数学人教版七年级上册第一节 正数和负数
- 格式:doc
- 大小:32.50 KB
- 文档页数:3
人教版七年级数学上册:1.1《正数和负数》说课稿一. 教材分析《正数和负数》是人教版七年级数学上册第一章的第一节内容。
这一节内容主要介绍了正数和负数的定义,以及它们在数轴上的表示方法。
通过这一节的学习,学生能够理解正数和负数的含义,掌握它们的性质,并能够运用数轴来表示正数和负数。
二. 学情分析七年级的学生已经初步接触过数学,对于一些基本的数学概念有一定的了解。
但是,他们对正数和负数的理解可能还比较模糊,对于数轴的概念可能还没有完全掌握。
因此,在教学过程中,我需要注重引导学生从实际情境中理解正数和负数的含义,通过数轴来直观地表示正数和负数,帮助他们建立起对正数和负数的正确认识。
三. 说教学目标1.知识与技能目标:学生能够理解正数和负数的定义,掌握它们的性质,并能够运用数轴来表示正数和负数。
2.过程与方法目标:通过实际情境和数轴的引入,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、合作探索的学习态度。
四. 说教学重难点1.教学重点:正数和负数的定义,它们的性质,以及数轴上表示正数和负数的方法。
2.教学难点:正数和负数的性质的理解,以及数轴上表示正数和负数的方法的掌握。
五. 说教学方法与手段1.教学方法:采用问题驱动法、情境教学法和合作学习法。
2.教学手段:利用多媒体课件、数轴模型和实物模型进行教学。
六. 说教学过程1.导入:通过实际情境,如温度计的示数、银行卡的余额等,引出正数和负数的概念,激发学生的兴趣。
2.探究:学生分组讨论,思考正数和负数的含义,通过数轴来直观地表示正数和负数。
3.讲解:教师引导学生总结正数和负数的性质,并通过示例来讲解数轴上表示正数和负数的方法。
4.练习:学生独立完成练习题,巩固对正数和负数的理解和运用。
5.小结:教师引导学生总结本节课的主要内容,加深对正数和负数的认识。
七. 说板书设计板书设计要简洁明了,能够突出正数和负数的关键信息。
人教版七年级数学上册:1-1、正数和负数(含知识点、练习与答案)人教版七年级数学上册:第一章:有理数1.1、正数和负数【知识点总结】1、正数和负数的概念负数:比0小的数;正数:比0大的数;0既不是正数,也不是负数。
2、注意:①当字母x表示正数时,-x是负数;当字母x表示负数时,-x是正数;当字母x表示0时,-x是0。
②正数有时也可以在前面加“+”,有时“+”可以省略不写。
3、具有相反意义的量如果正数表示某种意义的量,那么负数可以表示具有与该正数相反意义的量。
4、0表示的意义(1)0表示“没有”;(2)0是正数和负数的分界线,0既不是正数,也不是负数;(3)0表示一个确切的量。
【新课同步练习】1、下列各数中,是负数的是()。
A、0.8B、-5C、0D、32、在-3.1,+2,5.7,0,-9,13这几个数中,正数有()。
A、1个B、2个C、3个D、4个3、如果把向左走8米记为+8,则向右走6米可记为()。
A、+2B、-2C、+6D、-64、如果+250米表示一辆汽车向东行驶了250米,那么-380米表示这辆汽车()。
A、向西行驶了380米B、向南行驶了380米C、向北行驶了380米D、向上行驶了380米5、学校新买了4个新的排球,每个排球的标准质量是250克。
这4个新排球的质量(单位:克)纪录分别是:-0.7、+0.8、+1.2、-1,其中正数表示超过标准质量的克数,负数表示不足标准质量的克数。
仅从轻重的角度看,这4个新排球最接近标准的排球质量的是()。
A、-0.7B、+0.8C、+1.2D、-16、下列说法中,正确的是()。
A、-y一定是一个负数。
B、不大于0的数一定是负数。
C、一个数如果不是正数,则一定是负数。
D、负数比0小。
7、观察下列一组数:-2,4,-6,8,-10,12,…,则第50个数是()。
A、100B、-100C、102D、-1028、某种溶液的说明书上标明,这种溶液的保存温度为(18±2)℃,那么这种溶液可以在()保存。
