人教版 八年级数学下册 分式方程 教学设计
- 格式:doc
- 大小:109.00 KB
- 文档页数:8
§ 16.3分式方程一、教材分析1、教学内容的地位和作用〈〈分式方程》人教版数学八年级下册第十六章第三单元第一课时的内容,是建立在整式方程基础上的学习;分式方程是方程模型的一种,是刻画现实世界的有效模型,在数与代数中占有重要地位.分式方程与实际生活紧密联系,更能充分体现数学的科学性,体现数学的应用价值,能帮助学生从数量关系角度更准确清晰地认识、描述和把握现实世界,使学生完善知识结构,提高计算能力,获得必需的数学能力^2、教学目标基于以上分析和数学课程标准的要求,我制定了本节课的教学目标^知识技能:1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握解分式方程的验根的方法.数学思考:能将实际问题中的相等关系用分式方程表示,体会分式方程的模型作用.解决问题:经历“实际问题一一分式方程一一整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识^情感态度:在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值 .3、教学重、难点重点:解分式方程的基本思路和解法难点:理解解分式方程时可能无解的原因.二、学情分析学生在已经学习了一元一次方程、二元一次方程组的基础上,明确了解整式方程的方法步骤后来学习分式方程.初二学生已经具有了一定的类比、分析、归纳能力,但是思维的严谨性仍相对薄弱,虽然他们喜爱学习活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,但仍需老师引导其由感性认识到理性认识.同时学生已经学习了分式的意义,这对理解分式方程可能无解这一教学难点有很大帮助^三、教学策略本节课是在七年级学过的整式方程一元一次方程基础上,介绍分式方程及其解法,我采用“以旧推新”探究式教学方法,真正体现以学生为主体,倡导“双自主学习”理念,启发引导学生发现解决问题的方法,注重知识的形成过程.教学中采用互动式学习模式,用问题做载体,通过小组合作、讨论、交流、归纳、辨析、反思、评价、质疑等活动实现互动,创设和谐民主的课堂氛围.探究分析解决难点4、总结解分式方程的一般步骤:学生先独立解决问题,然后提出自己的看法在小组讨论 . 在学生讨论期间,教师应下到学生当中,参与学生的数学活动,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行检验^师生合作形成共识:明确因为x=1使原方程没有意义,因此x=1不是原分式方程的根,所以原方程无解(提示:一兀方程的解也可称为方程的根)①增根:将分式方程变形为整式方程时,?方程两边问乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.②解分式方程时必须进行检验.?③为什么会产生增根呢?对于原分式方程来说,必时求的程中各分式的分母的值均不为零,?但方程变形后得到的整式方程则没有这个要求,?如果所得整式方程的某个根使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式的值为零,它就不适合原方程,即是原方程的增根.④分式方程怎样检验?将方程的根代入最简公分母,看它的值是否为零,如果为零,即为增根.体验教师与学生的角色关系,充分发挥学生的主观能动性. 引导学生进行比较、探究、并进行充分的讨论,最后达成共识.让学生在数学活动中,通过积极、有效参与,来达到知识和能力,过程和方法,情感和态度三个维度的全面落实.巩固练习拓展提高一、解分式方程:,八3 2(1) ---------x x 6⑵二里小-x 1 x 1 x 1m 1二、方程一土2有增根,求m的值.5 x x 5练习一:由学生在练习本上独立完成,同时找两名学生到黑板上板演.教师巡视指导,对学习有困难的学生及时帮助指点.学生做完后,同桌互相批阅.练习二:让学生分组讨论:有增根的话,增根是什么?通过练习,巩固所学知识.采用逆向思维的方式辨析,多角度理解增根的意义和增根产生的原因.究分析解决难占八、、学生先独立解决问题,然后提出自己的看法在小组讨论在学生讨论期间,教师应下到学生当中,参与学生的数学活动,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行检验.师生合作形成共识:明确因为X=1使原方程没有意义,因此x=1不是原分式方程的根,所以原方程无解(提示: 一元方程的解也可称为方程的根)①增根:将分式方程变形为整式方程时,?方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.②解分式方程时必须进行检验.?③为什么会产生增根呢?对于原分式方程来说,必须要求使方程中各分式的分母的值均不为零,?但方程变形后得到的整式方程则没有这个要求,?如果所得整式方程的某个根使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式的值为零,它就不适合原方程,即是原方程的增根.