数的整除复习PPT
- 格式:ppt
- 大小:259.00 KB
- 文档页数:6
第5讲数的整除性(一)三、四年级已经学习了能被2,3,5和4,8,9,6以及11整除的数的特征,也学习了一些整除的性质。
这两讲我们系统地复习一下数的整除性质,并利用这些性质解答一些问题。
数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。
(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。
(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。
灵活运用以上整除性质,能解决许多有关整除的问题。
例1 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。
分析与解:分别由能被9,25和8整除的数的特征,很难推断出这个七位数。
因为9,25,8两两互质,由整除的性质(3)知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4。
这个七位数是4735800。
例2由2000个1组成的数111…11能否被41和271这两个质数整除?分析与解:因为41×271=11111,所以由每5个1组成的数11111能被41和271整除。
按“11111”把2000个1每五位分成一节, 2000÷5=400,就有400节,因为2000个1组成的数11…11能被11111整除,而11111能被41和271整除,所以根据整除的性质(1)可知,由2000个1组成的数111…11能被41和271整除。
例3 现有四个数:76550,76551,76552,76554。
能不能从中找出两个数,使它们的乘积能被12整除?分析与解:根据有关整除的性质,先把12分成两数之积:12=12×1=6×2=3×4。
10、数的整除复习第一章数的整除复习一、知识梳理(一)整数和整除:整除的条件:1、除数、被除数都是_______.2、被除数除以除数,商是_____,而且余数为_____.除尽的条件:1、除数、被除数不一定是____.2、被除数除以除数,商是整数或有限小数,而且____为零.(二) 整数和整除的意义整数a 能整除整数b ,b 叫做a 的______,a 叫做b 的_______.(三) 能被2、5整除的数1.能被2整除的数的特征:个位上是____________的数.2.能被5整除的数的特征:个位上是_______的数.3.能被3整除的数的特征:各个位上数的___能被____整除,这个数就能被3整除.(四) 素数、合数与分解素因数1、素数:______________________________________________.2、合数:_______________________________________________.3、一个数的因数的个数是_____的,最小的因数是_____,最大的约数是_____.4、一个数的倍数的个数是_____的,最小的倍数是_____,没有最大的倍数.5、“1”即不是_____,也不是_____.(五)公因数和最大公因数1、若两数互素,那么它们的最大公因数就是_________.2、若两数是倍数关系,那么它们的最大公因数就是____________.(六)公倍数和最小公倍数1、若两数互素,那么它们的最小公倍数就是_____________.2、若两数是倍数关系,那么它们的最小公倍数就是_________.二、课前热身1、在下列数中,-10,2,0,-77,8.3,21,100,21 自然数有_______________,整数有_____________.2、如果27÷3=9,那么________能被_______整除,_______是_______因数。
数的整除复习一.知识梳理1、整数:“零”既不是正整数,也不是负整数 2、整除:整数a 除以整数b ,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
3、因数和倍数:归纳:一个数的因数是有限的。
一个数的倍数的个数是无限的。
一个数的因数通常是成对出现的。
