2⎧∂2u 2∂u =a ⎪⎪∂t 2∂x 23.理想传输线上电压问题⎨⎪u (x ,0)=A cos ωx ,∂u ⎪∂t ⎩∂2ut =0=aA ωsin ωx(其中a 2=1)的解为()L C(A )u (x ,t )=A cos ω(x +at )(B )u (x ,t )=A cos ωx cos a ωt(C )u (x ,t )=A cos ωx sin a ωt (D )u (x ,t )=A cos ω(x -at )三.解下列问题1.∂u ⎧∂u+3=0⎪(本题8分)求问题⎨∂x 的解∂y3x⎪⎩u (x ,0)=8e ⎧∂2u=6x 2y ⎪⎪∂x ∂y(本题8分)⎨⎪u (x ,0)=1-cos x ,u (0,y )=y 2⎪⎩2⎧∂2u 2∂u ⎪2=a 2⎪∂t ∂x 3 . (本题8分)求问题⎨⎪u (x ,0)=sin 2x ,∂u ⎪∂t ⎩2.的解t =0=3x 2四.用适当的方法解下列问题2⎧∂u 2∂u=a ⎪(本题8分)解问题⎨∂t ∂x 2⎪u (x ,0)=1-2x +3x 2⎩2⎧∂2u ∂2u ∂2u2∂u =a (2+2+2)⎪2⎪∂t ∂x ∂y ∂z (本题8分)解问题⎨2∂u 2⎪u t =0=2y +3xz ,=6y t =0⎪∂t 2⎩1. 2.2⎧∂u2∂u⎪∂t =a 2∂x ⎪⎪五.(本题10分)解混合问题:⎨u (0,t )=u (1,t )=0⎪u (x ,0)=2sin πx⎪⎪⎩六.(本题15分)用分离变量法解下列混合问题:2⎧∂2u 2∂u =a ⎪2∂x 2⎪∂t ⎪⎨u (0,t )=u (π,t )=0⎪∂u ⎪u (x ,0)=2x (π-x ),∂t ⎪⎩t =0=3sin 2x一.单项选择题(每小题4分,共20分)1.(D )2.(B )3.(D )4.(D )二.填空题(每空4分,共24分)⎧u (0,t )=u (2π,t )=0⎪1.x +y =C 1,2x +y =C22.⎨,∂u (x ,0)=x ,t =0=2x ⎪∂t ⎩3.u (x ,t )=x +f (3x +2y ),4.X n (x )=B n cos n πx,(n =0,1,2,3,)25.通解为u (x ,t )=322x y +f (x )+g (y )2三.解下列问题(本题7分)∂u ⎧∂u+3=0⎪1.求问题⎨∂x的解∂y 3x⎪⎩u (x ,0)=8e 解:设u (x ,t )代入方程,(8e =8e 3x +m y(2分))⨯3+3⋅(8e 3x +m y )⨯m=03x +m y 3m +3=0,m =-1(6分)所以解为u (x ,t )=8e 3x -y(7分)2.2⎧∂2u ∂u 2⎪2=a 2⎪∂t ∂x (本题7分)求问题⎨⎪u (x ,0)=sin 2x ,∂u ⎪∂t ⎩的解t =0=3x 2解:由达朗贝尔公式,得11x +at2u (x ,t )=[sin 2(x +at )+sin 2(x -at )]+3ξd ξ(3分)⎰x -at22a =cos 2at sin 2x +3x 2t +a 2t 3(7分)四.用适当的方法解下列问题2⎧∂u 2∂u=a ⎪1.(本题7分)解问题⎨∂t ∂x 2⎪u (x ,0)=1-2x +3x 2⎩解:设u (x ,t )=1-2x +3x 2+At代入方程,A =a 2[0-0+6+A ''t ]+6x⎧A ''=0令⎨显然成立2⎩A =6a +6x解为u (x ,t )=1-2x +3x 2+6a 2t +6xt2∂2u ∂2u ∂2u2∂u =a (2+2+2)2∂t ∂x ∂y ∂z 2∂u2=6y t =0=x +2y +3yz ,t =0∂t 22.⎧⎪⎪(本题7分)解问题⎨⎪u ⎪⎩解:设u=[x 2+2y 2+3yz +At 2]+[6x 2t +Bt 3](2分)代入方程2A +6Bt =a 2[(2+12y +∆At 2)+(12t +∆Bt 3)](4分)⎧∆B =0令,⎨显然成立,解为2⎩6B =12a u (x ,t )=x +2y +3yz +a 2t 2+6y 2t +2a 2t 3五.(本题7分)解混合问题:2⎧∂u 2∂u ⎪∂t =a ∂x 2⎪⎪⎨u (0,t )=u (1,t )=0⎪u (x ,0)=2sin πx ⎪⎪⎩解u (x ,t )=L -1{U (x ,s )}=2e -a πt sin πx22六.