z
dz
dy 0yBiblioteka dx x3.2 连续性方程
单位时间输入微元体的质量-输出的质量=累积的质量
单位时间内,x方向输入输出的流体质量为:
A点坐标( x,y,z), 流体质点速u度 x、uy、uz,
kgkg m
kg
mm 32
ss
mm s
密度。
z
输入面(左侧面):(ux) xdydz
输出面(右侧面):
ux A
Y
1
1
P x P y
dux dt duy
dt
Z
1
P z
duz dt
(3.38) 欧拉方程
适用范围——可压缩、不可压缩流体,稳定流、非稳定流。
用矢量表示—— W1PDu
Dt
(3.39)
3.3 理想流体动量传输方程——欧拉方程
把 d d x u t u tx u x u x x u y u y x u z u z x a x
对于不可压缩流体ρ=常数,根据连续性方程,上式最后一项为0:
d dxu tX P x 2 x u 2 x 2 y u 2 x 2 zu 2x
3.4 实际流体动量传输方程——纳维尔-斯托克斯方程
上式两边同除以ρ,且 得:
d dxu tX 1 P x 2 x u 2 x 2 y u 2 x 2 z u 2 x
将式(b)代入式(a),方程两边同除以ρ,得:
1d d t u xx u yy u zz 0 (c)
3.2 连续性方程
引入哈密顿算子:i jk x y z
所以: U x i y j k k u x i u y j u z k u x x u y y u z z
在流场中取一微元体dxdydz,顶点A处的运动参数为: