热电偶和热电阻知识
- 格式:pdf
- 大小:76.95 KB
- 文档页数:6
热电偶和热电阻的区别与识别方法热电偶和热电阻是工业上常用的两种温度传感器,它们在测量温度方面具有很好的性能。
然而,它们的工作原理和特点有很大的区别。
本文将就热电偶和热电阻的区别及识别方法进行详细的介绍,希望能够为大家对这两种传感器有一个更深入的了解。
一、热电偶和热电阻的工作原理1. 热电偶的工作原理热电偶是利用两种不同材料的热电势差产生的原理来测量温度的。
当两种不同金属相接形成闭合回路后,如果两个接头处于不同的温度下,就会在回路中产生一个热电动势,这种现象称为热电效应。
通过测量这个热电动势的大小,就可以确定两个接头处的温度差,从而测量出被测物体的温度。
热电偶的优点是测量范围广,精度高,响应速度快,但是对环境条件和测量电路的影响比较敏感。
2. 热电阻的工作原理热电阻是利用材料的电阻随温度变化的特性来测量温度的。
一般情况下,热电阻的电阻值随温度升高而增大,利用这个特性可以通过测量热电阻的电阻值来确定被测物体的温度。
热电阻的优点是测量精度高,线性好,但是响应速度相对较慢,不适合对温度变化较快的物体进行测量。
二、热电偶和热电阻的区别1. 原理区别热电偶利用热电效应来测量温度,而热电阻利用电阻随温度变化的特性来测量温度,两者的工作原理完全不同。
2. 测量范围区别热电偶的测量范围更广,可以用于测量-200℃至1800℃范围内的温度;而热电阻的测量范围相对较窄,一般在-200℃至600℃之间。
3. 线性特性区别热电偶的温度-电压变化是非线性的,而热电阻的温度-电阻变化是线性的。
4. 响应速度区别热电偶由于其工作原理的特性,响应速度比较快,适合对温度变化较快的物体进行测量;而热电阻的响应速度相对较慢,不适合对温度变化较快的物体进行测量。
5. 环境条件影响区别热电偶对环境条件和测量电路的影响比较敏感,容易受到干扰;而热电阻对环境条件和测量电路的影响相对较小。
6. 价格区别由于其工作原理和特性的不同,热电偶的制作工艺相对较为复杂,成本较高;而热电阻的制作工艺相对简单,成本较低。
热电偶温度计热电现象和关于热电偶的基本定律热电偶温度计由热电偶、电测仪表和连接导线组成。
它被广泛用于测量-200~1300℃范围内的温度。
在特殊情况下,可测至2800℃的高温或4K 的低温。
热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。
1. 热电偶测温原理由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。
热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。
热电势由温差电势与接触电势组成。
温差电势:是指一根导体上因两端温度不同而产生的热电动势。
同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。
该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。
温差电势的方向:由低温端指向高温端。
温差电势的大小:,()dt dtt N d N e k t t e t tt t )(1,00⎰=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的函数;t 、to 是导体两端的温度。
可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。
热端 测量端 工作端冷端自由端参比端热电极B(e AB ()0t AB (,t t e (0,t t e B热电偶回路的总电势接触电势:是在两种不同材料A 和B 的接触点产生的。
A 、B 材料有不同的电子密度,设导体A 的电子密度n A 大于导体B 的电子密度n B ,则从A 扩散到B 的电子数要比从B 扩散到A 的多,A 因失电子而带正电荷,B 因得电子而带负电荷,于是在A 、B 的接触面上便形成一从A 到B 的静电场。
热电偶和热电阻区别1、虽然都是接触式测温仪表,但它们的测温范围不同。
