遥感原理与方法——第七章遥感数字图像增强处理
- 格式:ppt
- 大小:690.50 KB
- 文档页数:17
(2)直方图匹配(Histogram Match)输入匹配文件(Input File):wasia1 mss.img匹配参考文件(Input File to Match ):wasia2_mss.img①ERDAS图标面板菜单条:Main 一Image Interpreter一Radiometric Enhancement —Histogram Match,打开Histogram Matching对话框。
②ERDAS图标面板工具条:点击Interpreter图标一Radiometric Enhancement 一Histogram Match,打开Histogram Matching对话框。
2)空间增强处理(Radiometric Enhancement)(1)卷积增强处理(Convolution)操作方法:(以文件Lanier.img为例)①ERDAS图标面板菜单条:Main一Image Interpreter一Spatial Enhancement一Convolution,打开Convolution对话框;②ERDAS图标面板工具条:点击Interpreter图标一Spatial Enhancement Convolution,打开Convolution对话框。
(2)自适应滤波(Adaptive Filter)操作方法:(以文件Lanier.img为例)①ERDAS图标面板菜单条:Main一Image Interpreter一Spatial Enhancement—Adaptive Filter,打开Wailis Adaptive Filter对话框。
②ERDAS图标面板工具条:点击Interpreter图标一Spatial Enhancement,Adaptive Filter,打开Wailis Adaptive Filter对话框。
参数设置:文件坐标类型(Coordinate Type ):Map;处理范围确定(Subset Definition):ULX/Y LRX/Y;输出数据类型(Output Data type ):Unsigned 8 bit;移动窗口大小(Moving Window Sire):3(表示3×3);输出文件选择(Optins):Bandwise(逐个波段进行滤波),或PC(仅对主成份变换后的第一主成份进行滤波);乘积倍数定义(Multiplier):2(用于调整对比度);输出数据统计时忽略零值:Ignore Zero in Stars;OK(关闭Wallis Adapter Filter对话框,执行自适应滤波)。
实验编号:02四川师大实验报告2017年4月2日地理与资源资源学院2014级3班实验名称:遥感图像的增强处理姓名:羊少超成绩:学号:2014100339指导教师:林先成老师一.实验目的:1.通过上机操作,掌握图像增强与拉伸、图像去噪、复列变换,边缘提取及主成分变化等几种遥感图像增强处理的过程和方法,加深对遥感图像增强处理的理解。
2.提升实践与动手能力,提升自身专业素养。
二.实验内容:图像的增强与拉伸、去噪与边缘提取、复列变换和主成分变换。
三.实验数据及设备:遥感图像、实验设备电脑、EARDS IMAGINE8.5软件。
四.实验步骤:首先打开ERDAS IMAGINE8.51.影像的增强处理与直方图的均衡化:灰度反转:①在工具面板中选择Image Interpreter 下的Radiometric Enhancement(辐射增强),在选择Brightness Inversion(亮度反转)。
②输入图片(input file)Tm_1.img,定义输出文件名为0111.img,其余为默认值,点击OK,保存图片到指定位置。
(对比结果图如图1)直方图的均衡化:①在工具面板中打开Viewer#1,打开图片Viewer#1。
②在Viewer#1下选择Raster 中的contrast (对比),在选择HistogramEqualize(直方图均衡化)。
打开Viewer#2,打开图片Viewer#1,进行图片对比。
(对比图如图2)③接着之前Viewer#1中完成的图像,选择Raster 中的contrast (对比),在选择Breakpoint Editor For lannir.img(断点编辑图像,如图3)从而对图像选择进行拉伸变换。
2.图像去噪与边缘提取:去除Noise:①打开画图软件,用画笔在图纸上点一些黑点作为噪声原件,保存文件到指定为主,定义文件名为noise.tif,格式为.tif②采用中值滤波器,在控制面板中选择Image Interpreter 中的SpatialEnhancement(光间增强),再选择Focal Analysis(聚焦分析),输入图片(input file)noise.tif,定义输出文件名为noise-1.img,在Function 中图1(灰度反转)图2(直方图均衡化)图3(拉伸变换)选择Median,其余为默认值,点击OK,完成去噪。
遥感图像的增强处理一、实验目的通过上机操作,了解空间增强、辐射增强、光谱增强几种遥感图像增强处理的过程和方法,加深对图像增强处理的理解。
二、实验内容对下图进行卷积增强处理;直方图均衡化;主成分变换;色彩变换三、实验过程ERDAS IMAGE图像解译模块主要包括了图像的空间增强、辐射增强、光谱增强、高光谱工具、傅立叶变换、地形分析以及其他实用功能。