(本题15分)用分离变量法解下列混合问题:2⎧∂2u 2∂u=a ⎪22∂t ∂x ⎪⎪⎨u (0,t )=u (π,t )=0⎪∂u ⎪u (x ,0)=2x (π-)x ,∂t ⎪⎩t =0=3sin 2x解:设u (x ,t )=X (x )T (t )代入方程及边界⎧T ''+λa 2T =0n π2⎪λ=()=n 2,X n=sin nx''⎨X +λX =0nπ⎪X (0)=X (π)=0⎩u n=(C ncos ant +D nsin ant )sin nxu (x ,t )=∑(C ncos ant +D nsin ant )sin nxn =1∞其中C n =2π⎰π08[1-(-1)n ]x (π-x )sin nxdx =n 3πD n =2π⎰π0⎧0(n ≠2)⎪3sin 2x sin nxdx =⎨3(n =2)⎪⎩a∞38[1-(-1)n ]cos ant sin nx 所以解为u (x ,t )=sin 2at sin 2x +∑3a n πn =12009-2010学年第一学期数学物理方程试题一、填空题(每小题4分,共24分)∂2u ∂2u ∂2u 1.方程2-3+22=sin(x 2+y 2)的特征线为∂x ∂y ∂x ∂y 2.长为l 的弦做微小的横振动,x =0、x =l 两端固定,且在初始时刻处于水平状态,初始速度为2x ,则其定解条件是3.方程∂u ∂u +3=2x 的通解为∂x ∂y⎧X "(x )+λX (x )=04.已知边值问题⎨,则其固有函数⎩X '(0)=X '(2)=0X n(x )=5.方程x y +xy +(25x -64)y =0的通解为6.2⎰x J 1(x )dx = .2"'2二.单项选择题(每小题4分,共20分)1.微分方程uxxx+uxyy-sin u =ln(1+x 2)是()(A )三阶线性偏微分方程(B )三阶非线性偏微分方程(C )三阶线性齐次常微分方程(D )三阶非线性常微分方程∂2u ∂2u2.拉普拉斯方程2+2=0的一个解是()∂x ∂y (A )u (x ,y )=e sin xy (B )u (x ,y )=(C )u (x ,y )=x x 2+y 2x 2+y 21x 2+y 2(D )u (x ,y )=ln3.一细杆中每点都在发散热量,其热流密度为F (x ,t ),热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是()∂2u F (x ,t )∂u ∂2u F (x ,t )2(A )(B )=a 2+=a +22∂t c ρc ρ∂x ∂t ∂x 2222∂F∂F u (x ,t )∂F ∂F u (x ,t )(其中2k )22(C )(D)=a +=a +a =222c ρ∂t c ρc ρ∂t ∂x ∂x 2⎧∂2u 2∂u=a ⎪2⎪∂t ∂x 24.理想传输线上电压问题⎨⎪u (x ,0)=A cos ωx ,∂u ⎪∂t ⎩∂2ut =0=aA ωsin ωx(A )u (x ,t )=A cos ω(x +at )(B )u (x ,t )=A cos ωx cos a ωt(C )u (x ,t )=A cos ωx sin a ωt (D )u (x ,t )=A cos ω(x -at )5.单位半径的圆板的热传导混合问题2⎧∂u 1∂u2∂u =a (2+)(ρ<1)⎪⎨有形如()的级数解。
习题2.12. 长为L ,均匀细杆,x=0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆做自由振动。
试写出方程的定解条件。
解:边界条件:u(x,t)|0=x =0自由端x=L ,u x |L x ==0初始条件:u(x,t)|0=t =x Lbu t |0=t =0 习题2.21. 一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为1u 的介质发生热交换,且热交换的系数为1k 。
试导出杆上温度u 满足的方程。
解:热传导的热量=温度升高吸收的热量+侧面热交换的热量rdxdtu u k t x u dt t x u dx r c dt t x u t dx x u r k x x πρππ2)()],(),([)],(),([1122-+-+=-+即为:rdxdt u u k dt dxu r c dxdt u r k t xx πρππ2)(1122-+=)(211u u k ru c kru t xx -+=ρ所以温度u 满足的方程为r c u u k u c ku xx t ρρ)(211--=-习题2.34. 由静电场Gauss 定理⎰⎰⎰⎰⎰=∙VdV dS E ρε1,求证:ερ=∙∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰∙S dS E =⎰⎰⎰⎰⎰⎰=∙∇VVdV EdV ρε 1所以ερ=∙∇E 又因为ερϕϕϕ=-∇=-∇∙∇=∙∇⇒∙-∇=2)(E E 习题2.4 2.