热电偶使用在温度较高的环境,因它们在中,低温区时输出热电势很小,当电势小时,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域,冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出,不易得到全补偿。
热电阻使用在中低温的环境,一般使用热电阻测温范围为20(Γ500°C,甚至还可测更低的温度(如用碳电阻可测到IK左右的低温).现在正常使用钳热电阻Ptl00。
(也有Pt50,在工业上也有用铜电阻,但测温范围较小,在一50~150°C之间。
在一些特殊场合还有钢阻,镐电阻等)。
2、测温原理热电偶测量温度的基本原理是热电效应,二次表是一个检伏计或为了提高精度时使用电子电位差计。
热电阻是基于导体和半导体的电阻值随温度而变化的特性而工作的,二次表是一个不平衡电桥。
3、工作中的现场故障判断热电偶:热电偶有正负极,补偿导线也有正负之分。
首先保证连接和配置正确,在运行中,常见的故障现象有短路、断路、接触不良(有万用表可判断)和变质(根据表面颜色来鉴别)。
检查时,要使热电偶与二次表分开。
热电阻:不外乎短路和断路。
用万用表可判断,在运行中怀疑短路只要将电阻端拆下一个线头,显示仪表如到最大则热电阻短路;显示仪表如回零导线短路。
保证正常连接和配置时,表值显示低或不稳,保护管可能性进水了。
热电偶和电阻信号进入PLC系统,如果仪表开路,PLC数据回零;如果仪表短路,PLC 数据溢出;如果仪表信号受电磁干扰,PLC数据不稳定或一直溢出。
4、热电偶和热电阻的选择热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。
其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。
T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度。
热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
热电阻与热电偶热电阻和热电偶是常见的温度传感器,它们在工业控制系统和实验室中广泛应用。
它们都能够将温度变化转化为电信号,但原理和特性有所不同。
一、热电阻热电阻是一种利用材料电阻随温度变化的特性来测量温度的传感器。
常见的热电阻材料有铂、镍、铜等。
其中,铂热电阻是最常用的一种。
铂热电阻的优点是抗腐蚀性好、线性度高、稳定性好等。
它的工作原理是根据热电阻材料的电阻随温度的变化规律,通过测量电阻值来推算温度。
热电阻的测量精度较高,通常可以达到0.1℃。
但它的响应速度较慢,适用于温度变化较缓慢的场合。
在工业控制系统中,热电阻常被用于测量液体、气体等介质的温度。
二、热电偶热电偶是利用两种不同材料的导电性能差异产生的热电效应来测量温度的传感器。
常见的热电偶材料有铜/常铜、铜/镍等。
工作原理是当两种不同材料的接触点温度不同时,会产生热电势差,通过测量热电势差来推算温度。
热电偶具有响应速度快、测量范围广的特点。
它可以测量极高和极低温度,适用于温度变化较快的场合。
在工业控制系统中,热电偶常被用于测量高温炉、燃烧器等的温度。
三、热电阻与热电偶的比较热电阻和热电偶都是常见的温度传感器,它们各有优缺点,应根据具体的应用场景选择合适的传感器。
热电阻的优点是测量精度高、稳定性好,适用于温度变化缓慢的场合。
但它的响应速度较慢,不适用于温度变化较快的场合。
热电偶的优点是响应速度快、测量范围广,适用于温度变化较快的场合。
但它的测量精度相对较低,受到环境干扰较大。
在选择热电阻或热电偶时,还需考虑以下因素:测量范围、测量精度、响应速度、使用环境等。
根据具体需求,选择适合的传感器。
总结:热电阻和热电偶是常见的温度传感器,它们在工业控制系统和实验室中被广泛应用。
热电阻利用材料电阻随温度变化的特性来测量温度,热电偶利用两种不同材料的导电性能差异产生的热电效应来测量温度。
热电阻测量精度高,稳定性好,适用于温度变化缓慢的场合;热电偶响应速度快,测量范围广,适用于温度变化较快的场合。
热电偶温度计热电现象和关于热电偶的基本定律热电偶温度计由热电偶、电测仪表和连接导线组成。
它被广泛用于测量-200~1300℃范围内的温度。
在特殊情况下,可测至2800℃的高温或4K 的低温。
热电偶能把温度信号转变为电信号,便于信号的远传和多点切换测量,具有结构简单、制作方便、准确度高、热惯性小等优点。
