材料成形技术基础-自由锻复习进程
- 格式:docx
- 大小:138.34 KB
- 文档页数:9
材料成形技术基础复习要点第一章:金属的液态成形技术1.铸造成形法:它是将液态金属浇入铸型型腔,使其冷却凝固,从而获得一定形状和性能铸件的成形方法2.金属的铸造性能:金属的流动性、充型能力、收缩、偏析和吸气性3.金属的流动性:金属液本身的流动能力;影响因素:与金属种类、化学成分、凝固方式、及其他物理性能(如粘度)有关,共晶成分的金属熔点最低、因而流动性最好,非共晶成分的金属在结晶区域内,既有形状复杂的枝晶,又有未结晶的液体金属结晶区间越大,流动性越差4.充型能力:金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力;影响因素:金属的流动性、浇注条件及铸型条件,流动性越好,液态合金充填铸型的能力越强。
浇注温度越高,液态金属的充型能力就越强,但不宜过高。
充型压力越大,充型能力越强。
但充型压力不宜过大,以免金属飞溅或因气体排出不及时而产生气孔等缺陷。
铸型条件包括铸型材料、铸型结构及铸型中的气体含量5.收缩:金属液态向固态的冷却过程中,其体积和尺寸减小的现象;影响因素:化学成分、浇注温度、铸型结构与铸型条件,液态收缩—凝固收缩—固态收缩6.缩孔:液态金属充满铸型后,铸件在凝固的过程中由于补缩不良而产生的孔洞;缩松:是铸件断面上出现的分散而细小缩孔。
从缩孔缩松的形成可以看出:金属的液态收缩和凝固收缩愈大,则收缩的体积越大,铸件越容易形成缩孔;金属的浇注温度越高,则液态收缩越大;结晶的间隔大的金属,易形成缩松。
预防措施:遵循“顺序凝固”原则,即在造型工艺上认为地设置冒口、冷铁,按照一定的冷却顺序,使缩孔移到铸件外面或消失。
7.铸造内应力:按产生原因分为热应力(铸件壁厚不均匀,收缩不一致)和机械应力(线收缩受到型芯阻碍);预防热应力的措施:尽量减少铸件各部分间的温度差,使其均匀冷却;尽量使壁厚均匀,遵循同时凝固原则,如,将内浇口开设在铸件薄壁处,为加快厚壁部分的冷却,可在厚壁处安放冷铁。
8.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,主要用于普通灰铸铁,锡青铜等;优点是可以减少铸造内应力,防止铸件的变形和裂纹缺陷,又可不用冒口而省工省料;缺点是铸件口部容易出现缩孔或缩松。
材料成型工艺学锻造部分复习资料1、锻压加工主要有那些方法?热锻:自由锻、模锻;冷锻:冷挤、冷镦、冲裁、弯曲、拉深、胀形。
2、锻压与其它加工方法(铸造、轧制、挤压、拉伸)相比有什么特点?A 铸造是针对塑性较低的材料提供接近零件形状的毛坯。
B 锻造采用热加工,得到高强度质量的零件。
C 冲压是冷加工得到零件。
D 锻压与其它成形方法(轧制、挤压、拉伸等)对比锻压指向品种多而复杂的坯料或零件。
轧制、挤压、拉伸等指向板、带、条、箔、管、棒、型、线的一次加工产品,该产品尚需二次加工(锻、冲、铆、焊)。
3、试述锻造发展趋势。
A做大,设备向巨型化发展。
B做精,设备专门化、精密化和程控化。
C近终形,锻件形状、尺寸精度和表面质量最大限度地与产品零件接近,以达到少、无切削加工之目的。
D为适应大批量生产的要求,发展专业化生产线,建立专门的锻造中心,实现整机制造中零件的系列化、通用化和标准化。
E 大力发展柔性制造和CAD/CAM技术。
F模锻的比例加大,自由锻的比例减少。
G发展锻造新工艺4、锻造在冶金厂和机械类厂有何应用?a冶金厂:高速钢、钛等高温合金的锻造开坯,之后才进行轧或挤成板棒材。
b机械厂:主要为重要零件准备毛坯。
5、模锻工艺一般由那些工序组成?下料→加热→模锻→(切边、冲孔)→酸洗与清理→热处理→去氧化皮(打磨或刮削)→涂漆→检验等。
6、合金钢加热过程要注意那四个现象?锻造加热温度如何确定?a:钢加热过程中应注意的四点现象:氧化、脱碳、过热、过烧(1)氧化:氧化性气体(O2,CO2,H2O和SO2)与钢发生反应。
(2)脱碳:化学反应造成钢表层碳含量的减少叫脱碳。
(3) 过热:温度过高造成晶粒粗大。
(4)过烧:加热到接近熔化温度并在此温度下长期保留,不仅晶粒粗大,而且晶界熔化。
锻造温度范围的确定:锻造温度范围指开始锻造温度(始锻温度)和终结锻造温度(终锻温度)之间的温度区间。
(1)确定的原则或方法,三图定温:相图,塑性-抗力图,再结晶图。
自由锻自由锻:利用冲击力或压力,使金属在上、下砧铁之间,产生塑性变形而获得所需形状、尺寸以及内部质量锻件的一种加工方法。
自由锻造时,除与上、下砧铁接触的金属部分受到约束外,金属坯料朝其它各个方向均能自由变形流动,不受外部的限制,故无法精确控制变形的发展。
自由锻分类:手工锻造和机器锻造两种。
手工锻造只能生产小型锻件,生产率也较低。
机器锻造是自由锻的主要方法。
自由锻的特点:工具简单、通用性强,生产准备周期短。
自由锻件的质量范围可由不及一千克到二、三百吨,对于大型锻件,自由锻是唯一的加工方法,这使得自由锻在重型机械制造中具有特别重要的作用,例如水轮机主轴、多拐曲轴、大型连杆、重要的齿轮等零件在工作时都承受很大的载荷,要求具有较高的力学性能,常采用自由锻方法生产毛坯。
由于自由锻件的形状与尺寸主要靠人工操作来控制,所以锻件的精度较低,加工余量大,劳动强度大,生产率低。
自由锻主要应用于单件、小批量生产,修配以及大型锻件的生产和新产品的试制等。
一、自由锻工序自由锻工序:基本工序、辅助工序和修整工序。
(一)基本工序使金属坯料产生一定程度的塑性变形,以得到所需形状、尺寸或改善材质性能的工艺过程。
它是锻件成形过程中必需的变形工序,如镦粗、拔长、弯曲、冲孔、切割、扭转和错移等。
实际生产中最常用的是镦粗、拔长和冲孔三个工序。
1.镦粗沿工件轴向进行锻打,使其长度减小,横截面积增大的操作过程。
常用来锻造齿轮坯、凸缘、圆盘等零件,也可用来作为锻造环、套筒等空心锻件冲孔前的预备工序。
镦粗可分为全镦粗和局部镦粗两种形式,如图2-7所示。
镦粗时,坯料不能过长,高度与直径之比应小于2.5,以免镦弯,或出现细腰、夹层等现象。
坯料镦粗的部位必须均匀加热,以防止出现变形不均匀。
图2-7 镦粗a)全镦粗 b)局部镦粗2.拔长拔长是沿垂直于工件的轴向进行锻打,以使其截面积减小,而长度增加的操作过程,如图2-8所示。
常用于锻造轴类和杆类等零件。
自由锻自由锻:利用冲击力或压力,使金属在上、下砧铁之间,产生塑性变形而获得所需形状、尺寸以及内部质量锻件的一种加工方法。
自由锻造时,除与上、下砧铁接触的金属部分受到约束外,金属坯料朝其它各个方向均能自由变形流动,不受外部的限制,故无法精确控制变形的发展。
自由锻分类:手工锻造和机器锻造两种。
手工锻造只能生产小型锻件,生产率也较低。
机器锻造是自由锻的主要方法。
自由锻的特点:工具简单、通用性强,生产准备周期短。
自由锻件的质量范围可由不及一千克到二、三百吨,对于大型锻件,自由锻是唯一的加工方法,这使得自由锻在重型机械制造中具有特别重要的作用,例如水轮机主轴、多拐曲轴、大型连杆、重要的齿轮等零件在工作时都承受很大的载荷,要求具有较高的力学性能,常采用自由锻方法生产毛坯。
由于自由锻件的形状与尺寸主要靠人工操作来控制,所以锻件的精度较低,加工余量大,劳动强度大,生产率低。
自由锻主要应用于单件、小批量生产,修配以及大型锻件的生产和新产品的试制等。
一、自由锻工序自由锻工序:基本工序、辅助工序和修整工序。
(一)基本工序使金属坯料产生一定程度的塑性变形,以得到所需形状、尺寸或改善材质性能的工艺过程。
它是锻件成形过程中必需的变形工序,如镦粗、拔长、弯曲、冲孔、切割、扭转和错移等。
实际生产中最常用的是镦粗、拔长和冲孔三个工序。
1.镦粗沿工件轴向进行锻打,使其长度减小,横截面积增大的操作过程。
常用来锻造齿轮坯、凸缘、圆盘等零件,也可用来作为锻造环、套筒等空心锻件冲孔前的预备工序。
镦粗可分为全镦粗和局部镦粗两种形式,如图2-7所示。
镦粗时,坯料不能过长,高度与直径之比应小于2.5,以免镦弯,或出现细腰、夹层等现象。
坯料镦粗的部位必须均匀加热,以防止出现变形不均匀。
2.拔长拔长是沿垂直于工件的轴向进行锻打,以使其截面积减小,而长度增加的操作过程,如图2-8所示。
常用于锻造轴类和杆类等零件。
对于圆形坯料,一般先锻打成方形后再进行拔长,最后锻成所需形状,或使用V型砧铁进行3.冲孔利用冲头在工件上冲出通孔或盲孔的操作过程。
材料成型技术基础复习提纲整理第一章绪论1、现代制造过程的分类(质量增加、质量不变、质量减少)。
2、那几种机械制造过程属于质量增加(不变、减少)过程。
(1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。
(2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。
(3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。
第二章液态金属材料铸造成形技术过程1、液态金属冲型能力和流动性的定义及其衡量方法液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。
液态金属的充型能力通常用铸件的最小壁厚来表示。
液态金属自身的流动能力称为“流动性”。
液态金属流动性用浇注流动性试样的方法来衡量。
在生产和科学研究中应用最多的是螺旋形试样。
2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。
流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。
(2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。
(3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。
浇注温度越高,充型能力越好。
在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。
液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。
材料成形工艺基础1.1区分以下名词の含义:逐层凝固P8与顺序凝固P14 糊状凝固P8与同时凝固P15液态收缩与凝固收缩P11 缩孔与缩松P12逐层凝固:纯金属和共晶成分の合金是在恒温下结晶の,铸件凝固时其凝固区宽度接近于零,随着温度の下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。
顺序凝固:是指在铸件上建立一个从远离冒口の部分到冒口之间逐渐递增の温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口の部位先凝固,靠近冒口の部位后凝固,冒口本身最后凝固。
糊状凝固:如果合金の结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固の某段时间内,其固相和液相并存の凝固区会贯穿铸件の整个断面。
同时凝固:是指采取一定の工艺措施,尽量减小铸件各部分之间の温度差,使铸件の各部分几乎同时进行凝固。
液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生の收缩。
凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生の收缩。
铸件在凝固过程中,由于合金の液态收缩和凝固收缩所造成の体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固の部位形成孔洞。
大而集中の孔洞称为缩孔,细小而分散の孔洞称为缩松。
1.2什么是液态合金の充型能力?P10它与合金の流动性有何关系?P10化学成分不同の合金为什么流动性不同?P9流动性不好对铸件の质量有何影响?P10在实际生产条件下熔融金属是否能够顺利充满型腔,从而获得轮廓清晰、形状完整の铸件,这种能力被称为合金の充型能力。
流动性好の合金充型能力强,流动性差の合金充型能力也差。
同种合金中成分不同の合金具有不同の结晶特点,其流动性也不同。
合金の流动性好,不仅有利于充型,而且有利于金属液中の气体和非金属夹杂物の上浮排除,有利于对金属凝固时产生の收缩进行补缩。
合金の流动性差,铸件就容易产生浇不到、冷隔、气孔、夹渣和缩孔等缺陷。
1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液の充型能力。