(2)032=-+yy xy xx u u u 解: 特征方程:032)(2=--dx dy dx dy ,则有1-3或=dxdy即为 13c x y += 2c x y +-= 令x y +=η x y 3-=ξ 则由:ηηξηξξu u u u xx +-=69 ηηξηξξu u u u xy +--=23 ηηξηξξu u u u yy ++=2 推得 0=ξηu则解得 )()3()()(x y g x y f g f u ++-=+=ηξ (5)031616=++yy xy xx u u u 解:由特征方程:0316)(162=+-dxdydxdy解得4143或=dx dy 则可令 x y -=4ξ x y 34-=η所以⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=4431y x y x Q ηηξξ 因此=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T Q a a a a Q a a a a 2212121122121211⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡03232022121211a a a a 即032=-ξηu所以)34()4(x y g x y f u -+-= 习题2.6 1.(3).证明)0(||)()(≠=a a x ax δδ证明:当0>a 时a dx x a ax d ax a dx ax 1)(1)()(1)(===⎰⎰⎰+∞∞-+∞∞-+∞∞-δδδ所以)0()()(≠=a ax ax δδ 当0<a 时adx x a ax d ax adx ax dx ax 1)(1)()(1)()(-=-=---=-=⎰⎰⎰⎰∞+∞-+∞∞-+∞∞-+∞∞-δδδδ所以)0()()(≠-=a ax ax δδ 综上:)0(||)()(≠=a a x ax δδ习题3.13.(4)求解边值问题的固有值和固有函数⎩⎨⎧=+'==+''==0][,0|002L x x hX X X X X β解:当0=β时,B Ax x X +=)(代入边值条件得:B X x ===0|00100)(][=+=⇒=+=+'=hL A AL h A hX X L x 或 所以当010=+≠hL A 且时Ax x X =)(当010≠+=hL A 且时0)(=x X 当0>β时,)sin()cos()(x B x A x X ββ+= 代入边值条件得:A X x ===0|00)sin()cos(][=+=+'=L hB L B hX X L x βββ 解得:L hn βββtan -=为的正根所以)sin()(x x X n n β= 当0<β时,无解。
数学物理方程试卷一、常微分方程(1)证明椭圆线方程$x^2+y^2=1$的曲率半径是无穷的证明:曲线的曲率半径R为曲线点处的法线与曲率半径的夹角$\frac{1}{R}$的反正切值,其表达式为$\frac{,y',}{\sqrt{1+y'^2}}$,其中$y'$为曲线其中一点处的导数值。
而椭圆线方程$x^2+y^2=1$的一阶导数分别为$\frac{dy}{dx}=\frac{-x}{y}$以及$\frac{dx}{dy}=\frac{x}{y}$,这里可以得到$y' = \frac{-x}{y}=\frac{-1}{x}$。
此时曲率半径表达式变为$\frac{x}{,x,\sqrt{1+\frac{1}{x^2}}}$,表达式中的$,x,$可以去掉,并且$x$取任意值,故椭圆线方程$x^2+y^2=1$的曲率半径是无穷的。
(2)证明球面$x^2+y^2+z^2=a^2$的曲率、曲率半径一致证明:根据曲线曲率的定义可知,球面$x^2+y^2+z^2=a^2$的曲率为$\kappa=\frac{,R_1\cdot R_2,}{R^3}$,其中$R_1$、$R_2$分别为曲线其中一点处的两个切线的曲率半径,$R$为曲线其中一点处的曲率半径。
而对于球面,它的两个曲率半径$R_1$和$R_2$是完全一样的,这是因为在球面其中一点的法线方向没有区别,故$R_1=R_2$。
此时曲率可以表示为$\kappa=\frac{R_1^2}{R^3}=\frac{R^2}{R^3}=\frac{1}{R}$,即曲率等于其曲率半径的倒数,也就是说球面$x^2+y^2+z^2=a^2$的曲率和曲率半径是一致的。
二、偏微分方程。
《数学物理方程》模拟试题一、填空题(3分10=30分)1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ).2.三维热传导齐次方程的一般形式是:( ) .3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) .4.边界条件 是第 ( )类边界条件,其中为边界.5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) .6.由贝塞尔函数的递推公式有 ( ) .7.根据勒让德多项式的表达式有= ( ).8.计算积分 ( ).9.勒让德多项式的微分表达式为( ) .10.