最小的因数是1,最大的因数是它本身。
最小的倍数是它本身,没有最大的倍数。
4、区别除尽和整除:除尽:最后结果是一个有限数;整除:最后结果是一个整数。
5、偶数与奇数如果一个整数能被2整除,称该整数为偶数。
如果一个整数不能被2整除,称该整数为奇数。
整数的分类⎩⎨⎧偶数奇数 整数正整数 零 负整数 自然数 条件: 除数、被除数都是整数 被除数除以除数,商是整数而且余数为零一个数的倍数是无限的,最小的倍数是它本身定义:整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 因数(也称为约数) 一个整数的因数的个数是有限的,最小的因数是1,最大的因数是它本身 因数倍数6、能被2、3、5整除的数的特征:7、素数、合数:我们把只含有因数1如果除了1分解素因数的方法:8、公因数与最大公因数如果两个整数只有公因数19、公倍数和最小公倍数:例题解析例1、填空题(1)有一个直角三角形,两条直角边是两个质数,长度和是18分米,这个三角形的面积是( )平方分米。
(2)一堆苹果,已知比50个多,比70个少,把它们可以平均分成两堆,也可以平均分成三堆,还可以平均分成五堆,这堆苹果有()个(3)六年级同学站队,每排5人多2人,每排6人多3人,每排7人则差2人,六年级学生人数不超过150人,那么他们应是( )人。
(4)某长途汽车站向北线每20分钟发一辆汽车,向南线每15分钟发一辆汽车,如果同时向两线发车,至少要经过( )分钟又同时发车。
巩固练习:(1)一盒铅笔可以平均分给2、3、5、6个小朋友,这盒铅笔最少有()人。
(2)一筐梨,按每份2个梨分多1个,每份3个多2个,每份5个多4个,筐里至少有()个梨。
第4讲 数的整除单元复习【学习目标】数的整除是建立在整数的四则运算的基础上的,通过本章的学习,学生需要理解整除的意义,理清因数与倍数、奇数与偶数、素数与合数、公因数与公倍数的概念,掌握求最大公因数和最小公倍数的算理和方法,难点是利用最大公因数和最小公倍数解决实际问题.目的在于,通过丰富的实例,体验数学与日常生活的密切联系,感受如何运用数学的思维方式去观察、分析并解决生活中的问题,从而增强应用数学的意识,体会数学与生活的联系,了解数学的价值,增进对数学的理解.【基础知识】1.⎧⎫⎪⎬⎨⎭⎪⎩正整数自然数整数零负整数; 2.整除:整数a 除以整数b ,若除得的商是整数且余数为零. 即称:a 能被b 整除;或b 能整除a. 整除的条件:..⎫⎧⎪⎨⎬⎪⎩⎭除数、被除数都是整数;三整一零商是整数且余数为零 整除与除尽的关系.⎧⎧⎪⎨⎨⎩⎪⎩整除:被除数、除数、商整数,且余数为零;区别除尽:被除数、除数、商是整数,没有余数.联系:整除是除尽都是不一定的特殊形式3.因数与倍数:整数a 能被整数b 整除,a 就叫b 的倍数,b 就叫a 的因数(约数).因数与倍数的特征:⎧⎪⎨⎪⎩因数与倍数互相依存;一个整数的因数中最小因数为1,最大因数为它本身一个整数的倍数中最小的倍数是它本身,无最大倍数.4.能被2整除的数2468.⎧⎨⎩偶数(2n);(否则是奇数(2n-1))特征:个位上是0,,,,, 能5整除的数的特征:个位上数字是0,5;能同时被2、5整除的数:个位上数字是0.*能被3整除的数:一个整数的各个数位上数字之和能被3整除,这个整数就能被3整除.*能同时被2、3和5整除的数:个位数是0,且各个数位上数字之和能被3整除5.111.⎧⎪⎨⎪⎩:只有因数;正整数素数:只有和两个因数;合数:除了和以外还有别的因一个它本身它数本身6. ⎧⎪⎪→⎨⎪⎪⎩素因数:每个合数都可写成的形式,其中每个素数 都是这个合数的,叫这个合数合几个素数积因数式的素因数;数分解素因数分解素因数:把一个合数用表示.方法:短除法;树枝分解法;口算法素因数相乘的;机算法.形7. ⎧⎪→→⎨⎪⎩公有的因数最大的 定义:几个数,叫这几个数的公因数;其中公因数最大公因数叫这几个数的最大公因数;求法:枚举法;分解素因数法;短除. 一个法8. 1⎧⎨⎩公因数1不一互素:指两个整数只有.这两个整数是素数.区别素数:只有和它本身因数;定两个9. 1.⎧⎪⎪⎪⎪⎪→→→→⎧⎨⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩定义:几个整数的,叫它们的公倍数;其中叫它们的最小公倍数;公倍数最小公倍数一般方法:倍数公倍数最小公倍数;2.