线性代数考点总结和解题方式
- 格式:doc
- 大小:76.50 KB
- 文档页数:21
经济数学·线性代数:解题方法技巧归纳
常见的解题方法技巧:
1.高斯消元法:用于解决线性方程组的方法,通过
消去未知数的系数,使方程组的每一行的未知数
只有一个。
2.高斯-约旦消元法:用于解决线性方程组的方法,
通过消去未知数的系数,使方程组的每一行的未
知数只有一个,并通过交换方程的顺序来解决无
解或多解的情况。
3.矩阵消元法:用于解决线性方程组的方法,将方
程组写成矩阵形式,通过消去未知数的系数,使
矩阵的每一行的未知数只有一个。
4.高斯-约旦分解法:用于解决线性方程组的方法,
通过将方程组写成两个矩阵的乘积的形式。
5.广义逆矩阵法:用于解决线性方程组的方法,通
过求出矩阵的广义逆(也叫做伪逆),将方程组写
成矩阵的形式,求解未知数的值。
6.矩阵的特征值与特征向量:用于解决矩阵的本征
值问题的方法,通过求解矩阵的特征方程,求得
矩阵的特征值与特征向量,并利用它们来求解其
他问题。
7.奇异值分解:用于解决矩阵的奇异值分解问题的
方法,将矩阵分解为三个矩阵的乘积的形式,并利用它们来求解其他问题。
8.广义逆矩阵的求法:用于求解矩阵的广义逆(也叫做伪逆)的方法,包括计算机辅助的方法和数学计算的方法。
高中数学线性代数考点总结和解题方法第一部分:计算问题四阶行列式的计算;n阶特殊行列式的计算(如:有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆矩阵(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:概念问题一、行列式1.行列式的定义用n方个元素Aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算(1)常见类型:一阶|α|=α行列式,二、三阶行列式有对角线法则;n阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵,如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义:非零子式的最大阶数称为矩阵的秩;(2)秩的求法:一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 .................................................................. 2-02、主对角线............................................................................ 2-03、转置行列式.......................................................................... 2-04、行列式的性质........................................................................ 3-05、计算行列式.......................................................................... 3-06、矩阵中未写出的元素 .................................................................. 4-07、几类特殊的方阵...................................................................... 4-08、矩阵的运算规则...................................................................... 4-09、矩阵多项式.......................................................................... 6-10、对称矩阵............................................................................ 6-11、矩阵的分块.......................................................................... 6-12、矩阵的初等变换...................................................................... 6-13、矩阵等价............................................................................ 6-14、初等矩阵............................................................................ 7-15、行阶梯形矩阵与行最简形矩阵......................................................... 