1. 热电偶测温原理由两种不同的导体或半导体A 或B 组成的闭合回路,如果使两个接点处于不同的温度t 0、t ,则回路中就有电动势出现,称为热电势,这一现象称为热电效应。
热电势是温度t 0和t 的函数,恒定接点温度t 0,则热电势是温度t 的单值函数,只要测得热电势的大小,便可得到被测温度t 。
热电势由温差电势与接触电势组成。
温差电势:是指一根导体上因两端温度不同而产生的热电动势。
同一导体两端温度不同时,高温端(测量端、工作端、热端)电子的运动速度大于低温端电子(参比端、自由端、冷端)的运动速度,单位时间内高温端失电子带正电,低温端得电子带负电,高、低温端之间形成一个从高温端指向低温端的静电场。
该电场阻止高温端电子向低温端的动;加大低温端电子向高温端的运动速度,当运动达到动态平衡时,导体两端产生相应的电位差,该电位差称为温差电势。
温差电势的方向:由低温端指向高温端。
温差电势的大小:,()dt dtt N d N e k t t e t tt t )(1,00⎰=,式中k 为波尔兹曼常数;e 为电子电量t N 为导体内的电子密度,是温度的函数;t 、to 是导体两端的温度。
可见温差电势的大小与导体的性质和导体两端温度有关,而与导体长度、截面大小以及沿导体长度方向的温度分布无关。
热端 测量端 工作端冷端自由端参比端热电极B(e AB ()0t AB (,t t e (0,t t e B热电偶回路的总电势接触电势:是在两种不同材料A 和B 的接触点产生的。
A 、B 材料有不同的电子密度,设导体A 的电子密度n A 大于导体B 的电子密度n B ,则从A 扩散到B 的电子数要比从B 扩散到A 的多,A 因失电子而带正电荷,B 因得电子而带负电荷,于是在A 、B 的接触面上便形成一从A 到B 的静电场。
热电阻与热电偶的区别1、工作原理和结构的的区别①工作原理的区别热电偶是由两根不同的导体或半导体材料焊接或绞接而成,分为热端和自由端,热端插入需要测温的设备中,冷端置于设备的外面,如果两端所处的温度不同则在热电偶回路中便会产生热电势,由于热电势是被测温度的函数,测得电动势的数值后,便可换算成温度值。
热电阻是根据导体的电阻值会随着温度的变化而变化的性质,将电阻的变化转换为电信号,从而进行温度测量的。
②结构的区别普通的热电偶通常由热电极、绝缘材料和电偶保护套管以及接线盒等构成。
热电偶一般采用带孔的耐高温陶瓷管作为绝缘材料,热电极从耐高温陶瓷管孔中引出。
保护套管材料需具备耐腐蚀、耐高温、机械强度高、气密性好、热导率高等性能主要有金属、非金属、金属陶瓷3类,目前最常用保护套管是1Cr18Ni9Ti不锈钢的,适宜在900℃以下的工况条件。
热电阻最主要的部分是电阻体加上绝缘套管、保护套管以及接线盒等部件,将电阻丝缠绕在石英、陶瓷或塑料等绝缘骨架上,再套上保护套管,并在热电阻丝与套管中间填充导热材料。
2、热电偶的分类及其特点标准热电偶是指国家标准中规定了热电偶热电势与温度的关系,有统一标准分度表,允许存在一定误差的热电偶。
非标准热电偶一般没有统一的分度表,主要用于测量一些特殊的场合,使用范围和数量级比标准热电偶要小,组成热电偶的热电极必须牢固的焊接在一起,两个热电极之间应有比较好的绝缘,防止发生短路;补偿导线与热电偶自由端的连接要牢固可靠,保护套管要保证热电极与外界的介质充分隔离,以保证热电偶可靠、稳定地工作。
3、热电阻的分类及其特点①根据热电阻的组成结构分类普通型热电阻:根据热电阻的测温原理可知,被测量的温度变化是直接通过电阻值的变化来反映的,所以,热电阻引出的各种导线电阻的变化会给温度测量带来不良影响。
需要消除引线电阻带来的影响,通常热电阻采用三线制或四线制进行补偿。
铠装型热电阻:与铠装热电偶类似,同样由感温元件、引线、绝缘材料和不锈钢套管组合而成,外径一般在φ2-φ8mm之间,相比普通型热电阻具有体积小、易安装、抗冲击、能弯曲并且使用寿命也更长。
热电阻和热电偶热电阻和热电偶是测量温度的重要方法,它们可以进行测量和控制温度,从而在工业和研究领域发挥着重要的作用。
本文将对热电阻和热电偶的工作原理、应用及特性进行详细介绍。
热电阻是一种用于测量温度的装置,一般由金属管体和陶瓷构成,其受热特性与温度有关,当温度升高时,热电阻的电阻值也会随之升高。
它通常被包装成一种耐高温小型电阻元件,有线型和管型两种,可以应用于各种温度测量和控制系统中。
