第26讲 锐角三角函数
- 格式:ppt
- 大小:2.55 MB
- 文档页数:25
解读锐角三角函数锐角三角函数是介于0到90度之间的角的三角函数。
它们包括正弦函数(sin)、余弦函数(cos)和正切函数(tan),在数学和物理学等领域中有广泛的应用。
锐角三角函数的定义如下:- 正弦函数(sin):在直角三角形中,其中一锐角的对边除以斜边得到的比值。
- 余弦函数(cos):在直角三角形中,其中一锐角的邻边除以斜边得到的比值。
- 正切函数(tan):在直角三角形中,其中一锐角的对边除以邻边得到的比值。
正弦函数的值在0到1之间变化,其中sin(0) = 0,sin(90) = 1、余弦函数的值也在0到1之间变化,其中cos(0) = 1,cos(90) = 0。
正切函数的值在负无穷到正无穷之间变化,其中tan(0) = 0,tan(90) = 无穷。
锐角三角函数在几何学中的应用非常广泛。
它们可以用来计算三角形的边长和角度,求解直角三角形以及一般三角形的问题。
例如,知道一个直角三角形的一条边和一个锐角,可以利用锐角三角函数来计算其他边的长度。
此外,锐角三角函数还可以用来计算三角形的面积和高度等问题。
锐角三角函数在物理学中也有重要的应用。
例如,在力学中,可以利用正弦函数和余弦函数来分解复杂的力或速度矢量,并求解它们的分量。
在电工学中,正弦函数和余弦函数可以用来表示交流电的电压和电流。
在波动学中,正弦函数可以描述声波和光波的传播过程。
此外,锐角三角函数还出现在信号处理、图像处理和计算机图形学中。
它们可以用来模拟和处理信号、图像和曲线,从而实现音频和视频的压缩、滤波和变换等技术。
总之,锐角三角函数在数学和物理学等领域中是非常重要的。
它们的应用范围广泛,不仅可以用来解决数学和几何学问题,还可以用来研究自然科学和工程领域的现象和问题。
熟练掌握和理解锐角三角函数的特性和应用,对于学习和研究这些领域都具有重要意义。
《锐角三角函数》讲义一、锐角三角函数的定义在直角三角形中,我们把锐角的对边与斜边的比值叫做正弦(sin),锐角的邻边与斜边的比值叫做余弦(cos),锐角的对边与邻边的比值叫做正切(tan)。
以一个锐角为 A 的直角三角形为例,假设其对边为 a,邻边为 b,斜边为 c。
那么,sin A = a / c,cos A = b / c,tan A = a / b 。
需要注意的是,锐角三角函数的值只与角的大小有关,而与三角形的大小无关。
二、特殊角的三角函数值我们要牢记一些特殊角的三角函数值,这在解题中会经常用到。
30°角:sin 30°= 1 / 2,cos 30°=√3 / 2,tan 30°=√3 / 3 。
45°角:sin 45°=√2 / 2,cos 45°=√2 / 2,tan 45°= 1 。
60°角:sin 60°=√3 / 2,cos 60°= 1 / 2,tan 60°=√3 。
三、锐角三角函数的应用锐角三角函数在实际生活中有广泛的应用。
比如,测量物体的高度。
如果我们知道一个物体与我们的水平距离,以及我们观测物体顶部的仰角,就可以通过三角函数来计算物体的高度。
假设我们站在水平地面上,距离一个建筑物为 d 米,观测建筑物顶部的仰角为α,那么建筑物的高度 h 就可以通过tanα = h / d 来计算,即 h =d × tanα 。
再比如,测量河流的宽度。
我们可以在河的一岸选择一个点,然后测出对岸一个目标点与这个点的连线和河岸的夹角,以及这个点到河岸的垂直距离,从而计算出河流的宽度。
四、锐角三角函数的性质1、取值范围正弦和余弦的值域都在-1, 1之间,而正切的值域是全体实数。
2、增减性在锐角范围内,正弦函数值随着角度的增大而增大,余弦函数值随着角度的增大而减小,正切函数值随着角度的增大而增大。