第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。
第一章 有理数1.1 正数和负数(1)正数:大于0的数; eg : 2 ,+6 ,-(-4) , 正号可以省略负数:小于0的数; eg : -2 , -1.6 ,+(-5) 负数前面添负号,负负得正(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;注意:任何一个有理数都可以用数轴上唯一的一个点来表示,但数轴上的点并不都表示有理数(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,从左到右逐渐增大。
七年级上册数学第一章第一节讲解人教版七年级上册数学第一章第一节学习资料。
一、正数和负数。
1. 定义。
- 正数:比0大的数叫做正数。
正数前面常有一个符号“+”,通常可以省略不写。
例如,1、2、3、1.5、(1)/(2)等都是正数。
- 负数:比0小的数叫做负数。
负数前面有一个“ - ”号,不能省略。
例如, - 1、 - 2、 - 3、 - 1.5、-(1)/(2)等都是负数。
- 0:0既不是正数也不是负数,它是正数和负数的分界点。
2. 意义。
- 在实际生活中,正数和负数常用来表示具有相反意义的量。
例如:- 盈利和亏损,如果盈利100元记作 + 100元,那么亏损50元就记作 - 50元。
- 向东和向西,如果向东走5米记作+5米,那么向西走3米记作 - 3米。
- 温度的零上和零下,如果零上10℃记作+10℃,那么零下5℃记作 - 5℃。
二、有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
2. 有理数的分类。
- 按定义分类。
- 整数:包括正整数、0、负整数。
正整数如1、2、3等;0就是0本身;负整数如 - 1、 - 2、 - 3等。
- 分数:包括正分数和负分数。
正分数如(1)/(2)、(3)/(4)、1.5(可化为(3)/(2))等;负分数如-(1)/(2)、-(3)/(4)、 - 1.5(可化为-(3)/(2))等。
- 按性质符号分类。
- 正有理数:正整数和正分数统称为正有理数。
- 负有理数:负整数和负分数统称为负有理数。
- 0:0既不是正数也不是负数。
三、数轴。
1. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 原点:在数轴上表示0的点叫做原点,它是数轴的基准点。
- 正方向:通常规定直线上从原点向右(或向上)为正方向,用箭头表示。
- 单位长度:选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示 - 1, - 2, - 3,…。
第一节正数和负数一、教学内容:1、了解正数和负数是怎样产生的,什么是相反意义的量;2、知道什么是正数和负数;3、理解数0表示的量的意义;4、有理数的概念及分类.二. 知识要点:1、负数产生的原因:(1)生活和生产的需要,对实际生活中出现的相反意义的量,如卖出与买入、盈利与亏损、上升与下降、增加与减少、前进与后退等,无法用自然数表示,为了解决这些问题人们引进了负数;(2)数学本身的需要,如对较小的数减去较大的数的问题的解决,需要引进负数.2、像3,2,1.8%这样大于0的数叫做正数;3、像-3,-2,-2.7%这样在正数前面加上负号“-”的数叫做负数.4、数0既不是正数,也不是负数;5、正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.6、有理数也可以这样:有理数注:掌握分类的标准是关键,不同的标准就有不同的分法.三. 重点难点1、重点:①正数、负数、有理数的概念;②数0表示的量的意义;③有理数的分类.2、难点:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.