遥感技术应用_05遥感图像增强处理
- 格式:ppt
- 大小:24.19 MB
- 文档页数:10
第八章(4) 遥感图像增强处理一、彩色增强处理彩色合成变换:加色法密度分割:单波段的彩色:密度分割IHS 变换(一)彩色合成多波段彩色合成:利用计算机将同一地区三个波段的影像,分别赋予红、绿、蓝三原色,进行单基色变换(色阶),然后使各影像准确套合叠置显示,依照彩色合成原理,构成彩色合成影像。
分类:假彩色合成、真彩色合成真彩色合成:当三幅影像的工作波段分别为红、绿、蓝时,同时分别对应赋予红色、绿色、蓝色,合成后的影像十分接近自然界的色彩,称为真彩色合成。
假彩色合成:(重点看)各工作波段被赋予的颜色,与波段所代表的真实颜色不同,合成色不是地物真实的颜色,因此这种合成叫做假彩色合成标准假彩色合成:1、近红外波段赋予红色、红光波段赋予绿色,绿光波段赋予蓝色。
2、针对TM 影像的7个波段:第2波段是绿色波段、第3波段是红色波段、第4波段是近红外波段当4、3、2波段分别赋予红、绿、蓝色时,这一合成方案称为标准假彩色合成(二)假彩色密度分割单波段的假彩色密度分割:将单波段影像的像元值从小到大按照某种标准划分等级,每一级别赋予一种颜色,最终影像表现为彩色,这些色彩是人为加上的,与地物的天然色彩不一定相同,称为假彩色密度分割。
等密度分割:对像元数值从小到大划分为n 级,各级内含有的像元数大致相等时,称为等密度分割。
(三)IHS 变换HSI 代表色调、饱和度和明度(hue ,saturation,intensity )。
色彩模式可以用近似的颜色立体来定量化。
定义:IHS 变换是RGB 颜色系统与HIS 颜色系统之间的变换。
具体方法 :令IRIGIB ,下标max 为R ,G ,B 中最大值,下标min 为R ,G ,B 中最小值, IRIGIB 和S均为0-1的实数,H为0-360的实数。
则有明度: 2/)(min max I I I +=饱和度:5.0≤I )/()(min max min max S S S S S +-=5.0>I )11/()(min max min max S S S S S -+--=色调:min max H H H -=∆如果max H H R =,则]/)[(60H H H H B G ∆-=,位于黄和品红之间如果max H H G =,则]/)(2[60H H H H R B ∆-+=,位于青和黄之间如果max H H B =,则 ]/)(4[60H H H H G R ∆-+=,位于品红和蓝之间二 、光谱增强处理(一)反差增强线性变换,非线性变换,直方图增强⏹ 通过修改各种像元值来改善影像对比度,从而改变影像质量的处理方法。
遥感图像处理的图像增强和特征提取方法遥感图像处理是利用遥感技术获取和处理地球表面信息的一种方法。
在遥感图像处理中,图像增强和特征提取是两个重要的步骤。
本文将探讨遥感图像处理的图像增强和特征提取方法,并介绍其在实际应用中的重要性和挑战。
一、图像增强方法图像增强是通过改善遥感图像的质量和清晰度来提取更多有用信息的过程。
在遥感图像处理中,常用的图像增强方法包括直方图均衡化、滤波和增强算法等。
1. 直方图均衡化直方图均衡化是一种通过调整图像的亮度分布来增强图像对比度的方法。
它通过将图像的亮度值映射到一个更均匀分布的直方图来使图像的细节更加清晰。
直方图均衡化能够有效地提高图像的视觉质量,但在某些情况下可能会导致过度增强和失真。
2. 滤波滤波是一种通过去除图像中的噪声和不必要的细节来改善图像质量的方法。
在遥感图像处理中,常用的滤波方法包括中值滤波、高斯滤波和小波变换等。
这些滤波方法能够有效地降低图像的噪声和模糊度,提高图像的清晰度和边缘保持能力。
3. 增强算法增强算法是一种通过对图像进行像素级别的调整和处理来增强图像质量的方法。
常用的增强算法包括灰度拉伸、对比度增强和边缘增强等。
这些算法能够根据图像的特点和需求来调整图像的亮度、对比度和细节等,从而提高图像的视觉效果和信息提取能力。
二、特征提取方法特征提取是通过从遥感图像中提取和表示有用的信息和模式来分析和识别图像内容的过程。
在遥感图像处理中,常用的特征提取方法包括纹理特征提取、频谱特征提取和形状特征提取等。