二维拉普拉斯方程的基本解是( ) .⨯f u nuS=+∂∂)(σS ),(t x u ),(t U ω22222x u a t u ∂∂=∂∂=)(0x J dxd)(31)(3202x P x P +=⎰-dx x P 2112)]([)(1x P二、试用分离变量法求以下定解问题(30分):1.2.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂== =><<∂∂=∂∂====30,0,3,0 0,30,2322222,0xtuxxtxxututtxuuu⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===xtxxutuuuutxx2,0,0,40,4223.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<+∂∂=∂∂====20,0,8,00,20,162002022222x t u t x x ut u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)四、用积分变换法求解下列定解问题(10分):⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u ⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数,使它在球面上满足,即所提问题归结为以下定解问题(10分):(本题的只与有关,与无关)u θ21cos ==r u .0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=∂∂∂∂+∂∂∂∂=r u r ur r u r r r u θ,r ϕ《数学物理方程》模拟试题参考答案一、 填空题:1.初始条件,边值条件,定解条件.2. 3.. 4. 三.5..6..7..8..9.. 10..二、试用分离变量法求以下定解问题1.解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为2. 解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到)(2222222zu y u x u a t u ∂∂+∂∂+∂∂=∂∂01)(1222=∂∂+∂∂∂∂θρρρρρu u U a dt U d 2222ω-=)(1x J -2x 52)1(212-x dxd 2020)()(1lny y x x u -+-=)()(),(t T x X t x u =0)()(2''=+t T a t T λ0)()(''=+x X x X λ0)3()0(==X X λ0>λ2βλ=22223πβλn ==3s i n )(πn B x X n n =)(t T 32s i n32c o s )(;;t n D t n C t T n n n ππ+=,3s i n )32s i n 32c o s (),(1xn t n D t n C t x u n n n πππ+=∑∞=0,)1(183sin 332130=-==+⎰n n n D n xdx n x C ππ,3s i n )32c o s )1(18(),(11xn t n n t x u n n πππ+∞=-=∑)()(),(t T x X t x u =0)()('=+t T t T λ0)()(''=+x X x X λ0)4()0(==X X λ0>λ2βλ=为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为 3.解 由于边界条件和自由项均与t 无关,令,代入原方程中,将方程与边界条件同时齐次化。
物理方程测试题及答案一、选择题(每题2分,共20分)1. 光在真空中传播的速度是多少?A. 299,792,458 m/sB. 299,792,458 km/hC. 299,792,458 km/sD. 299,792,458 m/h答案:A2. 以下哪个是牛顿第二定律的表达式?A. F = maB. F = mvC. F = m/aD. F = ma^2答案:A3. 一个物体的质量为2kg,受到的力为10N,它的加速度是多少?A. 5 m/s^2B. 10 m/s^2C. 20 m/s^2D. 40 m/s^2答案:A4. 根据动能定理,一个物体的动能与其速度的平方成正比,与其质量成什么关系?A. 正比B. 反比C. 无关D. 无法确定答案:A5. 以下哪个选项是描述电磁波的方程?A. E = mc^2B. E = hνC. F = G*(m1*m2)/r^2D. F = ma答案:B6. 一个物体从静止开始自由下落,其加速度是多少?A. 9.8 m/s^2B. 10 m/s^2C. 0 m/s^2D. 无法确定答案:A7. 