生物质谱技术与方法共50页
- 格式:ppt
- 大小:5.48 MB
- 文档页数:1
生命科学被誉为21世纪的最前沿科学之一,随着人类第一张基因序列草图的完成和发展,生命科学的研究也将进入一个崭新的后基因组学,即蛋白质组学时代。
正如基因草图的提前绘制得益于大规模全自动毛细管测序技术一样,后基因组研究也将会借助于现代生物质谱技术等得到迅猛发展。
本文拟简述生物质谱技术及其在生命科学领域研究中的应用。
1.质谱技术质谱(MassSPectrometry)是带电原子、分子或分子碎片按质荷比(或质量)的大小顺序排列的图谱。
质谱仪是一类能使物质粒子高化成离子并通过适当的电场、磁场将它们按空间位置、时间先后或者轨道稳定与否实现质荷比分离,并检测强度后进行物质分析的仪器。
质谱仪主要由分析系统、电学系统和真空系统组成。
质谱分析的基本原理用于分析的样品分子(或原子)在离子源中离化成具有不同质量的单电行分子离子和碎片离子,这些单电荷离子在加速电场中获得相同的动能并形成一束离子,进入由电场和磁场组成的分析器,离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。
与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,其焦面接近于平面,在此处用检测系统进行检测即可得到不同质荷比的谱线,即质谱。
通过质谱分析,我们可以获得分析样品的分子量、分子式、分子中同位素构成和分子结构等多方面的信息。
质谱技术的发展质谱的开发历史要追溯到20世纪初J.J.Thomson创制的抛物线质谱装置,1919年Aston制成了第一台速度聚焦型质谱仪,成为了质谱发展史上的里程碑。
最初的质谱仪主要用来测定元素或同位素的原子量,随着离子光学理论的发展,质谱仪不断改进,其应用范围也在不断扩大,到20世纪50年代后期已广泛地应用于无机化合物和有机化合物的测定。
质谱实验质谱分析法(mass spectrometry)是将化合物形成离子和碎片离子,按质荷比(m/z)的不同进行分离测定,来进行成分和结构分析的一种方法。
所得结果用质谱图(亦称质谱,Mass Spectrum)表示。
根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、生物大分子的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。
生物质谱(Bio-mass spectrometry,Bio-MS)是用于生物分子分析的质谱技术。
随着电喷雾电离(ESI)和基质辅助激光解吸电离(MAILDI)技术的完善和成熟,生物大分子的质谱分析才得以实现。
创造这两项技术的美国人约翰.芬恩(JohnB.Fenn)和日本人田中耕一(Koichi.Tanaka)为此获得了2002年诺贝尔化学奖。
近年来,随着人类基因组计划的实施和“组学”研究日益受到重视,生物质谱在生物分子的分析方面取得了突破性的进展,其技术水平不断提高,应用面不断扩大,为生命科学等领域提供了一种强有力的分析测试手段。
本章主要讨论用于生物样品分析的质谱基本理论及其在生命科学中的应用。
一、实验目的1、通过学习和实验,掌握质谱仪的基本原理2、熟悉仪器软件操作界面3、掌握使用实验设备的技能技巧和程序的调试方法二、实验原理使所研究的混合物或单体形成离子,然后使形成的离子按质荷比(mass-charge ratio)m/z进行分离。
质谱分析法是按照离子的质核比(m/z)大小对离子进行分离和测定从而对样品进行定性和定量分析的一种方法。
质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。
离子源的作用是将被分析的样品分子电离成带电的离子,并使这些离子在离子光学系统的作用下,汇聚成有一定几何形状和一定能量的离子束,然后进入质量分析器被分离,当气体或蒸汽分子(原子)进入离子源时,受到电子宏基而形成各种类型的离子,如分子离子,碎片离子,离子分子等。