7-16、逆矩阵 ............................................................................. 7-17、充分性与必要性的证明题 .............................................................. 8-18、伴随矩阵............................................................................ 8-19、矩阵的标准形:........................................................................ 9-20、矩阵的秩:........................................................................... 9-21、矩阵的秩的一些定理、推论............................................................. 9-22、线性方程组概念..................................................................... 10-23、齐次线性方程组与非齐次线性方程组(不含向量) .......................................... 10-24、行向量、列向量、零向量、负向量的概念................................................ 11-25、线性方程组的向量形式 ............................................................... 11-26、线性相关与线性无关的概念......................................................... 12-27、向量个数大于向量维数的向量组必然线性相关 ........................................... 12-28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. 12-29、线性表示与线性组合的概念......................................................... 12-30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题........................... 12-31、线性相关(无关)与线性表示的3个定理................................................ 12-32、最大线性无关组与向量组的秩.......................................................... 12-33、线性方程组解的结构…………………………………………………………………………………………12-01、余子式与代数余子式(1)设三阶行列式, 则①元素an,ai,au的余子式分别为:对Mi的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个行列式即元素au的余子式Mi。
线性代数知识点总结第一章行列式二三阶行列式N阶行列式:行列式中所有不同行、不同列的n个元素的乘积的和a j n=迟(-1)"" "a ij i a2j2...a nj n j l j2 j n(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式D=D T)②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k乘以行列式的某一行(列),等于k乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零;推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的 k倍加到另一行(列)上,值不变行列式依行(列)展开:余子式皿厂代数余子式A j =(-1)厲皿耳定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:D j非齐次线性方程组:当系数行列式D式0时,有唯一解:X j =—=1、2……n)D齐次线性方程组:当系数行列式D=1^0时,则只有零解逆否:若方程组存在非零解,则D等于零特殊行列式:a ii a i2 a i3 a ii a2i a3i①转置行列式:a2i a 22 a23 T a i2 a22 a32a3i a 32 a 33 a i3 a23 a33②对称行列式:a j = a j i③反对称行列式:a j = -a ji奇数阶的反对称行列式值为零⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、lA* B = ( a ik )m*l * (b kj )l*n 二(•— a ik b kj ) m*n乘法1注意什么时候有意义般AB=BA ,不满足消去律;由 AB=0,不能得 A=0或B=0方幕:A kl A k ^ A k1 k2(A kl )k2 = A kl k2对角矩阵:若 AB 都是 N 阶对角阵,k 是数,则 kA 、A+B 、数量矩阵:相当于一个数(若……) 单位矩阵、上 (下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方是0a 11 a 12 a 13④三线性行列式:a 21 a 22a 31a 33方法:用k022把a 2i 化为零,。
线性代数题求解答技巧线性代数是一门重要的数学学科,应用广泛,涉及到众多的概念和定理。
解线性代数题有一些技巧和方法可以帮助我们更好地理解问题和找到解答。
在本文中,我将向您介绍一些解线性代数题的技巧。
1. 熟悉基本概念和定理:了解线性代数的基本概念和定理,例如矩阵、行列式、向量空间、线性变换等,对于解题非常重要。
熟悉这些基础知识将帮助您更好地理解问题和找到解答。
2. 理解题目中的关键信息:仔细阅读题目,并理解其中的关键信息和要求。
对于一些复杂的题目,可以将问题进行拆解,将其转化为更简单的子问题来解决。
3. 画图和示意图:对于涉及到向量、矩阵和线性变换的题目,可以尝试画图和示意图以帮助理解问题。
图形可以直观地表示线性变换的作用和向量的变化,有助于更好地理解问题的本质。
4. 利用矩阵运算法则:运用矩阵的基本运算法则,例如加法、减法、乘法和转置等来进行计算。
通过运用这些法则,可以简化计算和转化问题的形式。
5. 找到未知量的线性关系:对于涉及到向量和矩阵的方程组,可以通过列向量和矩阵相乘得到一个线性方程组。
通过求解这个方程组,可以找到未知量之间的线性关系。
6. 利用行列式的性质:行列式是解线性方程的重要工具之一。
了解行列式的性质和计算方法,可以帮助我们更好地理解和解决问题。
通过对行列式的计算,可以判断矩阵是否可逆、线性方程组是否有唯一解等关键问题。
7. 利用向量空间的性质:向量空间是研究向量的重要概念之一。
了解向量空间的性质,例如维数、基、秩等,可以帮助我们更好地理解向量空间的结构和性质,从而解决相关问题。
8. 利用特殊矩阵的性质:对于一些特殊的矩阵,例如对称矩阵、上三角矩阵、对角矩阵等,它们具有一些特殊的性质和特点。
通过利用这些性质,可以简化计算和解决问题。
9. 利用线性变换的性质:线性变换是研究线性代数的重要工具之一。
了解线性变换的性质和运算法则,可以帮助我们更好地理解和解决线性变换的问题。
10. 训练解题技巧:解线性代数题需要一些技巧和经验。
高中数学线性代数考点总结和解题方法第一部分:计算问题四阶行列式的计算;n 阶特殊行列式的计算(如:有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆矩阵(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:概念问题一、行列式1.行列式的定义用n 方个元素Aij 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和;(2)展开式共有n! 项,其中符号正负各半;2.行列式的计算(1)常见类型:一阶| α|= α行列式,二、三阶行列式有对角线法则;n 阶(n>=3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0 的几种情况:Ⅰ 行列式某行(列)元素全为0 ;Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例;Ⅳ 奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵,如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B 为同阶方阵,则|AB|=|A|*|B| ;④|kA|=k^n|A| 3.矩阵的秩(1)定义:非零子式的最大阶数称为矩阵的秩;(2)秩的求法:一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0 的矩阵称为行阶梯阵)。
说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。
2.知识点会了不一定做的对题,所以还要有相应的练习题。
3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。
第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。
2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。
总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。
第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。