1. 纹理特征提取纹理特征提取是一种通过分析图像中的纹理信息来描述和表示图像内容的方法。
常用的纹理特征提取方法包括灰度共生矩阵、小波变换和局部二值模式等。
这些方法能够有效地提取图像中的纹理细节和结构特征,用于图像分类、目标检测和地物识别等应用。
2. 频谱特征提取频谱特征提取是一种通过分析图像的频域信息来描述和表示图像内容的方法。
常用的频谱特征提取方法包括傅里叶变换、小波变换和高斯金字塔等。
遥感图像增强的目的及应用遥感图像增强的目的是通过一系列的数字图像处理技术,改善获取的遥感图像质量,使得图像更加清晰、具备更丰富的信息,以便更好地反映地物表面的特征和变化,提高对地物目标的识别和提取能力。
遥感图像增强的目标是以较低的成本和较少的数据,获取更准确、更丰富的信息。
遥感图像增强的应用非常广泛,涵盖了农业、林业、地质、环境、城市规划、水资源等多个领域。
下面分别介绍一些具体的应用案例:1. 农业:通过遥感图像增强技术,可以更好地提取农田的土壤类型、植被信息和作物生长情况,对农业生产进行监测和评估。
如可以准确识别出农田的植被覆盖度,为农业精细化管理提供数据支持,实现农田水分、化肥的准确施用。
2. 水资源管理:通过对遥感图像进行增强处理,可以提取水体边界和水体类型,实时监测水体的变化,评估水资源的利用状况。
例如,可以对湖泊、河流等水体进行动态监测,及时发现水质异常和水体污染问题。
3. 灾害预警和防治:遥感图像增强可以帮助提取地质灾害、森林火灾、洪涝灾害等灾害的前兆信号,为灾害预警和防治提供及时有效的数据支持。
例如,可以通过增强处理提取出植被覆盖度等指标,评估和预测森林火灾的潜在风险。
4. 城市规划:通过遥感图像增强,可以提取出城市的道路网络、建筑物分布情况、绿地覆盖等信息,为城市规划和土地利用提供准确的基础数据。
例如,可以通过增强处理提取出建筑物的形状和高度信息,用于城市建筑物的三维模型构建和城市景观设计。
5. 环境监测:遥感图像增强可以监测大气、水体和土地等环境污染情况,提取环境参数,评估环境状况和污染程度。
例如,可以通过增强处理提取出水体的叶绿素-a浓度,用于评估水体的富营养化程度。
6. 地质勘探:遥感图像增强可以提取地表地貌、岩性、构造等地质信息,用于地质勘探和矿产资源的评估与开发。
例如,可以通过增强处理提取出岩性差异,找出潜在的矿产资源区域。
综上所述,遥感图像增强在农业、水资源管理、灾害预警和防治、城市规划、环境监测和地质勘探等领域具有重要的应用价值,能够提高数据的质量和精度,为相关领域的研究和决策提供准确的数据支持。
图像增强技术在遥感图像处理中的应用教程遥感技术作为一种获取地球表面信息的手段,广泛应用于农业、城市规划、环境保护等领域。
然而,由于受到地球自然条件、拍摄设备等因素的限制,遥感图像常常存在一些问题,诸如噪声、光照不均匀等问题。
为了更好地从遥感图像中提取有用的信息,图像增强技术被广泛应用。
图像增强技术是指通过对原始图像进行一系列的处理,以改善图像的质量和可视化效果。
在遥感图像处理中,应用图像增强技术可以使图像更加清晰、明亮,并突出显示目标物体的特征,有助于进一步分析和应用。
下面将介绍几种常用的图像增强技术及其在遥感图像处理中的应用。
1. 噪声去除:噪声是由于成像设备的限制、传感器的干扰等因素引起的图像中的无用信息。
在遥感图像中,噪声会使图像变得模糊、失真,降低图像的可用性。
常用的噪声去除方法包括均值滤波、中值滤波和小波变换等。
这些方法能够有效地消除高斯噪声、椒盐噪声等,提升图像的质量。
2. 对比度增强:对比度是指图像中不同物体之间亮度差异的程度。
在遥感图像中,由于光照条件的变化,图像中的对比度常常不够明显。
对比度增强技术可以通过调整图像的灰度级分布,使图像中不同物体的亮度差异更加明显。
常用的对比度增强方法有直方图均衡化、拉伸变换和CLAHE(对比度限制自适应直方图均衡化)等。
3. 去雾处理:遥感图像中常常受到大气中的雾、烟尘等干扰,导致图像的可视化效果变差。
去雾处理技术可以通过估计大气光的强度和传播距离,消除图像中的雾霾效果,使图像更加清晰、真实。
常见的去雾处理方法有暗通道先验法、逆向辐射传输模型等。
4. 彩色增强:遥感图像中,彩色信息对于物体分类和目标识别至关重要。