④分式方程怎样检验?将方程的根代入最简公分母,看它的值是否为零,如果为零,即为增根.一、解分式方程:(1)3 X巩固练习6 x2 1拓展提高二、方程2有增根,求m的值.5练习一:由学生在练习本上独立完成,同时找两名学生到黑板上板演.教师巡视指导,对学习有困难的学生及时帮助指点.学生做完后,同桌互相批阅.练习二:让学生分组讨论:有增根的话,增根是什么?如何求出m的值?体验教师与学生的角色关系,充分发挥学生的主观能动性. 引导学生进行比较、探究、并进行充分的讨论,最后达成共识.让学生在数学活动中,通过积极、有效参与,来达到知识和能力,过程和方法,情感和态度三个维度的全面落实.通过练习,巩固所学知识.采用逆向思维的方式辨析,多角度理解增根的意义和增根产生的原因.究分析解决难占八、、学生先独立解决问题,然后提出自己的看法在小组讨论在学生讨论期间,教师应下到学生当中,参与学生的数学活动,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行检验.师生合作形成共识:明确因为X=1使原方程没有意义,因此x=1不是原分式方程的根,所以原方程无解(提示: 一元方程的解也可称为方程的根)①增根:将分式方程变形为整式方程时,?方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.②解分式方程时必须进行检验.?③为什么会产生增根呢?对于原分式方程来说,必须要求使方程中各分式的分母的值均不为零,?但方程变形后得到的整式方程则没有这个要求,?如果所得整式方程的某个根使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式的值为零,它就不适合原方程,即是原方程的增根.④分式方程怎样检验?将方程的根代入最简公分母,看它的值是否为零,如果为零,即为增根.一、解分式方程:(1)3 X巩固练习6 x2 1拓展提高二、方程2有增根,求m的值.5练习一:由学生在练习本上独立完成,同时找两名学生到黑板上板演.教师巡视指导,对学习有困难的学生及时帮助指点.学生做完后,同桌互相批阅.练习二:让学生分组讨论:有增根的话,增根是什么?如何求出m的值?体验教师与学生的角色关系,充分发挥学生的主观能动性. 引导学生进行比较、探究、并进行充分的讨论,最后达成共识.让学生在数学活动中,通过积极、有效参与,来达到知识和能力,过程和方法,情感和态度三个维度的全面落实.通过练习,巩固所学知识.采用逆向思维的方式辨析,多角度理解增根的意义和增根产生的原因.。
八年级数学下册分式方程教案一、教学目标:1. 让学生理解分式方程的定义及其表示方法。
2. 培养学生解决实际问题,提高学生运用分式方程解决实际问题的能力。
3. 培养学生独立思考、合作交流的能力,提高学生的数学素养。
二、教学重点与难点:重点:理解分式方程的定义及其表示方法。
难点:解决实际问题,运用分式方程求解。
三、教学准备:1. 教师准备PPT,展示分式方程的定义、表示方法及求解步骤。
2. 准备一些实际问题,用于引导学生运用分式方程解决。
四、教学过程:1. 导入:通过复习分数的概念,引导学生思考分数与方程的关系,从而引入分式方程。
2. 讲解:a. 讲解分式方程的定义:含未知数的分数方程叫分式方程。
b. 讲解分式方程的表示方法:一般形式为\( \frac{A}{B} = \frac{C}{D} \),其中A、B、C、D为表达式,且B、D不为0。
c. 讲解求解分式方程的步骤:i. 去分母:将分式方程两边同乘以B和D的最小公倍数。
ii. 去括号:根据分配律,去掉方程中的括号。
iii. 移项:将未知数项移至方程的一边,常数项移至方程的另一边。
iv. 合并同类项:将方程中的同类项合并。
v. 求解:解得未知数的值。
3. 练习:让学生独立解决PPT上展示的一些简单分式方程问题,教师进行个别指导。
4. 应用:让学生分组讨论,合作解决一些实际问题,运用分式方程求解。
5. 总结:对本节课的内容进行总结,强调分式方程的定义、表示方法和求解步骤。
五、课后作业:1. 请完成PPT上的练习题。
2. 请选择一道实际问题,运用分式方程解决,并将解题过程写下来。
3. 预习下一节课的内容。
六、教学拓展:1. 引导学生思考分式方程在实际生活中的应用,例如:比例问题、利润问题等。
2. 引导学生探讨分式方程与其他类型方程的关系,例如:一元一次方程、一元二次方程等。
七、教学评估:1. 通过课堂练习和课后作业,评估学生对分式方程的理解和运用能力。
人教版初二数学分式教学设计(16篇)篇1:初中数学分式教学设计教材的地位和作用本节课是北师大版八年级下册第五章第一节《分式》第一课时。
分式是初中数学中继整式之后学习的一个代数基础知识,是对小学所学分数的延伸和扩展,是建立在本册第四章的分解因式的基础上学习的,同时,它也是今后继续学习分式的性质、运算以及解分式方程的基础和前提。