锐角三角函数作为数学中的一个重要概念,锐角三角函数是我们学习三角函数的关键部分之一。
在几何学和三角学中,锐角指的是小于90度的角。
而锐角三角函数是以锐角作为自变量的三角函数。
一、正弦函数(sine function)在锐角三角函数中,正弦函数是最常见也是最重要的一个函数。
正弦函数可以表示为:sin(θ) = 对边/斜边其中,θ代表锐角的度数,对边代表锐角的对边长度,斜边代表锐角的斜边长度。
二、余弦函数(cosine function)余弦函数是锐角三角函数中的另一个核心函数,表示为:cos(θ) = 临边/斜边同样,θ代表锐角的度数,临边代表锐角的临边长度,斜边代表锐角的斜边长度。
三、正切函数(tangent function)正切函数是另一个重要的锐角三角函数,表达式为:tan(θ) = 对边/临边在这个公式中,θ代表锐角的度数,对边代表锐角的对边长度,临边代表锐角的临边长度。
四、余切函数(cotangent function)余切函数是正切函数的倒数,可以表示为:cot(θ) = 临边/对边θ代表锐角的度数,临边代表锐角的临边长度,对边代表锐角的对边长度。
五、正割函数(secant function)正割函数是余弦函数的倒数,可以表示为:sec(θ) = 斜边/临边θ代表锐角的度数,斜边代表锐角的斜边长度,临边代表锐角的临边长度。
六、余割函数(cosecant function)余割函数是正弦函数的倒数,可以表示为:csc(θ) = 斜边/对边在这个公式中,θ代表锐角的度数,斜边代表锐角的斜边长度,对边代表锐角的对边长度。
锐角三角函数在数学和实际应用中具有广泛的重要性。
无论是在几何学、物理学还是工程学中,锐角三角函数都扮演着重要的角色。
它们可以帮助我们计算和解决各种三角形和锐角相关问题。
在实际应用中,锐角三角函数还广泛应用于测量和建模等领域。
总结起来,锐角三角函数是数学中不可或缺的一部分。
通过掌握和理解正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数,我们可以更好地理解和解决与锐角有关的各种数学和实际问题。
锐角三角函数锐角三角函数指的是在单位圆上,与单位圆心的射线所夹角度小于90°的三角函数。
常见的锐角三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)以及它们的倒数函数(csc、sec、cot)。
锐角三角函数在数学、物理、工程等领域具有重要的应用。
正弦函数 (sin)正弦函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标。
可以用以下公式表示:sin(θ) = 对边 / 斜边正弦函数图示正弦函数图示在三角函数中,正弦函数具有以下特点: - 值域在[-1,1]之间; - 奇函数,即sin(-θ) = -sin(θ); - 周期为2π,即sin(θ + 2π) = sin(θ)。
余弦函数 (cos)余弦函数是指在单位圆上,与x轴正方向的夹角所对应的横坐标。
可以用以下公式表示:cos(θ) = 邻边 / 斜边余弦函数图示余弦函数图示在三角函数中,余弦函数具有以下特点: - 值域在[-1,1]之间; - 偶函数,即cos(-θ) = cos(θ); - 周期为2π,即cos(θ + 2π) = cos(θ)。
正切函数 (tan)正切函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标与横坐标的比值。
可以用以下公式表示:tan(θ) = 对边 / 邻边正切函数图示正切函数图示在三角函数中,正切函数具有以下特点: - 值域为全体实数; - 周期为π,即tan(θ + π) = tan(θ)。