【考点分析】数是数学知识的基础,也是其他学科的工具,在近年来各地的中考试题中经常出现.全国大多数省市中考试题对数的概念单独命题,试题难度为低、中档次,题量约占总量的1%,题型以填空题、选择题居多.【典型例题】例1 用正数和负数表示下列具有相反意义的量.(1)温度上升3℃和下降5℃;(2)盈利5万元和亏损8千元;(3)向东10米和向西6米;(4)运进50箱和运出100箱.分析:本题中的上升和下降,盈利和亏损,向东和向西,运进和运出都是相反意义的量,如果我们规定上升、盈利、向东、运进为正,那么下降、亏损、向西、运出就为负.解:(1)+3℃,-5℃(2)+5万元,-8千元(3)+10米,-6米(4)+50箱,-100箱评析:用正负数表示相反意义的量,并不是固定不变的.我们只是习惯把向东、上升、盈利、增加、收入规定为正,把其相反意义的量规定为负.通过本题同学们要体会数学符号与对应的思想,学会用正、负数表示具有相反意义的量的符号化方法.例2 下列各数哪些是正数,哪些是负数?分析:首先确定我们熟悉的大于0的数,即正数,然后再观察带有“-”号的数,看“-”号后的部分是否大于0,因为“正数的前面加上负号便是负数”.特别注意:0不是正数,也不是负数.解:正数有:负数有:评析:分类要做到“不重复,不遗漏”.例3 给出一对数+2和-3,请赋予它们实际的意义.分析:此题为开放题,考查相反意义的量在实际生活中的作用,解题的关键是给“+”和“-”赋予生活中一组相反的意义,例如:收入和支出,前进和后退等.解:+2表示收入2元,-3表示支出3元+2表示前进2米,-3表示后退3米等.评析:对于两种具有相反意义的量,究竟哪一种意义的量为正的,哪一种意义的量为负的,并不是固定的,而是在实际的生活和生产中人们根据实际情况的要求人为规定的.例4 (2007年武汉)下表是我国几个城市某年一月份的平均气温.城市北京武汉广州哈尔滨平均气温(单位:℃)-4.6 3.8 13.1 -19.4 其中气温最低的城市是()A、北京B、武汉C、广州D、哈尔滨分析:根据生活经验和正、负数的意义我们知道,表示零下的负数温度比正数温度低,负数温度中负号后面的数值越大温度越低.显然,气温最低的城市是哈尔滨.解:D评析:这四个城市平均气温从高到低的顺序是:广州→武汉→北京→哈尔滨,它们对应的温度顺序是:13.1℃>3.8℃>-4.6℃>-19.4℃.通过本题同学们要初步理解这种将实际问题转化为数学问题的方法.思考:从这四个有理数的大小关系中你可以得出哪些结论?例 5 如图所示,某化肥厂生产的颗粒磷肥外包装袋上标有净重:50±0.5kg,请你说说这是什么意思?分析:本题考查正、负数表示量的实际意义,以标准重量为基准:+0.5kg表示多出0.5kg,-0.5kg 表示少0.5kg,这都属于正常范围,因为实际生活中不能做到绝对准确的50kg,只能尽量减小误差.解:50±0.5kg表示这袋化肥的净重可能比50kg多,但不会超过50+0.5=50.5kg,可能比50kg 少,但不会少于50-0.5=49.5kg.评析:在生产中,产品可能与标准规格有差异,也就是会产生误差.但误差不能太大,产品可略有不足或略有超出,即误差应在一个允许的范围内.不足用负数表示,超出用正数表示,这个范围就可以用正负数表示出来了.例6 下列说法正确的是()A、整数、分数和负数统称为有理数B、有理数包括正数和负数C、正整数都是整数、整数都是正整数D、0是整数,也是自然数分析:A分类时有重复,应改为整数和分数统称有理数,B有遗漏,应改为有理数包括:正有理数、0、负有理数.在C中正整数和整数在有理数系中属不同的等级,不是两个相同的概念,应改为:正整数都是整数,但整数不是正整数.只有D是正确的.解:D评析:数的范围扩大到有理数后,注意数的分类方法,特别是0的归属.0既不是正数,也不是负数;整数包括正整数、0、负整数,所以0是整数,当然也是有理数.【方法总结】通过本节的学习我们要掌握整数、分数、正数、负数、有理数的区分方法,体会符号化在数学问题中的重大意义,理解把实际问题转化为数学问题来解决的转化思想.