以下哪个是描述理想气体状态方程的?A. PV = nRTB. P = ρghC. F = maD. E = mc^2答案:A8. 以下哪个是描述欧姆定律的方程?A. V = IRB. I = V/RC. R = V/ID. A. B. C. 都是答案:D9. 以下哪个是描述电磁感应定律的方程?A. E = F/qB. E = hνC. E = -dΦ/dtD. E = mc^2答案:C10. 以下哪个是描述库仑定律的方程?A. F = G*(m1*m2)/r^2B. F = k*(q1*q2)/r^2C. F = maD. E = mc^2答案:B二、填空题(每题2分,共20分)1. 根据牛顿第三定律,作用力和反作用力大小________,方向________。
答案:相等;相反2. 光年是光在一年内通过的距离,其值约为________光年。
一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -32. 若方程2x-3=5的解为x,则x的值为()A. 2B. 3C. 4D. 53. 下列各图中,表示y=2x-1的函数图像的是()A.B.C.D.4. 一个长方形的长是8cm,宽是6cm,则它的周长是()A. 28cmB. 32cmC. 36cmD. 40cm5. 下列关于光的折射现象的说法正确的是()A. 光从空气斜射入水中时,折射角大于入射角B. 光从水中斜射入空气中时,折射角小于入射角C. 光从空气垂直射入水中时,折射角为0D. 光从水中垂直射入空气中时,折射角为06. 下列关于牛顿第一定律的说法正确的是()A. 物体在不受力时,会保持静止状态或匀速直线运动状态B. 物体在受到平衡力时,会保持静止状态或匀速直线运动状态C. 物体在受到非平衡力时,会保持静止状态或匀速直线运动状态D. 物体在受到摩擦力时,会保持静止状态或匀速直线运动状态7. 下列关于浮力的说法正确的是()A. 浮力的大小与物体受到的重力成正比B. 浮力的大小与物体排开的液体体积成正比C. 浮力的大小与物体的密度成正比D. 浮力的大小与物体的质量成正比8. 下列关于电流的说法正确的是()A. 电流的方向与正电荷的运动方向相同B. 电流的方向与负电荷的运动方向相同C. 电流的方向与电荷的定向移动方向相同D. 电流的方向与电荷的定向移动方向相反9. 下列关于电路的说法正确的是()A. 串联电路中,电流处处相等B. 并联电路中,电压处处相等C. 串联电路中,电阻处处相等D. 并联电路中,电阻处处相等10. 下列关于热力学第一定律的说法正确的是()A. 物体吸收热量时,温度会升高B. 物体吸收热量时,内能会增大C. 物体放出热量时,内能会减小D. 物体放出热量时,温度会降低二、填空题(每题5分,共50分)11. 已知函数y=3x+2,当x=2时,y的值为______。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √3B. πC. 0.101001D. 2√22. 已知a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a² > b²3. 在直角坐标系中,点A(-2,3)关于x轴的对称点是()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = 2x³5. 一个等边三角形的边长为a,则它的面积S是()A. S = (√3/4)a²B. S = (1/2)a²C. S = (1/4)a²D. S = (1/8)a²6. 下列物理量中,属于标量的是()A. 力B. 速度C. 动能D. 力矩7. 在匀速直线运动中,速度v与时间t的关系是()A. v = atB. v = t²C. v = gtD. v = kt8. 一个物体在水平面上受到两个相互垂直的力F1和F2,若F1 = 10N,F2 = 5N,则合力的大小是()A. 15NB. 10NC. 5ND. 3N9. 在匀加速直线运动中,初速度为v0,加速度为a,则物体在t时间内的位移s 是()A. s = v0t + (1/2)at²B. s = v0t - (1/2)at²C. s = v0t + at²D. s = v0t - at²10. 下列关于光的折射现象的说法正确的是()A. 光从空气进入水中,速度会变快B. 光从水中进入空气,速度会变慢C. 光从空气进入水中,折射角小于入射角D. 光从水中进入空气,折射角大于入射角二、填空题(每题5分,共20分)11. 完成下列各数的有理数平方根:√4 = ______;√(-9) = ______。
2023年衡水一中高三物理模拟真题及答案解析【题目一】某物体在水平地面上以2 m/s的速度做匀减速直线运动,在第3秒末静止。
求物体的加速度和初速度。