材料成形工艺基础1.1区分以下名词的含义:逐层凝固P8与顺序凝固P14 糊状凝固P8与同时凝固P15液态收缩与凝固收缩P11 缩孔与缩松P12逐层凝固:纯金属和共晶成分的合金是在恒温下结晶的,铸件凝固时其凝固区宽度接近于零,随着温度的下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。
顺序凝固:是指在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。
糊状凝固:如果合金的结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固的某段时间内,其固相和液相并存的凝固区会贯穿铸件的整个断面。
同时凝固:是指采取一定的工艺措施,尽量减小铸件各部分之间的温度差,使铸件的各部分几乎同时进行凝固。
液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生的收缩。
凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生的收缩。
铸件在凝固过程中,由于合金的液态收缩和凝固收缩所造成的体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固的部位形成孔洞。
大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
1.2什么是液态合金的充型能力?P10它与合金的流动性有何关系?P10化学成分不同的合金为什么流动性不同?P9流动性不好对铸件的质量有何影响?P10在实际生产条件下熔融金属是否能够顺利充满型腔,从而获得轮廓清晰、形状完整的铸件,这种能力被称为合金的充型能力。
流动性好的合金充型能力强,流动性差的合金充型能力也差。
同种合金中成分不同的合金具有不同的结晶特点,其流动性也不同。
合金的流动性好,不仅有利于充型,而且有利于金属液中的气体和非金属夹杂物的上浮排除,有利于对金属凝固时产生的收缩进行补缩。
合金的流动性差,铸件就容易产生浇不到、冷隔、气孔、夹渣和缩孔等缺陷。
1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液的充型能力。
自由锻自由锻:利用冲击力或压力,使金属在上、下砧铁之间,产生塑性变形而获得所需形状、尺寸以及内部质量锻件的一种加工方法。
自由锻造时,除与上、下砧铁接触的金属部分受到约束外,金属坯料朝其它各个方向均能自由变形流动,不受外部的限制,故无法精确控制变形的发展。
自由锻分类:手工锻造和机器锻造两种。
手工锻造只能生产小型锻件,生产率也较低。
机器锻造是自由锻的主要方法。
自由锻的特点:工具简单、通用性强,生产准备周期短。
自由锻件的质量范围可由不及一千克到二、三百吨,对于大型锻件,自由锻是唯一的加工方法,这使得自由锻在重型机械制造中具有特别重要的作用,例如水轮机主轴、多拐曲轴、大型连杆、重要的齿轮等零件在工作时都承受很大的载荷,要求具有较高的力学性能,常采用自由锻方法生产毛坯。
由于自由锻件的形状与尺寸主要靠人工操作来控制,所以锻件的精度较低,加工余量大,劳动强度大,生产率低。
自由锻主要应用于单件、小批量生产,修配以及大型锻件的生产和新产品的试制等。
一、自由锻工序自由锻工序:基本工序、辅助工序和修整工序。
(一)基本工序使金属坯料产生一定程度的塑性变形,以得到所需形状、尺寸或改善材质性能的工艺过程。
它是锻件成形过程中必需的变形工序,如镦粗、拔长、弯曲、冲孔、切割、扭转和错移等。
实际生产中最常用的是镦粗、拔长和冲孔三个工序。
1.镦粗沿工件轴向进行锻打,使其长度减小,横截面积增大的操作过程。
常用来锻造齿轮坯、凸缘、圆盘等零件,也可用来作为锻造环、套筒等空心锻件冲孔前的预备工序。
镦粗可分为全镦粗和局部镦粗两种形式,如图2-7所示。
镦粗时,坯料不能过长,高度与直径之比应小于2.5,以免镦弯,或出现细腰、夹层等现象。
坯料镦粗的部位必须均匀加热,以防止出现变形不均匀。
图2-7 镦粗a)全镦粗 b)局部镦粗2.拔长拔长是沿垂直于工件的轴向进行锻打,以使其截面积减小,而长度增加的操作过程,如图2-8所示。