倒数函数 (csc、sec、cot)在锐角三角函数中,除了正弦函数、余弦函数和正切函数,倒数函数也是常见的。
倒数函数分别为余弦函数的倒数 (csc)、正弦函数的倒数 (sec) 以及正切函数的倒数 (cot)。
倒数函数的定义如下:csc(θ) = 1 / sin(θ)sec(θ) = 1 / cos(θ)cot(θ) = 1 / tan(θ)这些倒数函数在数学中常用于简化关系式、求解方程等。
应用领域锐角三角函数在数学、物理、工程等领域有广泛的应用。
•锐角三角函数的概念•锐角三角函数的性质•锐角三角函数的公式•锐角三角函数的应用•锐角三角函数的扩展目录01010203定义正切函数在区间(0, π/2)和区间(π/2, π)上都是增函数,且当α=0时,tan(α)=0;当α=π/4时,tan(α)=1。
性质应用01总结词详细描述周期性总结词在锐角三角形中,边长与角度之间存在直接的关系。
详细描述对于锐角三角形,边长与角度之间的关系可以通过正弦、余弦和正切函数来描述。
这些函数将边长和角度联系在一起,为解决几何问题提供了重要的工具。
角度与边的关系角度与面积的关系总结词详细描述01两角和与差的公式倍角公式余弦正切正弦03正切半角公式01正弦02余弦01已知两边及夹角解三角形已知三边及夹角解三角形已知三边长度解三角形解三角形方向角的计算极坐标系方向问题高度和深度问题高度测量在几何学中,高度是一个重要的概念。
利用三角函数可以方便地计算出任意两点之间的高度差。
深度测量在海洋学和地球物理学中,深度是一个重要的参数。
利用三角函数可以方便地计算出任意一点到海底的距离(深度)。
01范围任意角的三角函数值都有正、负之分,其取值范围为实数集。
定义任意角的三角函数定义为直角三角形中一个锐角对应边的长度与斜边长度的比值。
周期性任意角的三角函数值都具有周期性,即随着角度的变化,函数值呈现出周期性变化。
任意角的三角函数反三角函数定义反三角函数是指那些需要用已知三角函数值求解角度的函数。
种类反三角函数包括反正弦、反余弦和反正切等。
应用反三角函数在几何学、工程技术和科学计算等领域有广泛应用。
双曲函数与三角函数的联系联系公式应用感谢您的观看THANKS。
《锐角三角函数》(解析版)锐角三角函数一、定义三角函数是数学中一类重要的函数,它们与三角关系密切相关。
而锐角三角函数是指在直角三角形中,角度小于90°的三角函数。
1. 正弦函数(sin)正弦函数是指在锐角三角形中,对应的直角边比斜边的比值。
可以用以下公式表示:sinθ = 对边 / 斜边2. 余弦函数(cos)余弦函数是指在锐角三角形中,对应的直角边比斜边的比值。
可以用以下公式表示:cosθ = 邻边 / 斜边3. 正切函数(tan)正切函数是指在锐角三角形中,对边比邻边的比值。
可以用以下公式表示:tanθ = 对边 / 邻边二、性质1. 值域和定义域正弦函数和余弦函数的值域都在[-1, 1]之间,定义域为锐角三角形中的角度范围。
2. 周期性正弦函数和余弦函数在每个周期内都有相同的波形形状,它们的周期都为360°或2π弧度。
3. 正交性正弦函数和余弦函数之间具有正交性,即它们的乘积积分为0。
4. 切线斜率正切函数的斜率可以表示为tanθ的导数,即:f'(θ) = sec^2(θ)5. 三角恒等式锐角三角函数之间满足一系列的三角恒等式,如:sin^2(θ) + cos^2(θ) = 1三、图像与应用1. 图像正弦函数和余弦函数的图像为周期性的正弦波和余弦波,可以通过函数图像进行可视化。
2. 应用锐角三角函数广泛应用于物理学、工程学和计算机图形学等领域。
例如在电路分析中,可以通过正弦函数来表示交流电压的变化;在计算机图形学中,可以通过正弦函数和余弦函数来生成动画效果。