2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。
4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。
5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。
第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。
线性代数总结汇总+经典例题线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
考研线性代数终极总结线性代数是研究向量空间及其线性变换的数学分支。
它是数学基础科学和高级工程科学的重要学科,在理论和应用上都有着广泛的应用。
准备考研的同学们需要牢固掌握线性代数的基本概念和重要定理,下面是线性代数的终极总结。
一、向量空间1.向量空间的基本定义和性质2.子空间及其判定3.维数、基、坐标和表示定理4.线性方程组的解空间二、线性变换1.线性变换的定义和性质2.矩阵的线性变换3.线性变换的矩阵表示和基变换4.线性变换的像空间与核空间5.线性变换的特征值和特征向量6.对角化和相似变换三、线性方程组1.线性方程组的表示和解的存在唯一性2.线性方程组解的结构和基础解系3.矩阵的秩与线性方程组解的个数4.线性方程组的常见解法四、矩阵1.矩阵的运算和性质2.矩阵的特征值和特征向量3.矩阵的标准形式4.矩阵的相似性质和相抵性质五、二次型1.二次型的定义和性质2.二次型的标准形式3.正定、负定和不定二次型4.合同变换与矩阵的合同性质六、特征值问题1.特征值问题的引入和相关概念2.特征值问题的求解方法3.特征值问题的应用七、奇异值分解1.奇异值分解的定义和性质2.奇异值分解的计算和应用八、线性变换的标准形式1.线性变换的标准形式的引入和相关性质2.线性变换的标准形式的计算和应用九、行列式1.行列式的定义和性质2.行列式的性质及计算方法3.克莱姆法则及其推广以上是线性代数的终极总结,考研学习线性代数需要掌握这些重要概念和定理,通过大量的练习和习题,加深对知识点的理解和记忆。
在考试中,要善于分析题目,熟练运用线性代数的知识,灵活解决问题。
希望同学们能够在考研线性代数的复习中取得好的成绩!。
考研线性代数解题方法汇总(非知识点汇总)行列式的计算消零化基本形法•思想:通过恒等变形变为基本形求解•恒等变形o消零化▪当列/行元素大致相同时,用第一行倍加▪当列/行元素具有递推性质时,用i行倍加i+1行▪相同优先o互换▪变为分块对角矩阵▪变换主/副对角线(变换次数为(n-1)n/2)o展开定理•常见行列式形状o爪形行列式o行和相等行列式▪求法▪1、所有元素向第一列求和▪2、提出第一列公因式▪3、将第一列归零化,视情况采用相应方法加边法•使用场景:无法通过互换、倍加、倍乘化简的行列式•使用方法:每列元素都含有同一参数的项,且该项系数(可以是其他参数)具有规律性数学归纳法与递推法•使用场景:具有递推性质的n阶行列式的证明•第一类归纳法o1、验证n=1时成立o2、假设n=k时成立o3、证明n=k+1时成立•第二类归纳法o1、验证n=1、n=2时成立o2、假设n<k时成立o3、证明n=k时成立•常见行列式形状o三主对角线行列式▪行和相等▪行和不相等用范德蒙德行列式行列式形式与解法总结•特殊形状行列式o爪形行列式o行和相等行列式o三主对角线行列式•多个行/列元素大致相同•行列元素具有递推性质•零的分布有规律•第一列只有两个元素o消去第二个元素o放置两头采用展开定理•具有递推性质的n阶行列式•所有元素都为齐次式余子式和代数余子式的线性组合计算法1:转化为行列式计算法2:用伴随矩阵计算•1、利用 A=|A|A逆计算A•2、由伴随阵的相应元素得到余子式•要求:需要A逆好求,没啥大用特别:所有代数余子式和的计算抽象行列式的计算|A+B|•知列向量o拆分o将向量的线性组合转化为矩阵乘积o将对矩阵的变换过程转化为矩阵乘积•完全抽象•知部分具体矩阵C 或 C的特征值o向|C|、|C+kE|靠拢▪相似:知A~B,可得|A+kE|=|B+kE|▪特征值性质:A+kE的特征值为 A的特征值+k行列式方程•1、将方程化为待求矩阵为因子的因式方程行列式表示的函数和方程求行列式函数f最高次数•化简行列式计算fo观察有差相同的行列,尽可能化零o多项式行列式化为基本型求解求行列式函数f的复合函数求行列式函数f的根或根的个数由行列式函数f的根特征(二重根)求参数行列式在Ax=0上的应用——克拉默法则注意:在求解|A|=0时,使用展开定理直接求因式乘积,不要先求多项式再因式分解,可能很难因式分解|A|=0的证明充要条件•|A|=k|A|o将关于A一次幂的表达式两边取行列式o特别:正交矩阵相关证明【李线代讲义例2.29】•Ax=0有非零解•反证法•存在零特征值o当题目中提到列向量时使用o题目中有A的多项式函数:同乘å•矩阵的秩注意矩阵方阵的幂通用步骤o对角阵o小三角阵o对角线元素相同的三角阵o零分布规则的阵分解为矩阵乘积•1、若给定矩阵向量成比例,则可分解为两向量乘积•2、利用结合律将两向量交换相乘•原理o行向量*列向量=