彩色增强技术可以使图像更加饱满、生动,进一步提升图像的可视化效果。
常用的彩色增强方法有RGB增强、HSV变换和IHS变换等。
这些方法可以调整图像的颜色分量,使图像更加逼真、亮丽。
5. 图像融合:图像融合技术是将多个从不同传感器、角度或时间拍摄的遥感图像进行组合,形成一幅增强的图像。
遥感图像的增强处理一、实验目的通过上机操作,了解空间增强、辐射增强、光谱增强几种遥感图像增强处理的过程和方法,加深对图像增强处理的理解。
二、实验内容对下图进行卷积增强处理;直方图均衡化;主成分变换;色彩变换三、实验过程ERDAS IMAGE图像解译模块主要包括了图像的空间增强、辐射增强、光谱增强、高光谱工具、傅立叶变换、地形分析以及其他实用功能。
1、卷积增强(Convolution)空间增强技术是利用像元自身及其周围像元的灰度值进行运算,达到增强整个图像之目的。
卷积增强(Convolution)是空间增强的一种方法。
卷积增强(Convolution)时将整个像元分块进行平均处理,用于改变图像的空间频率特征。
卷积增强(Convolution)处理的关键是卷积算子——系数矩阵的选择。
该系数矩阵又称卷积核(Kernal)。
ERDAS IMAGINE将常用的卷积算子放在一个名为default.klb的文件中,分为3*3,5*5,7*7三组,每组又包括“Edge Detect/Low Pass/Horizontal/Vertical”等七种不同的处理方式。
具体执行过程如下:ERDAS图标面板菜单条:Main→Image Interpreter→Spatial enhancement→convolution→convolution对话框。
图3-1 Convolution对话框几个重要参数的设置:边缘处理方法:(Handle Edges by):Reflection卷积归一化处理:Normalize the KernelKernel:3*3EdgeDetcetInput File(*.hdr): C\data\nj.hdr type:ENVI*.hdrOutput File(*.img): C\11.imgOutput: Unsigned 8 bit2、直方图均衡化(Histogram Equalization)直方图均衡化实质上是对图像进行非线性拉伸,重新分配图像像元值,是一定灰度范围内的像元数量大致相同。
遥感数据处理中的影像增强与图像去噪技术1. 引言遥感数据处理在现代科学技术和应用中具有重要意义。
作为一种获取地球表面信息的技术手段,遥感技术提供了大量的数据,但由于遥感图像受到地面和大气等多种因素的影响,常常存在图像质量不高、图像噪声明显等问题。
为了提高遥感图像的质量和可用性,需要运用影像增强和图像去噪技术对遥感数据进行处理。
本文将介绍遥感数据处理中的影像增强和图像去噪技术的原理和应用。
2. 影像增强技术影像增强技术是通过提取和增强影像中的有用信息,以改进图像的视觉质量和对目标的识别能力。
在遥感数据处理中,影像增强技术广泛应用于农业、环境、城市规划等领域。
常见的影像增强技术包括直方图均衡化、卷积滤波、小波变换等。
2.1 直方图均衡化直方图均衡化是一种常用的灰度级映射方法,旨在扩展图像的动态范围,增强图像中的细节信息。
该方法通过将原始图像的直方图拉伸到整个灰度范围上来实现增强效果。
直方图均衡化在提高图像对比度、减少噪声等方面具有显著的效果。
2.2 卷积滤波卷积滤波是通过把一个滤波器应用于图像中的每一个像素,用滤波器的加权和代替该像素,以达到图像增强的目的。
常见的卷积滤波器包括高斯滤波器、中值滤波器等。
高斯滤波器常用于去除图像中的高频噪声,而中值滤波器则适用于去除椒盐噪声。
2.3 小波变换小波变换是一种时频局部化分析方法,被广泛应用于图像增强和去噪。
小波变换能够将图像分解成不同频率和空间分辨率的子图像,便于分析和处理。
通过选择合适的小波基函数和分解尺度,可以实现图像的多尺度增强和去噪。
3. 图像去噪技术图像去噪技术旨在通过抑制或消除图像中的噪声,提高图像的质量和清晰度。
在遥感数据处理中,由于受到大气、传感器等外部因素的干扰,图像常常存在着不同程度的噪声。
常见的图像去噪技术包括小波去噪、基于局部图像统计的算法和基于偏最小二乘的算法。