四、常见问题1. 如何计算锐角三角函数的值?通过查阅三角函数表或使用计算器等数学工具,可以准确地计算出锐角三角函数的值。
2. 如何利用锐角三角函数解决实际问题?在实际问题中,可以通过建立三角函数模型并利用已知条件来解决问题。
例如在测量中,可以利用正弦函数或余弦函数计算出某个角度的值。
3. 锐角三角函数与钝角三角函数有什么区别?锐角三角函数与钝角三角函数在定义上有所不同,钝角三角函数可定义为任意角度,而锐角三角函数仅限于小于90°的角度范围。
26.2锐角三角函数的计算教学目标【知识与能力】1.让学生熟识计算器一些功能键的使用,会熟练运用计算器求锐角的三角函数值和由三角函数值求锐角.2.能够运用计算器进行有关三角函数值的计算.3.能够借助计算器解决含三角函数值计算的问题.【过程与方法】1.在教师的指导下通过计算器求一般锐角三角函数值,体会数学知识与实际生活息息相关.2.认识使用计算器可以解决部分复杂问题,通过求值探讨三角函数问题的某些规律,提高学生分析问题的能力.【情感态度价值观】1.通过计算器的使用,了解科学在人们日常生活中的重要作用,激励学生热爱科学、学好文化知识.2.让学生通过独立思考,自主探究和合作交流进一步体会函数的数学内涵,获得知识,体验成功,享受学习的乐趣.教学重难点【教学重点】运用计算器求已知角的三角函数值,已知锐角的三角函数值求相应的锐角.【教学难点】运用计算器处理三角函数中的值或角等问题.课前准备多媒体课件教学过程一、新课引入:导入一:复习提问:1.30°,45°,60°角的三个三角函数值分别是什么?2.如果锐角的正弦分别是12,√22,√32,你能求出相应的锐角吗?如果锐角的余弦分别是12,√22,√32呢?如果锐角的正切分别是√33,1,√3呢?导入二:如图所示,某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8m.要在窗子外面上方安装一个水平挡光板AC,使午间光线不能直接射入室内,那么挡光板AC的宽度应为多少米?师生共同分析:∵光线与地面成80°角,∴∠ACB=80°.,又∵tan∠ACB=AAAA.∴AC= 1.8tan80°[设计意图]通过复习特殊角的三角函数值,引导学生思考不是特殊角的三角函数值如何求解,自然地引出本节课的内容,让学生明确本节课的学习目标.同时通过生活实际问题导入新课,让学生体会数学与实际生活紧密相关,激发学生学习兴趣.二、新知构建:一、共同探究一用计算器求任意锐角的三角函数值【课件展示】(教材110页例1)求下列各三角函数值:(结果保留两位小数)(1)sin36°;(2)tan50°26'37″.思路一通过自主学习完成求值.【师生活动】独立阅读计算器的使用说明书,然后小组合作交流,按照使用说明书共同完成,教师在巡视过程中帮助有困难的学生,对学生的答案进行点评.解:(1)对于sin36°,在计算器开机状态下,可按下列程序操作.按键顺序为显示结果为0.587785252.即sin36°≈0.587785252≈0.59.(2)对于tan50°26'37″,在计算器开机状态下,可按下列程序操作.按键顺序为显示结果为1.210667421.即tan50°26'37″≈1.210667421≈1.21.注:在计算器上输入tan50°26'37″后,tan50□26□37□,它实际上表示的就是tan50°26'37″.思路二教师结合计算器使用说明书讲述用计算器求锐角三角函数值的方法,师生共同完成利用计算器求三角函数值.〔解析〕(1)利用计算器的sin键,并输入角度值36,得到结果sin36°≈0.587785252≈0.59.(2)方法1:同思路一.方法2:因为50°26'37″=50.44361111°,所以可以利用计算器的tan键,输入50.44361111,得到结果tan50.44361111≈1.210667421≈1.21.