数o列向量*行向量=各行成比例的矩阵利用递推式•使用场景:给定矩阵无法分解•1、依次求矩阵前几次幂,得递推式o形式:A^m=k*A^s(n>m)o注意•2、由递推式用法化简求值o1)从A^n中提出A^s,将其看作催化剂o2)A^s把A^n剩余部分全部转化为k▪转化为(n-s)/(m-s)个k乘积▪当n-s/m-s不是整数时分类讨论利用对角阵•1、求其相似对角阵代入•2、当对角阵元素相同时,求幂不需要求P两方阵和的幂•通过二项式定理展开•特别:对角线元素相同的三角阵o1、将给定矩阵分解为单位阵E和小三角阵B的和o2、用二项式定理展开,消去零项,再求和o背景知识:小三角阵▪对角元素为0的三角阵▪小三角阵的幂=更小三角阵▪小三角阵的”非零对角线到角的线数+1”次幂=O矩阵乘法的可交换性求与其可交换的矩阵•待定系数法o1、假设同阶矩阵B与其可交换o2、列式AB=BA并化简o3、令对应元素相等得解•拆解单位阵法o应用场景:给定矩阵与单位阵相近o1、将给定矩阵呢拆解为单位阵E和矩阵Bo2、求与矩阵B可交换的矩阵证明两矩阵可交换•利用伴随矩阵公式o应用场景:被证明式中含有伴随阵o1、凑出与伴随阵对应的矩阵o2、用公式进行矩阵交换后恢复•利用可逆矩阵公式o应用场景:给定两被证矩阵关系式o1、将已知条件凑出AB=E,证明可逆o2、由可逆矩阵可交换写出交换乘积等式o3、将乘积展开,消去多余项相关结论•对角矩阵与对角矩阵可交换•(E+A)^(-1)与(E-A)可交换对称矩阵和反对称矩阵相关结论•n阶方阵=对称矩阵+反对称矩阵待定证明A可逆并求A逆求数值矩阵A的逆•分块矩阵法求抽象矩阵的逆•分解成多个可逆矩阵的乘积o将待证矩阵分解为已知可逆矩阵的乘积o相关结论分块矩阵的逆•主对角线分块矩阵的逆•副对角线分块矩阵的逆•待定系数法o1、设出逆矩阵,令其与原矩阵相乘为单位阵o2、由对应块相等列方程可逆矩阵的判别验证•证明可逆o证明|A|≠0o特征值全为0部分+特征值全不为0部分证明A=O证明aij=0证明r(A)=0相关结论抽象矩阵式化简先化简条件,再化简被证式用条件将被证式的不可转化单元表出伴随矩阵低阶阵:定义法一般/抽象阵:公式法记忆方阵的行列式常见恒等变换•交换某项乘积顺序o解法:一边消一边补o例:(E+AB)=A(E+BA)A^(-1)•(A^(-1)+B^(-1))=A^(-1)(A+B)B^(-1)矩阵方程技巧•知A*可直接求|A|、A^(-1)•A逆的逆可乘进括号逆中初等矩阵将左乘初等矩阵看作行变换证明正交阵证明ATA=AAT=E,不能只证一部分矩阵的秩与等价矩阵向量向量组的线性表出计算题转化为线性方程组有没有解证明题构造方程组,证明方程组有解•等价证明r(å1,å2,...,ås)=r(å1,å2,...,ås,ç)找出两个条件•å1,å1,...,ås线性无关•å1,å1,...,ås,ç线性相关证明k≠0反证法向量组的线性相关、无关具体相关性计算转化为Ax=0有没有非零解特别•有零向量•向量数>维数•n维n个向量行列式=0•向量数>矩阵秩抽象相关性证明定义法•1、设k1a1+k2a2+...+knan=0•2、恒等变形证明k1 k2 ... kn=0▪同乘使1项为0,需要多次同乘▪同乘后与原式相加减消元o常用条件▪特征向量:不同特征值特征向量线性无关▪基础解系:基础解系线性无关秩•1、将被证向量组以列排为矩阵A•2、证明r(A)=so A若有A=BCo A若有AB=Co A若有AB=O秩向量组极大无关向量组•含一参向量组求极大【李线代讲义例3.21】o拼矩阵、行变换、由参讨论秩求两向量组矩阵计算证明•思路:分别找到表大于和表小于的两个条件•条件o向量o方程组▪解向量的秩=n-r(A)▪若Ax=b、Ax=0有s个线性无关解向量,则s≤n-r(A)▪若AB=O,则r(B)≤n-r(A)其他•已知r(A)求r(B)等价矩阵和等价向量组分别证明向量组1、11可以相互线性表出r(A)=r(B)=r(A,B)当A B其中一个满秩时不需要求r(A,B)A可由B表出,B不能由A表出1、由r(A)<r(A,B)≤n得|A|=0解未知数2、代入看是否满足r(A)<r(B)=r(A,B)向量空间线性方程组齐次线性方程组具体型求解1、将系数矩阵化为含最大单位阵的矩阵2、非单位阵列的位置填写100;010;0013、在解向量其他位置填写填1列元素相反数抽象型求解1、推断r(A)知解向量个数2、找出n-r(A)个å使得Ax=0证明向量组是Ax=0的基础解系1、验证Açi=02、证明ç 1 ç 2 ... çt无关3、说明t=n-r(A)非齐次线性方程组具体型求解一般步骤•1、将增广矩阵化为含最大单位阵的矩阵•2、自由变量赋值o1/选取剩余非单位矩阵列作为自由变量o2/给通解的自由变量列赋值100;010;001o3/给特解的自由变量列赋值000•3、填写其他元素o1/通解解向量其他位置填写填1列元素相反数o2/特解解向量其他位置填写b向量元素含参注意•首先尽量消去参数•不能对某行同乘/除(可能为零)含参项•不能对某行同除含参项后加到另一行(可能为∞)含两参数的分类讨论•1、令|A|=0求出得唯一解参数范围•2、剩余范围画树状图讨论o三个主分支o次分支标准▪r(A)=?