学好本节课,不仅能够增强学生的运算能力,提高运算速度,同时,也为今后解决更为复杂的代数问题,诸如“函数”、“方程”等,提供重要的条件,打下坚实的基础数学分式教学设计(结合学生情况教学目标设计)由于学生在七年级已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。
学生对分数和整式的理解、掌握不熟练,给本节分式的学习带来了困难,因为其性质与运算是完全类似的,对这种状况,要以基础知识的回忆和探究新知同步进行,在此基础上有所提高,让不同层次的学生都有收获。
所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下4个方面为本节课的教学目标:1.知识与技能目标⑴使学生了解分式产生的背景和分式的概念,了解分式与整式概念的区别与联系.明确分母不得为零是分式概念的组成部分.⑵掌握分式有意义的条件.认识事物间的联系与制约关系.2.过程与方法目标⑴能用分式表示现实情境中的数量关系,体会分式的模型思想,进一步发展符号感,⑵通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.⑶培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.3.情感与价值目标⑴.通过体验动手操作、合作交流、探究解决的学习过程,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想,激发学生解决问题的积极性和主动性。
⑵在土地沙化问题中,体会保护人类生存环境的重要性。
培养学生严谨的思维能力.4.现代教学手段多媒体幻灯投影①课堂使用课件教学,直观、教学知识点覆盖全面,教学内容丰富。
八年级数学教案之分式方程一、教学目标1. 让学生理解分式方程的定义及其特点。
2. 培养学生掌握解分式方程的基本方法。
3. 提高学生运用分式方程解决实际问题的能力。
二、教学内容1. 分式方程的定义及例题解析。
2. 分式方程的解法及步骤。
3. 分式方程在实际问题中的应用。
三、教学过程1. 引入:通过复习分数和代数方程的知识,引导学生过渡到分式方程的学习。
2. 讲解:讲解分式方程的定义,分析其特点,举例说明分式方程的解法及步骤。
3. 练习:让学生独立解决一些简单的分式方程,巩固所学知识。
4. 应用:选取一些实际问题,让学生运用分式方程进行解答。
四、教学方法1. 采用讲解法,讲解分式方程的定义、解法及应用。
2. 运用示例法,展示分式方程的解题过程。
3. 运用练习法,让学生通过独立练习巩固知识。
4. 运用情境教学法,选取实际问题,培养学生的应用能力。
五、教学评价1. 课堂练习:检查学生对分式方程知识的掌握程度。
2. 课后作业:布置一些分式方程题目,检验学生的学习效果。
3. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习积极性。
六、教学拓展1. 讲解分式方程的变形技巧,如去分母、去括号等。
2. 引导学生探索分式方程的解与系数的关系。
3. 介绍分式方程在数学竞赛中的应用。
七、课堂小结2. 强调分式方程在实际问题中的应用价值。
八、课后作业1. 完成教材上的相关练习题。
2. 选取一道实际问题,运用分式方程进行解答。
九、教学反思2. 根据学生的反馈,调整教学策略,提高教学效果。
十、教学延伸1. 讲解分式方程的进一步拓展知识,如高次方程、多变量方程等。
2. 引导学生研究分式方程与函数的关系。
3. 推荐一些分式方程相关的学习资源,鼓励学生自主学习。
重点和难点解析一、教学目标补充和说明:在教学过程中,要让学生充分理解分式方程的概念,掌握其与整式方程的区别。
要引导学生掌握解分式方程的基本方法,如去分母、移项、合并同类项等。
分式方程教学设计第1篇:分式方程教学设计分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要讨论的分式方程.(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.例2.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为时。
16.3 .可化为一元一次方程的分式方程教学设计教学目标:1、了解分式方程的概念2、掌握可化为一元一次方程的分式方程的解法,知道转化的思想方法在解分式方程中的应用3、了解增根的概念,会检验一个数是不是分式方程的增根教学重点难点1、重点:理解分式方程的解法,深刻理解“转化”思想2、难点:理解解分式方程必须验根教学过程一、旧知回顾你还记得吗?1、什么是方程?2、什么是一元一次方程?3、解一元一次方程的一般步骤是什么?(1)去分母(2)去括号(3)移项(4)合并同类项(5)把系数化为14、找错误,假设解:去分母,得:2x -1 10x 1 2x 1 ,13 6 44 (2x —1)- 2 (10x + 1)= 3 (2x+ 1)- 1去括号,得:8x - 4-20x+ 1 = 6x+3-2移项,得:8x - 20x- 6x=3-2-4+1合并同类项,得:-18x= —2把系数化为1,得:1x =9二、引入课题1、了解分式方程的概念观察下列方程,有什么特点?90 60让学生观察得出:分母里含有未知数明确:分式方程:分母里含有未知数的方程 巩固练习 分式方程是分母里含有字母的方程,对吗?