紫外吸收光谱的产生与电子跃迁紫外吸收曲线及光的选择性吸收四
- 格式:ppt
- 大小:1.34 MB
- 文档页数:26
紫外可见吸收光谱法原理概述解释说明1. 引言1.1 概述紫外可见吸收光谱法是一种广泛应用于化学分析、生物医药和材料科学等领域的分析技术。
它通过检测样品吸收紫外或可见光的能力,可以确定样品中存在的化合物或物质的浓度。
紫外可见吸收光谱法基于原子、离子或分子在特定波长范围内对电磁辐射的选择性吸收现象,利用这种吸收现象可以获得样品所具有的信息。
本文将对紫外可见吸收光谱法的原理进行详细介绍,并探讨其在化学分析、生物医药和材料科学中的应用。
1.2 文章结构本文共分为五个部分:引言、紫外可见吸收光谱法原理、紫外可见吸收光谱应用领域、实验方法与操作步骤以及结论和展望。
1.3 目的本文旨在向读者介绍紫外可见吸收光谱法的基本原理以及其在不同领域中的应用。
通过阐述紫外可见吸收光谱法的操作方法和实验步骤,希望能为初学者提供一份清晰的指南,使其能够准确、有效地应用该技术进行分析。
同时,我们将对紫外可见吸收光谱法的局限性进行讨论,并展望其未来在科学研究和实际应用中的发展方向。
2. 紫外可见吸收光谱法原理:2.1 光谱的基本概念:光谱是指将某物质在不同波长范围内对电磁辐射的吸收、发射或散射进行分析和测量的方法。
根据电磁辐射的能量不同,可将光谱分为紫外光谱、可见光谱和红外光谱等。
其中,紫外可见吸收光谱法利用物质对紫外及可见光区域(200-800 nm)的吸收特性进行定量和定性分析。
2.2 紫外可见吸收光谱的原理:紫外可见吸收光谱法是通过物质吸收特定波长范围内电磁辐射而产生的能级跃迁来进行分析。
当样品受到入射光线照射后,样品中的某些化学成分会吸收特定波长范围内的能量,并转为高能态。
这些化学成分在高能态时可能会跃迁至更高能级或离子化状态,从而使入射光线中特定波长的能量被吸收,形成明显的吸收峰。
根据琴斯定律(Lambert-Beer定律),光的吸收与样品中物质浓度成正比。
因此,通过测量入射光和透射光之间的吸收差异,可以推算出样品中特定化合物的浓度。
第三章紫外可见吸收光谱法1.定义2.紫外吸收光谱的产生3.物质对光的选择性吸收4.电子跃迁与分子吸收光谱第一节概述11. 定义根据溶液中物质的分子或离子对紫外、可见光谱区辐射能的吸收来研究物质的组成和结构的方法,包括比色分析法与分光光度法。
◆比色分析法:比较有色溶液颜色深浅来确定物质含量的方法。
◆分光光度法:使用分光光度计进行吸收光谱分析测量的方法。
2/紫外-可见波长范围:(真空紫外区)◆远紫外光区:10-200 nm;◆近紫外光区:200-400 nm;◆可见光区:400-780 nm。
◆O2、N2、CO2、H2O等可吸收远紫外区(60-200 nm)电磁辐射。
◆测定远紫外区光谱时,须将光学系统抽真空,并充入惰性气体。
◆准确:近紫外-可见分光光度法(200-780 nm)。
3/方法特点:◆仪器较简单,价格较便宜;◆分析操作简单;◆分析速度较快。
4/紫外可见吸收光谱:分子中价电子能级跃迁(伴随着振动能级和转动能级跃迁)。
2. 紫外可见吸收光谱的产生价电子的定义?AB 电磁辐射5/◆分子内部三种运动形式:电子相对于原子核的运动;原子核在其平衡位置附近的相对振动;分子本身绕其重心的转动。
◆分子具有三种不同能级:电子能级、振动能级和转动能级(量子化,具有确定能量值)。
◆分子内能:包括电子能量E e、振动能量E v、转动能量Er 。
2.1 电子跃迁与分子吸收光谱6/分子的各能级:◆转动能级能量差:0.005~0.05 eV,跃迁产生吸收光谱位于远红外区(远红外光谱或分子转动光谱)。
◆振动能级能量差:0.05~1 eV,跃迁产生吸收光谱位于红外区(红外光谱或分子振动光谱)。
◆电子能级能量差:1~20 eV。
电子跃迁产生的吸收光谱在紫外-可见光区(紫外-可见光谱或分子的电子光谱)。
7/8/◆电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。
◆电子光谱中总包含有振动/转动能级间跃迁产生的若干谱线而呈现宽谱带(带状光谱)。