常用于锻造轴类和杆类等零件。
对于圆形坯料,一般先锻打成方形后再进行拔长,最后锻成所需形状,或使用V型砧铁进行图2-8 拔长图2-9 使用V型砧铁拔长圆坯料3.冲孔利用冲头在工件上冲出通孔或盲孔的操作过程。
常用于锻造齿轮、套筒和圆环等空心锻件,对于直径小于25mm的孔一般不锻出,而是采用钻削的方法进行加工。
在薄坯料上冲通孔时,可用冲头一次冲出。
若坯料较厚时,可先在坯料的一边冲到孔深的2/3深度后,拔出冲头,翻转工件,从反面冲通,以避免在孔的周围冲出毛刺,如图2-10所示。
、高度H0和孔实心冲头双面冲孔时,圆柱形坯料会产生畸变。
畸变程度与冲孔前坯料直径D径d1等有关。
D0/d1愈小,畸变愈严重,另外冲孔高度过大时,易将孔冲偏,因此用于冲孔的坯料直径D0与孔径d1之比(D0/d1)应大于2.5,坯料高度应小于坯料直径。
图2-10 冲孔a)薄坯料冲孔 b)厚坯料冲孔1-冲头 2-坯料 3-垫环 4-芯料冲孔错移扭转(二)辅助工序为使基本工序操作方便而进行的预变形工序称为辅助工序(压钳口、切肩等)。
(三)修整工序用以减少锻件表面缺陷而进行的工序(如校正、滚圆、平整等)。
二、自由锻工艺规程的制定制订工艺规程、编写工艺卡片是进行自由锻生产必不可少的技术准备工作,是组织生产、规范操作、控制和检查产品质量的依据。
制订工艺规程,必须结合生产条件、设备能力和技术水平等实际情况,力求技术上先进、经济上合理、操作上安全,以达到正确指导生产的目的。
自由锻工艺规程:根据零件图绘制锻件图、计算坯料的质量与尺寸、确定锻造工序、选择锻造设备、确定坯料加热规范和填写工艺卡片等。
(一)绘制自由锻件图以零件图为基础,结合自由锻工艺特点绘制而成的图形,它是工艺规程的核心内容,是制定锻造工艺过程和锻件检验的依据。
锻件图必须准确而全面反映锻件的特殊内容,如圆角、斜度等,以及对产品的技术要求,如性能、组织等。
绘制时主要考虑以下几个因素:1.敷料对键槽、齿槽、退刀槽以及小孔、盲孔、台阶等难以用自由锻方法锻出的结构,必须暂时添加一部分金属以简化锻件的形状。
为了简化锻件形状以便于进行自由锻造而增加的这一部分金属,称为敷料,如图2-11所示。
2.锻件余量在零件的加工表面上增加供切削加工用的余量,称之为锻件余量,如图2-11所示。
锻件余量的大小与零件的材料、形状、尺寸、批量大小、生产实际条件等因素有关。
零件越大,形状越复杂,则余量越大。
3.锻件公差锻件公差是锻件名义尺寸的允许变动量,其值的大小与锻件形状、尺寸有关,并受生产具体情况的影响。
图2-11 锻件余量及敷料1—敷料 2—锻件余量自由锻件余量和锻件公差可查有关手册。
钢轴自由锻件的余量和锻件公差,见表2-1。
表2-1 钢轴自由锻件余量和锻件公差(双边)(mm)零件长度零件直径<50 50~80 80~120 120~160 160~200 200~250锻件余量和锻件公差<315 5±2 6±2 7±2 8±3 ——315~630 6±2 7±2 8±3 9±3 10±3 11±4630~1000 7±2 8±3 9±3 10±3 11±4 12±41000~1600 8±3 9±3 10±3 11±4 12±4 13±4 在锻件图上,锻件的外形用粗实线,如图2-12所示。
为了使操作者了解零件的形状和尺寸,在锻件图上用双点划线画出零件的主要轮廓形状,并在锻件尺寸线的上方标注锻件尺寸与公差,尺寸线下方用圆括弧标注出零件尺寸。
对于大型锻件,还必须在同一个坯料上锻造出供性能检验用的试样来,该试样的形状与尺寸也在锻件图上表示。
图2-12 典型锻件图(二)计算坯料质量与尺寸1.确定坯料质量自由锻所用坯料的质量为锻件的质量与锻造时各种金属消耗的质量之和,可由下式计算:G坯料= G锻件+G烧损+G料头式中 G坯料——坯料质量,单位为kg;G锻件——锻件质量,单位为kg;G烧损——加热时坯料因表面氧化而烧损的质量,单位为kg;第一次加热取被加热金属质量分数的2%~3%,以后各次加热取1.5%~2.0%;G料头——锻造过程中被冲掉或切掉的那部分金属的质量,单位为kg;如冲孔时坯料中部的料芯,修切端部产生的料头等。
对于大型锻件,当采用钢锭作坯料进行锻造时,还要考虑切掉的钢锭头部和尾部的质量。