【解析】设物体的初速度为v0,加速度为a,根据物体匀减速直线运动的运动学公式:v = v0 + at由题意可得:0 = v0 + 3a (1)v = v0 + 2a (2)将公式(1)代入公式(2),得出a = -1 m/s²。
将a代入公式(1),可以解得到v0 = 3 m/s。
【答案】物体的加速度为-1 m/s²,初速度为3 m/s。
【题目二】一架质量为500 kg的电梯从静止开始上升,绳速不变,在1.8 s内上升4 m。
求电梯上升时的绳速和绳拉力的大小。
【解析】设绳速为v,绳拉力的大小为T,电梯的加速度为a。
根据电梯上升运动的运动学公式:s = v0t + (1/2)at²v = v0 + at由题意可得:4 = 0 + (1/2)a(1.8)²(3)v = 0 + a(1.8) (4)将公式(4)代入公式(3),可以解得a = 4 m/s²。
将a代入公式(4),可以解得v = 7.2 m/s。
绳拉力的大小等于电梯的重力,即T = mg = 500 kg × 9.8 m/s² = 4900 N。
【答案】电梯上升时的绳速为7.2 m/s,绳拉力的大小为4900 N。
【题目三】一辆汽车以10 m/s的速度匀减速来到距离目的地100 m处停车,已知减速度大小为2 m/s²。
求汽车的停车时间和需要的减速距离。
【解析】设汽车的初速度为v0,减速度为a,停车时间为t,减速距离为s。
根据汽车匀减速直线运动的运动学公式:v = v0 + ats = v0t + (1/2)at²由题意可得:0 = 10 + 2t (5)100 = 10t + (1/2)(-2)t²(6)将公式(5)代入公式(6),可以解得t = 5 s。
数学物理方程模拟试卷
一、写出定解问题(10分)
设枢轴长为l ,建立枢轴纵振动在下列情形下的运动方程:
(a ) 在x=0固定,在x=l 作用力F ,在t=0时刻作用力突然停止
(b ) 在x=l 一端是平衡位置,而从t=0时刻作用力
F(t)
解:(a )()
()()()
⎪⎪⎪⎩
⎪⎪⎪⎨⎧≥='=≤≤==><<∂∂=∂∂0,0,,0),0(0,0)0,(,)0,(0,0,22
222t t l u t u l x x u E
F x u t l
x x u a t u x t
(b) ()
()()()
()
⎪⎪⎩⎪⎪⎨⎧≥='=≤≤==><<∂∂=∂∂0,,,0),0(0,0)0,(,0)0,(0,
0,22
222t E t F t l u t u l x x u x u t l x x u a
t u x t
其中E 为扬氏系数。
二、判定方程的类型并化简(20分)
例. 化简 0623222222=∂∂+∂∂+∂∂-∂∂∂+∂∂y u
x u y y x u x u
(1) 解:已知3,1,1-===c b a
特征方程为
12
12±=-±=a ac
b b dx dy
11c x y dx dy
+-=→-=∴
,13c x y dx
dy +-=→= 令⎩⎨⎧-=+=y
x y x 3ηξ ⎩⎨⎧===-=======∴0,1,30,1,1yy xy xx y x
yy xy xx y x ηηηηηξξξξξ (2) ⎪⎪⎩
⎪⎪⎨⎧++++=+++++=++++=+=+=yy yy y y y y yy xy xy y x x y y x y x xy
xx xx x x x xx y y y x x x u u u u u u u u u u u u u u u u u u u u u u u u ηξηηξξηξηηηξηξξξηξηηξξηξηξηξηηξηξξηξηηξηξξηξηηξηξξηξηξ22222)(2, (3) 将(2)代入(3),可得
⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=-+=++=-=+=ηη
ξηξξηηξηξξηηξηξξηξηξu u u u u u u u u u u u u u u u u u yy xy
xx y 2329632 (4)
把(4)代入(1),可得
0666236364296=-+++-+--++++ηξηξηηξηξξηηξηξξηηξηξξu u u u u u u u u u u u u 0816=+∴ξξηu u
即 02
1=+ξξηu u 这就是我们所求的标准的双曲型方程。
三、(每小题10分,共20分)
①证明:)52()52(),(t x G t x F t x y -++=为方程2222254x
y t y ∂∂=∂∂的通解。
②求满足条件:0),(),0(==t y t y π,x x y 2sin )0,(=,0)0,(=x y t 的特解。
解:①设v t x u t x =-=+52,52,得
)()(v G u F y +=,
)5()('5)('-⋅+⋅=∂∂∂∂+∂∂∂∂=∂∂v G u F t
v v G t u u F t y )('5)('5v G u F -=, (1)