分解素因数法;最小公倍数的求法 3.短除法.4.特殊情况:两个数互素;两个连续的公有的倍数最小的 个正整数. 一 10.重要结论:1.a b ab a b a b ⎧⎨⎩若是的因数,则它们的最大公因数为,最小公倍数为;若与互素,则它们的最大公因数为,最小公倍数为 【考点剖析】考点一:整数和整除的意义例1.(浦东南片十六校2020期末1)下列各组数中,第一个数能被第二个数整除的是( )A. 5和20;B. 7和2;C. 34和17;D. 1.2和3.【答案】C ;【解析】解:A 、20能被5整除,故A 不符合题意;B 、没有整除关系,故B 不符合题意;C 、34能被17整除,故C 符合题意;D 、1.2不是整数,故D 不符合题意;因此答案选C.例2.(2019上南中学10月考2)在数18,-24,0,2.5,34,2005,3.14,-10中,整数有( ) A. 2个; B. 3个; C. 4个; D. 5个.【答案】D ;【解析】解:在上述数中,其中整数有18,-24,0,2005,-10共5个,故答案选D.考点二:因数与倍数例1.(2019晋元附校测试2)14的因数有__________.【答案】1、2、7、14;【解析】解:14的因数有1、2、7、14.例2.(2019浦东上南东10月考17)如果用[]a 表示a 的全部因数的和,如[]1263216=+++=,那么[][]=-818________【答案】24;【解析】解:因为[]a 表示a 的全部因数的和,故[18]=1+2+3+6+9+18=39,[8]=1+2+4+8=15,所以[18]-[8]=39-15=24.考点三::能被2,5整除的数例1.(奉贤2019期中10)正整数中,能同时被2和5整除的最大两位数是 .【答案】90;【解析】解:正整数中,能同时被2和5整除的最大两位数是90.例2.(青教院附中2019期中18)如图,用灰白色正方形瓷砖铺设地面,则第n 个图案中白色瓷砖数为 块.【答案】32n +;【解析】解:第1个图案中白色瓷砖数为3+2块,第2个图案中白色瓷砖数为32+2⨯块,第3个图案中白色瓷砖数为33+2⨯块,…,第n 个图案中 白色瓷砖数为3n+2块.考点四:素数、合数与分解素因数例1.(2019建平西校10月考3)下列说法正确的是( )A.奇数都是素数;B.素数都是奇数;C.合数不都是偶数;D.偶数都是合数.【答案】C ;【解析】解:A 、奇数不一定是素数,如9等,故A 错误;B 、素数不一定是奇数,如2,故B 错误;C 、合数不都是偶数,正确;D 、偶数不一定是合数,如2,故D 错误;因此答案选C.例2.(2019徐教院附中10月考7)最小的素数是_____,最小的合数是____.【答案】2, 4;【解析】解:最小的素数为2,最小的合数为4.例3.(闵行区2020期末7)把18分解素因数,那么18= .【答案】233⨯⨯;【解析】解:把18分解素因数为18=233⨯⨯.考点五:公因数与最大公因数例1.(嘉定区2020期末1)3和24的最大公因数是_________.【答案】3;【解析】解:3和24的最大公因数是3.例2.(2019浦东四署10月考12)甲数=2×2×3,乙数=2×3×3×5,甲数与乙数的最大公因数是 .【答案】6;【解析】解:因为甲数=2×2×3,乙数=2×3×3×5,所以甲数与乙数的最大公因数为:2×3=6.考点六:公倍数与最小公倍数例1.(奉贤2019期中9)如果A=2×3×7,B=3×5×7,那么A 和B 的最小公倍数是 .【答案】210;【解析】解:因为A=2×3×7,B=3×5×7,那么A 和B 的最小公倍数是3×7×2×5=210.例2. (2019徐教院附中10月考16)已知532⨯⨯=A 、732⨯⨯=B ,则B A 、的最小公倍数是____,最大公因数是_____.【答案】210, 6;【解析】解:因为235A =⨯⨯、237B =⨯⨯,则A 、B A 、的最小公倍数是2×3×5×7=210,最大公因数是2×3=6.例3.(2019建平西校10月考26)一筐苹果80多个,每次拿4个,每次拿5个,都恰好多1个,这筐苹果共有多少个?