[设计意图]学生自主学习计算器说明书后,通过小组讨论交流,学会用计算器求锐角的三角函数值,培养学生的自学能力及操作能力.做一做:【课件展示】利用计算器计算,并填表:α三角函数15°50°75°sinαcosαtanα【师生活动】学生独立用计算器完成求三角函数值的计算,填表后小组内交流答案,教师在巡视过程中帮助有困难的学生,对学生的答案进行点评.追问:观察计算的结果,当α增大时,角α的正弦值、余弦值、正切值怎样变化?(角α的正弦值、正切值随着α的增大而增大,角α的余弦值随着α的增大而减小) [设计意图]通过做一做,让学生熟练掌握用计算器求锐角的三角函数值,同时通过观察,归纳锐角的三角函数值随角度的变化规律,培养学生的观察、归纳能力.二、共同探究二已知锐角的三角函数值求角度【课件展示】(教材111页例2)用计算器求下列各锐角的度数:(结果精确到1″)(1)已知cosα=0.5237,求锐角α;(2)已知tanβ=1.6480,求锐角β.【师生活动】独立阅读计算器的使用说明书,然后小组合作交流,按照使用说明书共同完成,教师在巡视过程中帮助有困难的学生,对学生的答案进行点评,并共同归纳操作步骤.解:(1)在计算器开机状态下,按键顺序为显示结果为58.41923095.即α≈58.41923095°.若将其化为度、分、秒表示,可继续按键显示结果为58□25□9.23.即α≈58°25'9″.注:显示屏上显示结果58□25□9.23,实际上表示的就是58°25'9.23″.(2)在计算器开机状态下,按键顺序为显示结果为58.75078643.即β≈58.75078643°.再继续按键显示结果为5845283.即β≈58°45'3″.[设计意图]学生阅读计算器说明书后,小组交流操作方法,归纳操作步骤,培养学生自主学习能力和合作交流能力,同时也培养了学生归纳总结的能力.做一做:【课件展示】1.已知下列三角函数值,用计算器求各锐角的度数:(结果精确到1″)(1)sinα=0.3275;(2)cosβ=0.0547;(3)tanγ=5.2.如图所示,在ΔABC中,∠C=90°,BC=h,AC=2.5h.(1)求∠A的度数;(2)求sin A的值.【师生活动】学生独立完成,小组内交流答案,学生板书,教师在巡视过程中帮助有困难的学生,对学生的答案进行点评,并规范第2题的书写过程.[设计意图]通过做一做1的操作计算,加深已知三角函数值,用计算器求角的操作过程;通过解决做一做2中和三角函数有关的问题,提高学生用计算器解决直角三角形中锐角的三角函数问题的能力.三、例题讲解【课件展示】(教材112页例3)如图所示,在RtΔABC中,∠C=90°,AB=5,BC=4.(1)求sin A的值;(2)求∠B的度数.(结果精确到1″)【师生活动】学生独立思考后,小组合作交流,小组代表展示,教师进行点评.解:(1)在RtΔABC中,sin A=AAAA =45=0.8.(2)∵sin A=0.8,∴由计算器求得∠A≈53°7'48″.∴∠B=90°-∠A≈90°-53°7'48″=36°52'12″.[设计意图]让学生经历用计算器解决直角三角形中的计算问题,提高学生灵活应用三角函数定义解决问题的能力,同时培养学生合作意识.[知识拓展]1.用计算器可以求出锐角的正弦值、余弦值、正切值,由于计算器的类型不同,因此使用方法也不同,所以要根据计算器的说明书来选择按键顺序.2.使用计算器求出的值多数是近似值,具体计算中必须按要求确定近似值.3.由于不同计算器的操作步骤不同,计算锐角的度数时,若将单位表示为“度”“分”“秒”,需要按键°'″或组合键2ndF°'″.三、课堂小结:1.用计算器求任意锐角的三角函数值.2.已知锐角的三角函数值用计算器求角度.。