2.确定坯料尺寸根据塑性加工过程中体积不变原则和采用的基本工序类型(如拔长、镦粗等)的锻造比、高度与直径之比等计算出坯料横截面积、直径或边长等尺寸。
典型锻件的锻造比见表2-2。
表2-2 典型锻件的锻造比锻件名称计算部位锻造比锻件名称计算部位锻造比碳素钢轴类锻件最大截面 2.0~2.5 锤头最大截面≥2.5 合金钢轴类锻件最大截面 2.5~3.0 水轮机主轴轴身≥2.5 热轧辊辊身 2.5~3.0 水轮机立柱最大截面≥3.0 冷轧辊辊身 3.5~5.0 模块最大截面≥3.0 齿轮轴最大截面 2.5~3.0 航空用大型锻件最大截面 6.0~8.0 (三)选择锻造工序自由锻锻造工序的选取应根据工序特点和锻件形状来确定。
一般而言,盘类零件多采用镦粗(或拔长-镦粗)和冲孔等工序;轴类零件多采用拔长,切肩和锻台阶等工序。
一般锻件的分类及采用的工序见表2-3。
表2-3 锻件分类及所需锻造工序锻件类别图例锻造工序盘类零件镦粗(或拔长-镦粗),冲孔等轴类零件拔长(或镦粗-拔长),切肩,锻台阶等筒类零件镦粗(或拔长-镦粗),冲孔,在芯轴上拔长等环类零件镦粗(或拔长-镦粗),冲孔,在芯轴上扩孔等弯曲类零件拔长,弯曲等自由锻工序的选择与整个锻造工艺过程中的火次(即坯料加热次数)和变形程度有关。
所需火次与每一火次中坯料成形所经历的工序都应明确规定出来,写在工艺卡片上。
(四)选择锻造设备根据作用在坯料上力的性质,自由锻设备分为锻锤和液压机两大类。
锻锤产生冲击力使金属坯料变形。
锻锤的吨位是以落下部分的质量来表示的。
生产中常使用的锻锤是空气锤和蒸汽-空气锤。
空气锤利用电动机带动活塞产生压缩空气,使锤头上下往复运动进行锤击。
它的特点是结构简单,操作方便,维护容易,但吨位较小,只能用来锻造100kg以下的小型锻件。
蒸汽-空气锤采用蒸汽和压缩空气作为动力,其吨位稍大,可用来生产质量小于1500kg的锻件,如图2-13所示。
图2-13 蒸汽-空气锤示意图液压机产生静压力使金属坯料变形。
目前大型水压机可达万吨以上,能锻造300吨的锻件。
由于静压力作用时间长,容易达到较大的锻透深度,故液压机锻造可获得整个断面为细晶粒组织的锻件。
液压机是大型锻件的唯一成形设备,大型先进液压机的生产常标志着一个国家工业技术水平发达的程度。
另外,液压机工作平稳,金属变形过程中无振动,噪音小,劳动条件较好。
但液压机设备庞大、造价高。
自由锻设备的选择应根据锻件大小、质量、形状以及锻造基本工序等因素,并结合生产实际条件来确定。
例如,用铸锭或大截面毛坯作为大型锻件的坯料,可能需要多次镦、拔操作,在锻锤上操作比较困难,并且心部不易锻透,而在水压机上因其行程较大,下砧可前后移动,镦粗时可换用镦粗平台,所以大多数大型锻件都在水压机上生产。
(五)确定锻造温度范围锻造温度范围是指始锻温度和终锻温度之间的温度范围。
锻造温度范围应尽量选宽一些,以减少锻造火次,提高生产率。
加热的始锻温度一般取固相线以下100~200℃,以保证金属不发生过热与过烧。
终锻温度一般高于金属的再结晶温度50~100℃,以保证锻后再结晶完全,锻件内部得到细晶粒组织。
碳素钢和低合金结构钢的锻造温度范围,一点,以避免锻造时相变引起裂纹。
高合金般以铁碳平衡相图为基础,且其终锻温度选在高于Ar3钢因合金元素的影响,始锻温度下降,终锻温度提高,锻造温度范围变窄。
部分金属材料的锻造温度范围见表2-4。
此外,锻件终锻温度还与变形程度有关,变形程度较小时,终锻温度可稍低于规定温度。
材料类型锻造温度/℃保温时间/min﹒mm-1始锻终锻10、15、20、25、30、35、40、45、50 1200 800 0.25~0.7 15CrA、16Cr2MnTiA、38CrA、20MnA、20CrMnTiA 1200 800 0.3~0.812CrNi3A、12CrNi4A、38CrMoAlA、25CrMnNiTiA、30CrMnSiA、50CrVA、18Cr2Ni4WA、20CrNi3A1180 850 0.3~0.840CrMnA 1150 800 0.3~0.8 铜合金800~900 650~700 —铝合金450~500 350~380 —(六)填写工艺卡片半轴的自由锻造工艺卡片见表2-5。