出示方程引导观察思考如何去分母,两边同乘以(X-1)(X 2-1)转化为整式方程让学生解答 指导检验是否适合原方程x=1不适合原方程组织学生讨论为什么出现不适合原方程的情况 3、 讨论后,明确增根的概念,为什么会产生增根? 4、 巩固检测(见课件)5、 课堂小结(见课件) (1)x 2 =1 x/ox x 2 -11 ⑵「“3 (3) -*—=-2 23 1 1 (4) 1x y2、分式方程的解法出示方程2 3 ---- + ---- x 1 X -1 6 x 2 -1 ⑹ S=2—W (a b",a ba 、b 为已知数)/、1 「x ⑺一+ 3 (1)90 = x 60 x -6引导观察思考如何去分母,两边同乘以指导检验是否适合原方程x (x-6)转化为整式方程让学生解答 1x -1 2 x 2 -1。
《分式方程》教学设计(共5篇)篇:《分式方程》教学设计教材分析本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。
学情分析《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。
教师作为教学主导,学生是主体作用我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:1、类比学习的方法。
通过与分数的乘除法运算类比得到分式方程的解法。
2、探究合作学习。
学生互助下进行学习。
教学目标知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。
教学重点和难点教学重点:解分式方程的基本思路和解法。
教学难点:理解分式方程可能产生增根的原因。
第2篇:《分式方程》教学设计一、教材分析本节课是分式方程的起始课,要求能从实际的生活情境中抽象出分式方程的概念。
学生认知的基础是:已掌握简单的整式方程的解法(一元一次方程及二元一次方程组),学习过分式的四则运算。
八年级数学下册分式方程教案一、教学目标1. 让学生理解分式方程的定义及其表示方法。
2. 培养学生解决分式方程的能力,提高学生的逻辑思维和运算能力。
3. 引导学生运用数学知识解决实际问题,培养学生的应用能力。
二、教学内容1. 分式方程的定义及表示方法。
2. 分式方程的解法及步骤。
3. 分式方程在实际问题中的应用。
三、教学重点与难点1. 重点:分式方程的定义、表示方法、解法及应用。
2. 难点:分式方程的解法及在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究分式方程的定义、表示方法和解法。
2. 利用实例分析,让学生学会将实际问题转化为分式方程,并解决问题。
3. 采用小组合作学习,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入:引导学生回顾分式的定义,引入分式方程的概念。
2. 新课:讲解分式方程的定义、表示方法,并通过示例让学生熟悉分式方程的解法。
3. 练习:布置一些简单的分式方程练习题,让学生巩固所学知识。
4. 实例分析:引入实际问题,让学生学会将问题转化为分式方程,并解决问题。
6. 作业布置:布置一些分式方程的综合练习题,让学生进一步巩固所学知识。
六、教学评估1. 课堂问答:通过提问学生,了解他们对分式方程的理解程度和掌握情况。
2. 练习题:布置课堂练习题,评估学生对分式方程解法的掌握情况。
3. 小组讨论:观察学生在小组合作学习中的表现,评估他们的团队协作能力和沟通能力。
七、教学拓展1. 引导学生思考:分式方程在实际生活中的应用有哪些?2. 介绍分式方程的其他解法:除了课堂讲解的解法,还可以介绍其他解分式方程的方法,如换元法、消元法等。
3. 布置研究性学习任务:让学生探究分式方程在实际问题中的应用,增强他们的实践能力。
八、教学反思1. 反思教学效果:回顾本节课的教学内容,评估学生对分式方程的掌握情况,思考如何改进教学方法,提高教学效果。
2. 学生反馈:听取学生的意见和建议,了解他们在学习过程中的困惑和问题,为下一节课的教学做好准备。
一、教学目标1. 让学生理解分式方程的定义和特点,掌握分式方程的解法。
2. 培养学生运用分式方程解决实际问题的能力。
3. 提高学生的数学思维能力和解决问题的能力。
二、教学内容1. 分式方程的定义和特点2. 分式方程的解法3. 分式方程在实际问题中的应用三、教学重点与难点1. 重点:分式方程的解法及应用。
2. 难点:分式方程的解法,特别是含未知数的分母和分式方程的转化。
四、教学方法1. 采用问题驱动法,引导学生主动探究分式方程的解法。
2. 运用案例分析法,让学生学会将实际问题转化为分式方程。
3. 采用合作学习法,培养学生的团队协作能力。
五、教学过程1. 导入:通过复习分式的知识,引导学生了解分式方程的定义和特点。
2. 新课讲解:讲解分式方程的解法,举例说明解题步骤。
3. 案例分析:分析实际问题,引导学生将问题转化为分式方程,并解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
5. 总结与拓展:总结本节课的重点内容,布置课后作业,鼓励学生拓展学习。
一、教学目标1. 让学生理解分式方程的定义和特点,掌握分式方程的解法。
2. 培养学生运用分式方程解决实际问题的能力。
3. 提高学生的数学思维能力和解决问题的能力。
二、教学内容1. 分式方程的定义和特点2. 分式方程的解法3. 分式方程在实际问题中的应用三、教学重点与难点1. 重点:分式方程的解法及应用。
2. 难点:分式方程的解法,特别是含未知数的分母和分式方程的转化。
四、教学方法1. 采用问题驱动法,引导学生主动探究分式方程的解法。
2. 运用案例分析法,让学生学会将实际问题转化为分式方程。
3. 采用合作学习法,培养学生的团队协作能力。
五、教学过程1. 导入:通过复习分式的知识,引导学生了解分式方程的定义和特点。
2. 新课讲解:讲解分式方程的解法,举例说明解题步骤。
3. 案例分析:分析实际问题,引导学生将问题转化为分式方程,并解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
16.3分式方程第1课时16.3 分式方程(1)教学目标1、知识技能(1)了解分式方程的概念;(2)掌握可化为一元一次方程的分式方程的解法及步骤。
2、过程方法(1)经历观察、归纳、类比等数学活动的过程,概括出分式方程的定义。
(2)通过思考、探索和归纳可化为一元一次方程的分式方程的解法和步骤,培养学生的转化思想及数学概括能力。
3、情感态度价值观通过学习,获得学习数学代数知识的常用方法,,能感受代数学习的价值。
教学重点:探索可化为一元一次方程的分式方程的解法及步骤。
教学难点:如何把分式方程化为一元一次方程。
以及增根的问题教学方法:启发式设问和同学讨论相结合。
教学过程一、创设问题情境,引入新课1.提问:什么叫方程? 2.什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.4.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程vv-=+206020100.这个方程和我们以前所见过的方程不同,观察它们有什么特点?(板书课题:分式方程) 二、探究新知1、板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程. 练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.(如何去掉分母?) 解:两边同乘以最简公分母2(x+5)得 2(x+1)=5+x 2x+2=5+x x=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.(怎么检验?)检验:把x=3代入原方程左边=右边∴x=3是原方程的解. 2、解引言问题中的方程 v20100+=v2060-解方程得:v =5检验:v =5为方程的解。
所以水流速度为5千米/时。
3、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.4、讨论理解(1) P27思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.(2)P27的归纳明确地总结了解分式方程的基本思路和做法.(3)P28思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P28的归纳出检验增根的方法.三、练习1、见课本29页2、补充练习:四、课堂小结解分式方程的一般步骤:1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.2.解这个方程.3.把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去.五、作业布置习题16.3 1题课后反思:第2课时 16.3 分式方程(2)教学目标: 1、知识与技能(1)使学生更加深入理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.(2)使学生检验解的原因,知道解分式方程须验根并掌握验根的方法 2、过程方法通过练习、思考、探索和归纳可化为一元一次方程的分式方程的解法和步骤,培养学生的转化思想及数学概括能力。
3、情感态度价值观通过学习,获得学习数学代数知识的常用方法,,能感受代数学习的价值。
培养学生自主探究的意识,提高学生观察能力和分析能力.教学重点:掌握可化为一元一次方程的分式方程的解法及步骤,理解分式方程必须验根的原因;教学难点:如何把分式方程化为一元一次方程。
以及增根的问题 教学方法:启发式设问和同学讨论相结合。