=r([A,b])•3、写情况类别o将每种情况对应的路线取交集,得参数范围o无解情况参数范围可取并集,合并为一种o无穷解情况不可合并抽象型求解1、推断解的结构2、找出n-r(A)个线性无关齐次方程解向量3、找出特解A的行向量与Ax=0的解的关系线性方程组系数矩阵列向量和解的关系求两个方程组的公共解两个方程组联立成大方程组求解抽象方程组:证明大方程组有非零解一个方程组+另一方程组的基础解系1、求出方程组的基础解系2、将公共解用两个基础解系分别表示•其中一个基础解系用负系数表示•移项得两个基础解系的线性组合=03、建立新齐次方程组并求解4、代回2步骤式得公共解同解方程组具体型同解必要条件题目•同未知数不同方程数的两个齐次方程组同解求参数步骤•1、由方程式较多的方程组1非满秩求参数•2、将方程组1求解得基础解系•3、将基础解系代入方程组2中求参数•4、验证两方程组秩相同抽象型1、证明方程组(1)的解是(11)的解2、证明方程组(11)的解是(1)的解方程组的几何应用求矩阵AX=B型•将其看作多个同系数矩阵的方程组•1、设X=[x,y,z],x y z为列向量•2、将A、B组成增广矩阵[A,B]求解f(X)=B型(不可化为AX=B)•1、设未知矩阵为具体矩阵•2、代入条件令对应元素相等转化为方程组特征值与特征向量求特征值/向量数值矩阵特征方程法•1、利用特征方程求解特征根o展开公式法▪找到两行/列相乘加满足o一般方法▪1、合并同类项写成降幂多项式▪2、猜根后通过多项式除法进行因式分解•2、带入特征根解齐次线性方程组求特征向量观察法•秩1矩阵•主对角线ai,其他为b抽象矩阵方法•公式法•定义法o思想:将题目条件转化为Aå=kå形式o常见•相似法o背景知识▪P^(-1)AP~B,特征值相同▪B的特征向量=P^(-1)*A的特征向量▪A的特征向量=P*B的特征向量o思想:构造相似阵,求其特征,公式法求原矩阵特征o题目特征▪题目出现‘å1 å2线性无关’,‘Aå1’,‘Aå2’•同乘å法o步骤▪1、对f(A)=0同乘å转化为f(λ)=0,求λ可能值▪2、由’秩’ + ’可相似对角化’ 确定λ题目•‘å1 å2线性无关’,‘Aå1’,‘Aå2’•多项式f(A)=0两个矩阵是否有相同的特征值判断思路特征多项式是否相等常见判断矩阵与转置阵相似矩阵。
线性代数考点总结和解题方法】来源:金鑫松的日志第一部分:计算问题四阶行列式的计算;n阶特殊行列式的计算(如:有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆矩阵(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:概念问题一、行列式1.行列式的定义用n方个元素A ij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算(1)常见类型:一阶|α|=α行列式,二、三阶行列式有对角线法则;n阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵,如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B 是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义:非零子式的最大阶数称为矩阵的秩;(2)秩的求法:一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
求秩:利用初等变换将矩阵化为阶梯阵得秩。
4.逆矩阵(1)定义:A、B为n阶方阵,若AB=BA=I,称A 可逆,B是A的逆矩阵(满足半边也成立);(2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵)(注意顺序)(3)可逆的条件:①|A|≠0;②r(A)=n;③A->I;(4)逆的求解伴随矩阵法A^-1=(1/|A|)A*;(A*A的伴随矩阵~)②初等变换法(A:I)->(施行初等变换)(I:A^-1)5.用逆矩阵求解矩阵方程:AX=B,则X=(A^-1)B;XB=A,则X=B(A^-1);AXB=C,则X=(A^-1)C(B^-1)三、线性方程组1.线性方程组解的判定定理:(1) r(A,b)≠r(A)无解;(2) r(A,b)=r(A)=n有唯一解;(3)r(A,b)=r(A)<n有无穷多组解;特别地:对齐次线性方程组AX=0(1) r(A)=n只有零解;(2) r(A)<n有非零解;再特别,若为方阵,(1)|A|≠0只有零解(2)|A|=0有非零解2.齐次线性方程组(1)解的情况:r(A)=n,(或系数行列式D≠0)只有零解;r(A)<n,(或系数行列式D=0)有无穷多组非零解。
(2)解的结构:X=c1α1+c2α2+…+ -rαn-r。
(3)求解的方法和步骤:①将增广矩阵通过行初等变换化为最简阶梯阵;②写出对应同解方程组;③移项,利用自由未知数表示所有未知数;④表示出基础解系;⑤写出通解。
3.非齐次线性方程组(1)解的情况:利用判定定理。
(2)解的结构:X=u+c1α1+c2α2+…+ -rαn-r。
(3)无穷多组解的求解方法和步骤:与齐次线性方程组相同。
(4)唯一解的解法:有克莱姆法则、逆矩阵法、消元法(初等变换法)。