3.1 小波去噪小波去噪是一种基于小波变换的图像去噪方法。
该方法通过将小波变换系数进行阈值处理,将噪声系数置零或降低到很小的程度,从而实现图像去噪的目的。
任务五图像增强目录1.空间域增强处理11.1卷积滤波12.辐射增强处理22.1交互式直方图拉伸23.光谱增强处理43.1波段比的计算43.2色彩空间变换53.3NDVI计算64.傅里叶变换64.1快速傅里叶变换64.2定义FFT滤波器74.3反向FFT变换85.波段组合85.1RGB合成显示8图像增强的主要目的是提高图像的目视效果,以便处理结果图像比原图像更适合于特定的应用要求,方便人工目视解译、图像分类中的样本选取等。
ENVI图像增强的内容主要包括:●空间域增强处理●辐射增强处理●光谱增强处理●傅里叶变换●波段组合1.空间域增强处理空间域增强处理是通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像。
1.1卷积滤波卷积滤波是通过消除特定的空间频率来增强图像。
它们的核心部分是卷积核,ENVI提供很多卷积核,包括高通滤波、低通滤波、拉普拉斯算子、方向滤波、高斯高通滤波、高斯低通滤波、中值滤波、Sobel、Roberts,还可以自定义卷积核。
使用数据:lena.jpg具体操作:通过尝试ENVI提供的各种图像增强算子,观察比较图像增强的效果。
(1)打开图像文件lena.jpg。
(2)在主菜单中,选择Filter→Convolutions and Morphology。
(3)在Convolutions and Morphology Tool中,选择Convolutions→滤波类型。
(4)不同的滤波类型对应不同的参数,主要包括三项参数:●Kernel Size(卷积核的大小)卷积核的大小,以奇数来表示,如3×3、5×5等,有些卷积核不能改变大小,包括Sobel和Roberts。
●Image Add Back(输入加回值)将原始图像中的一部分“加回”到卷积滤波结果图像上,有助于保持图像的空间连续性。
该方法常用于图像锐化。
“加回”值是原始图像在结果输出图像中所占的百分比。
●Editable Kernel(编辑卷积核中各项的值)在文本框中双击鼠标可以进行编辑,选择Kernel可以把卷积核保存为文件(.ker),选择Kernel可以打开一个卷积核文件。
实习7——遥感图像增强处理一、实习目的学会对遥感图像进行空间增强、辐射增强和波谱增强处理、利用DEM进行地形分析以及一些实用分析和地理信息系统分析。
二、原理说明对遥感图像进行各种增强处理,空间增强主要是高通或者低通滤波对图像中的线、边缘、纹理结构特征进行卷积运算的增强处理,低通滤波主要是降低图像的空间频率,可以通过压抑高频,增强低频成分的方法来实现,也可称为图像的平滑,保留主干、粗结构;高通滤波主要提高图像的空间频率,可以用增强高频成分的方法来实现,也可称为图像的锐化,以突出边缘、线条、纹理、细节。
辐射增强主要指对比度增强。
波谱信息增强主要突出灰度信息。
地形分析包括利用DEM生成坡度、坡向、高程分带、地形阴影以及栅格化的等高线。
实用分析包括变化检测、函数计算、图像掩膜以及去除坏线等。
地理信息系统分析功能包括邻域分析、权重相加分析、栅格叠加统计分析等。
三、实习内容空间增强处理、辐射增强处理、波谱增强处理、地形分析功能、实用分析功能和地理信息系统分析功能。
四、实习步骤:一、空间增强处理1卷积增强(Convolution)卷积增强是将整个像元按照像元分块进行平均处理,用于改变图像的空间频率特征。
处理的关键是卷积算子(卷积核)系数矩阵的选择,ERDAS IMAGINE将常用的卷积算子放在一个名为Default.klb的文件中,分为3×3、5×5、7×7三组,每组又包括边缘检测(Edge Detect)、边缘增强(Edge Enhance)、低通滤波(Low Pass)、高通滤波(High Pass)、水平增强(Horizontal)、垂直增强(Vertical)等。
确定输入文件:Lanier.img,卷积算子:5×5 Edge Enhance,输出数据类型为Unsigned 8 Bit,统计忽略0。