【模拟试题】(答题时间:50分钟)一、选择题1、有五个数为其中正数的个数是()A、1个B、2个C、3个D、4个2、2008年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是()城市温州上海北京哈尔滨广州平均气温6 0-9-15 15A、广州B、哈尔滨C、北京D、上海3、正整数集合和负整数集合合在一起,构成数的集合是()A、整数集合B、有理数集合C、自然数集合D、非零整数集合4、规定正常水位为0m,高于正常水位0.5m时,记作+0.5米,下列说法错误的是()A、高于正常水位 1.5m记作+1.5mB、低于正常水位 1.5m记作-1.5mC、-1m表示比正常水位低1mD、+2m表示比正常水位低2m5、如果收入200元记作+200元,那么支出150元记作()A、+150元B、-150元C、+50元D、-50元6、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向东走了-60m,此时小明的位置在()A、文具店B、玩具店C、文具店西边20mD、玩具店东边-60m7、下面是关于有理数的叙述:①有理数分为正有理数和负有理数两部分;②有理数分为整数和分数两部分;③有理数分为正数、负数和零三部分;④有理数分为正分数、负分数、正整数、负整数和零五部分;⑤有理数分为正整数、负整数和零三部分.其中正确的有()A、1个B、2个C、3个D、4个8、一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A、11℃B、4℃C、18℃D、-11℃二、填空题9、如果把顺时针转60°记作+60°,那么逆时针转30°记作__________.10、在电视上看到的天气预报中,绵阳王朗国家级自然保护区某天的气温为“-5℃”,表示的意思是__________.11、孔子诞生在公元前551年9月28日,则2007年9月28日是孔子诞辰__________周年.(注:不存在公元0年)12、把下列各数分别填入相应的括号:(1)整数集:{…};(2)正整数集:{…};(3)负整数集:{…};(4)分数集:{…};(5)正分数集:{…};(6)负分数集:{…};(7)有理数集:{…};(8)正有理数集:{…};(9)负有理数集:{…};13、工商部门抽查了一些500g包装的白糖,检查的记录如下:10,-15,13,-20,-18,15,-31,24,-25,-5,-14,-9.你估计这里的正、负数表示什么?从这些数据中,你能获得哪些信息?14、用正、负数表示下面各组具有相反意义的量,并指出它们的分界点.(1)零上10℃与零下5℃;(2)高出海平面100m与低于海平面200m;(3)收入8元,支出6元.15、观察下列各数,找出规律后填空:(1)-1,2,-4,8,-16,32,……,第10个数是__________.(2)1,-3,5,-7,…,第15个数是__________.(3)1,-4,7,-10,13,…,第100个数是__________.【试题答案】1、B2、B3、D4、D5、B6、A7、B8、B二、填空题9、-30°10、零下5摄氏度11、255712、(1)整数集:{20,-3,0,-1,+5…};(2)正整数集:{20,+5…};(3)负整数集:{-3,-1…};(4)分数集:(5)正分数集:{4.5,3.14…};(6)负分数集:(7)有理数集:(8)正有理数集:{20,4.5,3.14,+5…};(9)负有理数集:三、解答题13、正数表示包装超过500g,负数表示包装少于500g.一共抽查了12包白糖,其中不足500g的有8包,超过500g的只有4包,不足秤的约占67%,且个别不足秤的达到31g,是严重的短斤少两现象.14、(1)+10℃,-5℃,它们的分界点是0℃(2)+100m,-200m,分界点是海平面,用0表示(3)+8元,-6元,它们的分界点是不收入也不支出,用0表示.15、(1)512(2)29(3)-298。