t v v G t u u F v G u F t t
y ∂∂∂∂-∂∂∂∂=-∂∂=∂∂'5'5)]('5)('5[22 )("25)("25v G u F +=。
(2)
2)('2)('⋅+⋅=∂∂∂∂+∂∂∂∂=∂∂v G u F x
v v G x u u F x y )('2)('2v G u F +=, (3)
x v v G x u u F v G u F x
x y ∂∂∂∂+∂∂∂∂=+∂∂=∂∂'2'2)]('2)('2[22 )("4)("4v G u F +=,(4)
由(2)与(4),可得
2222254x
y t y ∂∂=∂∂。
故满足方程,因为原方程为二阶方程,所以含有二个任意函数的解是通解。
②由:),52()52(),(t x G t x F t x y -++=
)52('5)52('5),('t x G t x F t
y t x y t --+=∂∂=。
可得
x x G x F x y 2sin )2()2()0,(=+=, (5)
0)2('5)2('5)2('5)0,('=--=x G x G x F x y t (6) 故 )2(')2('x G x F =。
x x G x F 2cos 21)2(')2('=
=∴, 12sin 2
1)2(c x x F +=∴, 22sin 2
1)2(c x x G +=, 即 21)52sin(2
1)52sin(21),(c c t x t x t x y ++-++=。
利用 00),(0),0(21=+==c c t y t y 知或π。
故 )52sin(2
1)52sin(21),(t x t x t x y -++=
t x 5cos 2sin ⋅=。
代入可验证这是所求的解。
四.求方程的一般解(20分)
1、 022222222
=∂∂+∂∂+∂∂+∂∂∂-∂∂y u y x u x y u y y x u xy x u x , 解:特征方程为
x
y dx dy -=,c xy =∴。
令⎩⎨⎧==.
,y xy ηξ, 代入方程得 ηηη∂∂-=∂∂u u 122, )(ln ln ln ξϕηη+-=∂∂∴u , η
ξϕη)(=∂∂∴u 。
)(ln )(ξψηξϕ+=u ,)(ln )(),(xy y xy y x u ψϕ+=∴。
(一般解)
2、求下面方程的初值问题的解:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧===∂∂-∂∂∂+∂∂==0303202
022222y y y u x u y u y x u x u 解:作变换: ⎩⎨⎧-=+=.
3,y x y x ηξ 可得方程 ,02=∂∂∂η
ξu ),3()()()(),(y x y x u -++=+=∴ψϕηψξϕηξ
⎪⎭
⎪⎬⎫=-=∂∂=+===.0)3(')(',3)3()(020x x y u x x x u y y ψϕψϕ ⎪⎩⎪⎨⎧=-=+.)3(31)(,3)3()(2c x x x x x ψϕψϕ ⎪⎩
⎪⎨⎧-=+=∴,449)3(,443)(22c x x c x x ψϕ ⎪⎩
⎪⎨⎧-=+=.44)(443)(22c c ηηψξξϕ .)3(41)(43)()(),(22y x y x y x u -++=+=∴ηϕξψ .3),(2
2y x y x u +=∴
五、用分离变量法求解(30分)
⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤==≥====).
0().()0,(),()0,()0(,0),(,0),0().(,''22l x x F x u x f x u t t l u t u E a u a u t x
xx tt ρ 其中u 是坐标为x 的截面的位移,l 是杆长,ρ为单位长度的质量,E 是杨氏系数。
解:应用分离变量法:
令 ),()(),(t T x X t x u ⋅=
即得 .sin cos )(x D x C x X λλ+=
.sin cos )(at B at A t T λλ+=
由边条件:
,0,0)0(=⇒=C X
πλl n l X 212,0)('+=
⇒=。
∑∞=++++=
∴02)12(sin )212sin 2)12(cos (),(n n n x l n at l n b at l n a t x u πππ。
由初条件:
∑∞===+=00),(212sin
n n t x f x l
n a u π )(212sin )212(10x F x l
n a l n b u n n t t
=++=∑∞==ππ, 故得: ⎰+⋅=l n xdx l
n x f l a 0212sin )(2π, ⎰++=l n xdx l
n x F a n b 0212sin )()12(4ππ, 代入),(t x u 中,即得我们所要求的解。