四、向量组1.N维向量的定义注:向量实际上就是特殊的矩阵(行矩阵和列矩阵)。
2.向量的运算:(1)加减、数乘运算(与矩阵运算相同);(2)向量内积α'β=a1b1+a2b2+…+anbn;(3)向量长度|α|=√α'α=√(a1^2+a2^2+…+an^2)(√根号)(4)向量单位化(1/|α|)α;(5)向量组的正交化(施密特方法)设α1,α 2,…,αn线性无关,则β1=α1,β2=α2-(α2’β1/β1’β)*β1,β3=α3-(α3’β1/β1’β1)*β1-(α3’β2 /β2’β2)*β2,………。
3.线性组合(1)定义若β=k1α1+k2α 2+…+knαn,则称β是向量组α1,α 2,…,αn的一个线性组合,或称β可以用向量组α1,α 2,…,αn的一个线性表示。
(2)判别方法将向量组合成矩阵,记A=(α1,α 2,…,αn),B=(α1,α2,…,αn,β)若r(A)=r(B),则β可以用向量组α1,α 2,…,αn的一个线性表示;若r(A)≠r(B),则β不可以用向量组α1,α2,…,αn的一个线性表示。
(3)求线性表示表达式的方法:将矩阵B施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。
4.向量组的线性相关性(1)线性相关与线性无关的定义设k1α1+k2α2+…+knαn=0,若k1,k2,…,kn不全为0,称线性相关;若k1,k2,…,kn全为0,称线性无关。
(2)判别方法:①r(α1,α 2,…,αn)<n,线性相关;r(α1,α 2,…,αn)=n,线性无关。
②若有n个n维向量,可用行列式判别:n阶行列式aij=0,线性相关(≠0无关) (行列式太不好打了)5.极大无关组与向量组的秩(1)定义极大无关组所含向量个数称为向量组的秩(2)求法设A=(α1,α 2,…,αn),将A化为阶梯阵,则A的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。
五、矩阵的特征值和特征向量1.定义对方阵A,若存在非零向量X和数λ使AX =λX,则称λ是矩阵A的特征值,向量X称为矩阵A 的对应于特征值λ的特征向量。
2.特征值和特征向量的求解:求出特征方程|λI-A|=0的根即为特征值,将特征值λ代入对应齐次线性方程组(λI-A)X=0中求出方程组的所有非零解即为特征向量。
3.重要结论:(1)A可逆的充要条件是A的特征值不等于0;(2)A与A的转置矩阵A'有相同的特征值;(3)不同特征值对应的特征向量线性无关。
六、矩阵的相似1.定义对同阶方阵A、B,若存在可逆矩阵P,使P ^-1AP=B,则称A与B相似。
2.求A与对角矩阵∧相似的方法与步骤(求P和∧):求出所有特征值;求出所有特征向量;若所得线性无关特征向量个数与矩阵阶数相同,则A 可对角化(否则不能对角化),将这n个线性无关特征向量组成矩阵即为相似变换的矩阵P,依次将对应特征值构成对角阵即为∧。
3.求通过正交变换Q与实对称矩阵A相似的对角阵:方法与步骤和一般矩阵相同,只是第三歩要将所得特征向量正交化且单位化。
七、二次型n1.定义n元二次多项式f(x1,x2,…,xn)=∑ aijx ixj称为二次型,若aij=0(i≠j),则称为二交型的标准型。
i,j=12.二次型标准化:配方法和正交变换法。
正交变换法步骤与上面对角化完全相同,这是由于对正交矩阵Q,Q^-1=Q',即正交变换既是相似变换又是合同变换。
3.二次型或对称矩阵的正定性:(1)定义(略);(2)正定的充要条件:①A为正定的充要条件是A的所有特征值都大于0;②A为正定的充要条件是A的所有顺序主子式都大于0;《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B 是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
求秩:利用初等变换将矩阵化为阶梯阵得秩。
4.逆矩阵(1)定义:A、B为n阶方阵,若AB=BA=I,称A 可逆,B是A的逆矩阵(满足半边也成立);(2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1= (A^-1)';(A B的逆矩阵,你懂的)(注意顺序)(3)可逆的条件:①|A|≠0;②r(A)=n;③A->I;(4)逆的求解伴随矩阵法A^-1=(1/|A|)A*;(A*A的伴随矩阵~)②初等变换法(A:I)->(施行初等变换)(I:A^-1)5.用逆矩阵求解矩阵方程:AX=B,则X=(A^-1)B;XB=A,则X=B(A^-1);AXB=C,则X=(A^-1)C(B^-1)三、线性方程组1.线性方程组解的判定定理:(1) r(A,b)≠r(A)无解;(2) r(A,b)=r(A)=n有唯一解;(3)r(A,b)=r(A)<n有无穷多组解;特别地:对齐次线性方程组AX=0(1) r(A)=n只有零解;(2) r(A)<n有非零解;再特别,若为方阵,(1)|A|≠0只有零解(2)|A|=0有非零解2.齐次线性方程组(1)解的情况:r(A)=n,(或系数行列式D≠0)只有零解;r(A)<n,(或系数行列式D=0)有无穷多组非零解。