ˆ
t2
n
et2
n 2 e e t1
t2
n 2
t 1
t2
t2
t2
n
r sxy
(xi x)( yi y)
i1
s
2 x
s
2 y
n
n
(xi x)2 ( yi y)2
i 1
i 1
5
3杜宾-沃森检验法(DW检验)
DW检验是J.Durbin(杜宾)和G.S.Watson(沃 特森)于1951年提出的一种适用于小样本 的检验方法。DW检验只能用于检验随机 误差项具有一阶自回归形式的序列相关 问题,随机误差项的一阶自回归形式为
(假设 已知,等于1)
• 一阶差分法是将原模型 原模型存在完全一阶正自相关,即
Yt 0 1X1
• 变换为
t t1 t
Y Yt1 (0 0 ) 1(1 X t1) (t t1)
Yt 1X1 t
(该模型没有常数项)
• 其中,为经典误差项。则应满足应用普通最小二乘法
的经典假定,用普通最小二乘法估计差分模型,得到
主成分法,偏最小二乘法。
19
• 序列相关性带来的问题 1 参数的估计量不再具有最小方差 线性无偏性 2 均方误差可能严重低估误差项的 方差 3 F检验、T检验失效
第八章 时间序列的回归分析
残差序列相关
对回归方程随机部分的假定: 是一个随机变量,通常满足: 1: 服从正态分布,Y也服从正态分布 2:E ( ) 0,即E(0 ) 0, E(1) 1 3 :Var( ) 2 常数 方差齐性 4 : Cov(i , j ) 0, 相互独立 ~ N (0, 2 ), y ~ (0 1X , 2 ) 5 : 在多元中, 诸自变量相互独立