1、卷积增强(Convolution)空间增强技术是利用像元自身及其周围像元的灰度值进行运算,达到增强整个图像之目的。
卷积增强(Convolution)是空间增强的一种方法。
卷积增强(Convolution)时将整个像元分块进行平均处理,用于改变图像的空间频率特征。
卷积增强(Convolution)处理的关键是卷积算子——系数矩阵的选择。
该系数矩阵又称卷积核(Kernal)。
ERDAS IMAGINE将常用的卷积算子放在一个名为default.klb的文件中,分为3*3,5*5,7*7三组,每组又包括“Edge Detect/Low Pass/Horizontal/Vertical”等七种不同的处理方式。
具体执行过程如下:ERDAS图标面板菜单条:Main→Image Interpreter→Spatial enhancement→convolution→convolution对话框。
图3-1 Convolution对话框几个重要参数的设置:边缘处理方法:(Handle Edges by):Reflection卷积归一化处理:Normalize the KernelKernel:3*3EdgeDetcetInput File(*.hdr): C\data\nj.hdr type:ENVI*.hdrOutput File(*.img): C\11.imgOutput: Unsigned 8 bit2、直方图均衡化(Histogram Equalization)直方图均衡化实质上是对图像进行非线性拉伸,重新分配图像像元值,是一定灰度范围内的像元数量大致相同。
实习7——遥感图像增强处理一、实习目的学会对遥感图像进行空间增强、辐射增强和波谱增强处理、利用DEM进行地形分析以及一些实用分析和地理信息系统分析。
二、原理说明对遥感图像进行各种增强处理,空间增强主要是高通或者低通滤波对图像中的线、边缘、纹理结构特征进行卷积运算的增强处理,低通滤波主要是降低图像的空间频率,可以通过压抑高频,增强低频成分的方法来实现,也可称为图像的平滑,保留主干、粗结构;高通滤波主要提高图像的空间频率,可以用增强高频成分的方法来实现,也可称为图像的锐化,以突出边缘、线条、纹理、细节。
辐射增强主要指对比度增强。
波谱信息增强主要突出灰度信息。
地形分析包括利用DEM生成坡度、坡向、高程分带、地形阴影以及栅格化的等高线。
实用分析包括变化检测、函数计算、图像掩膜以及去除坏线等。
地理信息系统分析功能包括邻域分析、权重相加分析、栅格叠加统计分析等。
三、实习内容空间增强处理、辐射增强处理、波谱增强处理、地形分析功能、实用分析功能和地理信息系统分析功能。
四、实习步骤:一、空间增强处理1卷积增强(Convolution)卷积增强是将整个像元按照像元分块进行平均处理,用于改变图像的空间频率特征。
处理的关键是卷积算子(卷积核)系数矩阵的选择,ERDAS IMAGINE将常用的卷积算子放在一个名为Default.klb的文件中,分为3×3、5×5、7×7三组,每组又包括边缘检测(Edge Detect)、边缘增强(Edge Enhance)、低通滤波(Low Pass)、高通滤波(High Pass)、水平增强(Horizontal)、垂直增强(Vertical)等。
确定输入文件:Lanier.img,卷积算子:5×5 Edge Enhance,输出数据类型为Unsigned 8 Bit,统计忽略0。
2非定向边缘增强(Non-Directional Edge)非定向边缘增强应用两个非常通用的滤波器(Sobel滤波器和Prewitt滤波器),首先通过两个正交卷积算子(Horizontal算子和Vertical算子)分别对遥感图像进行边缘检测,然后将两个正交结果进行平均化处理。
一、实验名称遥感图像光谱增强处理二、实验目的对图像进行主成分分析、主成分变换以及主成分百分比计算;观察图像在不同色彩空间之间相互转换的结果异同,对图像进行融合,用MODEL MAKER 建模方式进行图像处理。
通过以上操作初步掌握图像光谱增强处理过程,进一步理解影像光谱增强中不同增强方法的原理及其增强效果的差异。
三、实验原理光谱增强是基于多光谱数据对波段进行变换达到图像增强处理,采用一系列技术去改善图象的视觉效果,或将图象转换成一种更适合于人或机器进行分析处理的形式。
有选择地突出某些对人或机器分析有意义的信息,抑制无用信息,提高图象的使用价值。
主成分分析(PCA)用多波段数据的一个线性变换,变换数据到一个新的坐标系统,以使数据的差异达到最大。
对于增强信息含量、隔离噪声、减少数据维数非常有用。
使用Color Transforms 工具可以将3-波段红、绿、蓝图像变换到一个特定的彩色空间,并且能从所选彩色空间变换回RGB。
两次变换之间,通过对比度拉伸,可以生成一个色彩增强的彩色合成图像。
图像融合是将多幅影像组合到单一合成影像的处理过程。
它一般使用高空间分辨率的全色影像或单一波段的雷达影像来增强多光谱影像的空间分辨率。
四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。
五、实验过程1.主成分分析1)打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,点击Load Band 在主窗口加载影像。
2)主菜单选择Transforms—>Principal Components—>Forward PC Rotation —>Compute New Statistics and Rotate。