仪器分析课程考试填空题题库1.原子吸收光谱是线状光谱2.热导池检测器是一种浓度型检测器3.在气固色谱中各组份在吸附剂上分离的原理是各组份的吸附能力不一样4.用原子吸收光度法分析时,灯电流太高会导致谱线变窄下降。
5.用气相色谱法定量分析样品组分时,分离度至少为:1.06.液相色谱中通用型检测器是示差折光检测器7.在原子吸收光谱法中,要求标准溶液和试液的组成尽可能相似,且在整个分析过程中操作条件应保不变的分析方法是标准曲线法8.下列因素中,对色谱分离效率最有影响的是柱温9.柱效率用理论塔板数n或理论塔板高度h表示,柱效率越高,则n越大,h越小10.下列化合物中,同时有 n→π*,π→π*,σ→σ*跃迁的化合物是丙酮11.红外吸收光谱的产生是由于分子振动-转动能级的跃迁12.可以消除原子吸收法中的物理干扰的方法是采用标准加入法13.热导池检测器的工作原理是基于各组分的热导系数不同14.荧光分析法的灵敏度通常比吸收光度法的灵敏度高15.紫外-可见吸收光谱主要决定于分子的电子能级跃迁16.在原子吸收分光光度法中,从玻兹曼分布定律可以看出温度越高,激发态原子数越多17.用电位法测定溶液的pH值时,电极系统由玻璃电极与饱和甘汞电极组成,其中玻璃电极是作为测量溶液中氢离子活度的指示电极18.原子吸收光谱法是基于气态原子对光的吸收, 其吸光度与待测元素的含量成正比,即符合朗伯-比尔定律19.原子发射光谱分析法可进行定性、半定量和定量分析。
20.质谱分析有很广泛的应用,除能测定物质的相对分子量外,还用于结构与定量分析21.可做红外分光光度计光源的为硅碳棒22.振动转动能级跃迁的能量相当于红外光23.在符合朗伯-比尔定律的范围内,有色物的浓度、最大吸收波长、吸光度,三者的关系是减小、不变、减小24.连续监测去离子水的质量,下列哪种技术最为方便?电导电极25.在中药现代化研究中,分析效率最高的仪器是LC-MS26.在气相色谱法中,用于定性的参数是保留时间27.在石墨炉原子吸收光谱法中应该选用的保护气为:氩气28.用色谱法进行定量分析时,要求混合物中每一个组分度出峰的是:归一化法29.用离子选择性电极进行测量时,需用磁力搅拌器搅拌溶液,这是为了提高电极的响应速度30.气相色谱中可以用于定性分析的检测器是质谱31.原子发射光谱定量分析中,哪种光源准确度最好?电感耦合等离子体32.在2H++2e==H2反应中,过电位最大的电极材料为滴汞电极33.化学位移是由于核外电子云的屏蔽作用所引起的共振时磁场强度的移动现象。
紫外吸收光谱的产生
紫外吸收光谱是由分子中价电子能级跃迁所产生的。
由于电子能级跃迁往往要引起分子中核的运动状态的变化,因此在电子跃迁的同时,总是伴随着分子的振动能级和转动能级的跃迁。
考虑跃迁前的基态分子并不是全是处于最低振动和转动能级,而是分布在若干不同的振动和转动能级上;而且电子跃迁后的分子也不全处于激发态的最低振动和转动能级,而是可达到较高的振动和转动能级,因此电子能级跃迁所产生的吸收线由于附加上振动能级和转动能级的跃迁而变成宽的吸收带。
此外,进行紫外光谱测定时,大多数采用液体或溶液试样。
液体中较强的分子间作用力,或溶液中的溶剂化作用都导致振动、转动精细结构的消失。
但是在一定的条件下,如非极性溶剂的稀溶液或气体状态,仍可观察到紫外吸收光谱的振动及转动精细结构。
紫外吸收光谱法又称紫外分光光度法,是根据物质对不同波长的紫外线吸收程度不同而对物质组成进行分析的方法。
此法所用仪器为紫外吸收分光光度计或紫外-可见吸收分光光度计。
光源发出的紫外光经光栅或棱镜分光后,分别通过样品溶液及参比溶液,再投射到光电倍增管上,经光电转换并放大后,由绘制的紫外吸收光谱可对物质进行定性分析。
由于紫外线能量较高,故紫外吸收光谱法灵敏度较高;同时,本法对不饱和烯烃、芳烃、多环及杂环化合物具有较好的选择性,故一般用于这些类别化合物的分析及相关污染物的监测。
如,水和废水统一检测分析法中,紫外分光光度法测定矿物油、硝酸盐氮;以可变波长紫外检测器作为检测器的高压液相色谱法测多环芳烃等。
详情可查看/news/18291705.html。