教学过程: 一.复习引入 解方程: (1)51144x x x --=--解: 51144x x x -+=-- 方程两边同乘以,得.∴检验:把x =5代入 x -5,得x -5≠0所以,x =5是原方程的解. (2)22162242x x x x x -+-=+-- 解:方程两边同乘以,得,∴ .检验:把x =2代入 x 2—4,得x 2—4=0. 所以,原方程无解..思考:上面两个分式方程中,为什么(1)去分母后所得整式方程的解就是(1)的解,而(2)去分母后所得整式的解却不是(2)的解呢?学生活动:小组讨论后总结 二.总结(1)为什么要检验根?在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根).对于原分式方程的解来说,必须要求使方程中各分式的分母的值均不为零,但变形后得到的整式方程则没有这个要求.如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式(各分式的最简公分母)的值为零,它就不适合原方程,则不是原方程的解.(2)验根的方法一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.三.应用 例1 解方程x33x 2=-解:方程两边同乘x (x -3),得 2x =3x -9 解得 x =9检验:x =9时 x (x -3)≠0,9是原分式方程的解. 例2 解方程)2x )(1x (311x x +-=--解:方程两边同乘(x -1)(x +2),得 x (x +2)-(x -1)(x +2)=3 化简,得 x +2=3 解得 x =1检验:x =1时(x -1)(x +2)=0,1不是原分式方程的解,原分式方程无解. 四.随堂练习 1.解方程 (1) 01152=+-+xx(2)xx x 38741836---=-(3)623-=x x (4)1613122-=-++x x x五.课时小结 六.作业 1.解方程 (1)114112=---+x x x (2)22122=-+-x x x x(3)01432222=---++x xx xx (4)4322511-=+-+x x课后反思:第3课时 16.3 分式方程(3)教学目标: 1、知识与技能(1)会分析题意找出等量关系.(2)会列出可化为一元一次方程的分式方程解决实际问题. 2、过程与方法通过思考、解决用可化为一元一次方程的分式方程的解答的实际问题,培养学生的数学思想及分析解决问题的能力。
3、情感态度价值观通过学习,获得学习数学代数知识的常用方法,,能感受代数学习的价值。
培养学生自主探究的意识,提高学生观察能力和分析能力.重点、难点1.重点:利用分式方程解决实际问题.2.难点:列分式方程表示实际问题中的等量关系. 3.认知难点与突破方法设未知数、列方程是本章中用数学模型表示和解决实际问题的关键步骤,正确地理解问题情境,分析其中的等量关系是设未知数、列方程的基础. 可以多角度思考,借助图形、表格、式子等进行分析,寻找等量关系,解分式方程应用题必须双检验:(1)检验方程的解是否是原方程的解;(2)检验方程的解是否符合题意.教学过程 一、复习提问 1.解分式方程的步骤(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根.2.列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答. 3.由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么?在学生讨论的基础上,教师归纳总结基本上有: (1)行程问题:基本公式:路程=速度×时间(2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v 顺水=v静水+v 水.v 逆水=v 静水-v 水.二、新课例3.两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。
哪个队的施工速度快?分析:甲队一个月完成总工程的31,设乙队如果单独施工1个月能完成总工程的x1,那么甲队半个月完成总工程的61,乙队半个月完成总工程的2x1,两队半个月完成总工程的61+2x1。
等量关系为:甲、乙两个工程总量=总工程量 则有31+61+2x1=1(教师板书解答、检验过程)例4:从2004年5月起某列列车平均提速v 千米/时。
用相同的时间,列车提速前行驶s 千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?分析:这里的字母v ,s 表示已知数据,设提速前的平均速度为x 千米/时,则 提速前列车行驶s 千米所用的时间为xs 小时,提速后列车的平均速度为(x +v )千米/时,提速后列车行驶(s +50)千米所用 的时间为vx 50s ++小时。
等量关系:提速前行驶50千米所用的时间=提速后行驶(s +50)千米所用的时间列方程得:xs =vx 50s ++(教师板书解答、检验过程) 三、课堂练习 课本P31 1.2 四、小结对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系.对于我们常见的几种类型题我们要熟悉它们的基本关系式.四、作业 课后反思:。