2非定向边缘增强(Non-Directional Edge)非定向边缘增强应用两个非常通用的滤波器(Sobel滤波器和Prewitt滤波器),首先通过两个正交卷积算子(Horizontal算子和Vertical算子)分别对遥感图像进行边缘检测,然后将两个正交结果进行平均化处理。
图像增强技术在卫星遥感中的应用研究随着卫星技术的不断发展,遥感技术在许多领域中得到了广泛应用,如自然资源调查、环境监测、城市规划等。
图像增强技术是卫星遥感中非常重要的一部分,它可以有效地提高卫星图像的质量和准确性,为遥感应用提供更加可靠的数据支持。
一、图像增强技术的定义图像增强技术是指对原始图像进行处理,提高图像质量、增加图像细节、改善图像对比度和清晰度的方法。
图像增强技术广泛应用于医学图像处理、卫星遥感图像处理、计算机视觉等领域。
二、卫星遥感中图像增强技术的应用图像增强技术在卫星遥感中的应用主要包括以下三个方面:1. 去噪卫星图像需要通过众多的干扰物,如云层、雾霾、大气衰减等,才能到达地面接受站。
这些干扰会导致图像模糊、细节丢失等问题。
去噪技术可以有效地解决这些问题,提高图像的清晰度和准确性。
去噪技术主要包括平滑滤波、中值滤波、锐化滤波等方法。
其中,平滑滤波可以有效地去除图像中的噪声,但会导致图像模糊;中值滤波可以有效地去除噪声,同时保留图像细节;锐化滤波可以增强图像的细节和对比度,但也会增加噪声。
2. 色彩增强卫星图像受到自然光照强度差异、大气干扰等因素的影响,导致图像的色彩失真、细节模糊。
通过色彩增强技术,可以有效地增强图像的对比度和色彩饱和度,提高图像的观感效果。
色彩增强技术主要包括直方图均衡化、对比度增强、色彩平衡等方法。
其中,直方图均衡化可以有效提高图像的对比度和清晰度;对比度增强可以增强图像的对比度和细节;色彩平衡可以调整图像中各颜色通道的比例,达到色彩均衡的目的。
3. 特征提取卫星图像中蕴含着大量的地表信息,如植被覆盖率、土地利用类型、城市建设情况等。
通过特征提取技术,可以从卫星图像中得到这些地表信息,为环境监测、城市规划等领域提供有力的数据支持。
特征提取技术主要包括边缘检测、角点检测、纹理分析等方法。
其中,边缘检测可以在图像中提取物体的轮廓、分割物体;角点检测可以应用于地物变化检测、建筑物提取等方面;纹理分析可以提取地表的纹理特征,用于土地利用分类、城市建设规划等方面。
数字图像处理技术在遥感中的应用随着数字化时代的到来,遥感技术从传统的航空摄影演变为数字遥感,数字图像处理技术的应用也越来越广泛。
在遥感领域,数字图像处理技术可以分为三类:图像增强、特征提取和目标识别。
下面将详细介绍数字图像处理技术在遥感中的应用。
一、图像增强图像增强是指通过一些数字图像处理方法使图像的质量得到提升或者说让人类更容易观察和分析图像。
在遥感领域,由于航拍或卫星拍摄的图像不可避免地存在一些噪声或者扭曲形变,因此图像增强成为了一项关键技术。
一般来说,图像增强可以分为两类:空域滤波和频域滤波。
空域滤波是通过改变像素之间的数值来调整图像的像素值,如中值滤波、均值滤波等。
而频域滤波则是通过改变图像的傅里叶变换谱来调整图像的像素值,比如高通滤波、低通滤波等。
一般而言,频域滤波的效果更好,但是空域滤波的速度更快。
除了常见的滤波方法,还有一些特殊的图像增强方法。
比如,波尔多(Bordeaux)大学曾经提出了一种基于小波变换的图像增强方法,可以在直通波束和散射波束中实现噪声过滤和反射率估计。
二、特征提取特征提取是指从图像中提取出更具信息含量和区分力的特征。
例如,提取植被指数(NDVI)、离散点(blight)指数、道路网图及车辆一系列特征等。
遥感图像的特征提取常常是复杂且繁琐的,可以通过数字图像处理方法简化和优化。
特征提取大致分为两步:一是预处理,二是特征计算。
预处理包括图像分割、去噪等操作。
特征计算则是对分割后的图像进行特征计算,例如感兴趣区域(ROIs)内的植被覆盖率、沙漠化率、土地变化率、道路交通状况等。
特征提取常常是其他应用的基础,例如在目标识别任务中,特征提取就是提高分类正确率的关键。
因此特征提取技术的改进是遥感图像分析技术发展的核心任务。
三、目标识别目标识别是指利用遥感图像中的信息来识别特定的目标,例如建筑物、水体、植被覆盖等。
通过数字图像处理技术的应用,可以提高遥感图像目标识别任务的准确率和自动化水平。