【答案】81;【解析】解:设这筐苹果拿掉一个后,总数能4和5整除,故是20的倍数,根据题意总数为80+1=81个.【真题演练】一、选择题1.(2019闵行实验西校10月考1)下面各组数中,第一个数能整除第二个数的是( )A .14和7; B.2.5和5; C.9和18; D.0.4和8.【答案】C;【解析】解:A 、14能被7整除,不符合题意;B 、2.5不是整数,不符合题意;C 、9能整除18,符合题意,故C 正确;D 、0.4不是整数,故D 不符合题意;因此答案选C.2.(2019上南中学10月考1)下列关于“1”的叙述不正确的是( )A.1是最小的自然数;B.1既不是素数,也不是合数;C.1是奇数;D.1能整除任何一个正整数.【答案】A ;【解析】解:A 、最小的自然数为0,故A 错误;B 、1既不是素数,也不是合数,故B 正确;C 、1是奇数,故C 正确;D 、1能整除任何一个正整数,故D 正确;因此答案选A.3.(浦东南片2019期中2)36的全部因数的个数有( )A. 6个B. 7个C. 8个D. 9个【答案】D ;【解析】解:36的因数有:1、2、3、4、6、9、12、18、36,一共9个;因此答案选D.4.(川沙中学南校2019期末1)把66分解素因数是( )A.6612311=⨯⨯⨯;B. 66611=⨯;C. 662311=⨯⨯;D. 231166⨯⨯=.【答案】C ;【解析】解:把66分解素因数是:662311=⨯⨯,故答案选C.5. (奉贤2019期中4)下列说法正确的是( )①14能被42整除;②正整数一定是自然数;③12的因数有1、2、3、4、6、12共6个;④如果两个数互素,那么这两个数不能是合数.A.1个;B. 2个;C. 3个;D. 4个.【答案】B ;【解析】解:14能整除42,故①错误;正整数一定是自然数,故②正确;12的因数有1、2、3、4、6、12共6个,故③正确;如果两个数互素,那么这两个数可以是合数,如15与16互素,但15与16均是合数,故④错误;因此正确的命题个数为2个;故答案选B.6.(2019大同初中10月考1)下列关于1的描述中,错误的是( )(A)1既不是素数,也不是合数 (B)1是最小的正整数(C)1除以任何数等于这个数本身 (D)任何一个奇数加上1都是偶数【答案】C ;【解析】解:1既不是素数,也不是合数,故A 正确;1是最小的正整数,故B 正确;1除以任何数等于这个数本身,错误, 故C 符合题意;任何一个奇数加上1都是偶数,故D 正确;因此答案选C.7.(闵行区2020期末1)整数16与24的最大公因数是( )A. 2;B. 4;C. 8;D.48.【答案】C ;【解析】解:因为162222,242223=⨯⨯⨯=⨯⨯⨯,所以它们的最大公因数为2×2×2=8.8.(2019徐教院附中10月考5)b a 、都是正整数,如果b a 3=,那么b a 、的最小公倍数是( )、A ab 3 、B a 、C b 、D ab 【答案】B;【解析】解:因为a=3b ,故a 、b 的最小公倍数为a ,因此答案选B.9. (川沙中学南校2019期末6)如果n 表示一个大于1的整数,那么下列四个选项中,一定表示合数的是( )A.n+2;B.n-2;C.2n ;D.2n . 【答案】C ;【解析】解:因为n 表示一个大于1的整数,故2n 表示大于2的偶数,故2n 一定是合数,故答案选C.二、填空题10.(2019南模初中10月考1) 最小的自然数是 .【答案】0;【解析】解:最小的自然数为0.11.(2019大同初中10月考7)4.8÷3=1.6, 填“能”或“不能”)说3能整除4.8【答案】不能;【解析】解:因为4.8,1.6都是小数,不是整数,故不能说3能整除4.8.12.(2019晋元附校测试10)有一个数,它既是a 的倍数,又是a 的因数,这个数是__________.【答案】a ;【解析】解:既是a 的倍数,又是a 的因数,则这个数就是它本身a.13.(2019松江九亭10月考1)写出既能被2整除又能被5整除的最小的两位__________.【答案】10;【解析】解:既能被2整除又能被5整除的数,个位数为0,因此最小的两位数为10.14.(2019中国中学10月考6)三位数75□能同时被2、3整除,那么□可以是 。