电阻值随温度的变化是一条渐进的直线,以温度表示横坐标,以电阻值表示纵坐标,可以建立一条热电阻特性曲线。
热电偶作为一种测量温度的设备,通过两个金属的热电特性耦合在一起,它们之间由一个绝缘体分隔,而热电特性之间的差别是其特点,热电偶是在温度测量中最常用的装置之一。
热电偶本质上是一对互补电极,内置金属丝,其中一个金属丝和另一个材料(一般为熔点低的金属)结合,当它们受到外部温度变化时,它们之间的电位会随着温度变化而改变,从而可以测量出温度变化。
热电阻和热电偶的应用非常广泛,在电池、炉窑、工厂和研究实验室中都有其广泛应用。
它们可以用来检测温度的变化,以及湿度、压力或其他物理量的变化,是实施控制和监测的重要工具。
此外,由于它们可以进行高精度测量,因此也被常用于精密计量和实验研究。
热电阻和热电偶都具有独特的性能特点,它们的优点包括费用低,测量精度、稳定性和灵敏度高,可以实现远程控制,耐热性好,可以使用在恶劣环境中,以及可靠性高,使用寿命长等等。
通过上述论述可以看出,热电阻和热电偶是测量温度的重要方法,由于它们具有灵敏度高、费用低、可靠性高等优点,因此在工业和研究领域得到广泛应用。
因此,在温度测量和控制方面,开发和应用热电阻和热电偶都极为重要。
热电偶和热电阻热电偶和热电阻是两种测量温度的常见传感器,它们应用广泛,如工业自动化、电子设备、航空航天、医疗等领域。
本文将介绍热电偶和热电阻的工作原理、种类、优缺点以及应用。
一、热电偶1.工作原理热电偶是利用两种不同金属或合金在不同温度下产生的热电势的变化来测量温度的一种传感器。
在两种金属接触处形成一个热电节,当两端温度差异存在时,热电偶测量的温度值就是两个接点之间的温度差。
2.种类常见的热电偶有K、J、T、E、N等类型,不同类型的热电偶适用于不同范围的温度测量。
3.优缺点热电偶具有响应速度快、测量范围广、耐高温、耐腐蚀、价格便宜等优点。
但是,它的测量精度受到工作环境、电缆电源等因素的影响,易受温漂的影响,需进行温度补偿。
4.应用热电偶广泛应用于钢铁、化工、电子、航空等领域的温度测量,如高温炉、炼钢厂、工业炉、发动机、航空发动机等。
二、热电阻热电阻又称温度传感器,是利用金属或合金电阻值随温度变化的特性来测量温度的一种传感器。
当温度变化时,电阻值也随之发生变化,通过测量电阻值的变化就可以确定温度的变化。
常见的热电阻有PT100、PT1000、CU50、CU100等类型,其中PT100最为常见,适用于常温到高温的测量范围。
热电阻具有测量精度高、稳定性好、温度系数小等优点,但是价格较高,响应速度慢,易受电源干扰。
热电阻广泛应用于医疗、航空航天、电力、环保、食品等领域的温度测量,如实验室仪器、空调温控、航空仪表、加热器等。
总之,热电偶和热电阻都是常见的测量温度的传感器,各自具有不同的优缺点和适用范围,根据具体的应用环境和需求,可以选择合适的传感器进行应用。
热电偶热电阻
热电偶是一种传感器,它的原理是根据电池现象来工作的,也就是说,当它接触到一段温度时,它就会由电池现象产生出一种电压。
两个热电偶连接起来,形成一个叫做“热电阻”的组件。
热电阻的特点是可以根据温度的变化而产生电流,并且把这些电流传输给仪表显示,可以精确地衡量温度。
热电阻可以分为两种:阻性热电阻和变送热电阻。
阻性热电阻是一种固定负载电阻,它把温度变化转换成电阻变化,这种转换在技术上只能控制在一定范围内,但是比较准确和可靠,可以用来测量温度。
变送热电阻是一种新型的测温工具,它可以通过改变负载电阻的值来改变传送的信号的大小,以此来调整温度的大小,比较灵敏准确。
热电阻在工业领域有着广泛的应用。
它可以用来测量温度,并用来控制和维护机器的温度,以防止过热或者溢出。
它也可以用来检测液体的温度,比如汽车润滑油的温度,并用来控制机械的运行温度,来避免损坏。
另外,它也可以用来检测温度变化,来控制环境温度,如:室温控制、空调温度控制、家用微波炉的温度控制等等。
热电阻的优点有很多,它的大小尺寸小,重量轻;它能够迅速检测到被测物体的温度,准确性高;它具有低成本、高效率、稳定可靠等优点;它也具有耐高温耐低温及耐腐蚀等特性,可以在汽车、船舶、发动机、电力发电机组等恶劣环境中工作。
热电偶和热电阻作为一种普通的测温工具,已经被众多行业使用了很多年,当前也被广泛用于工业、实验室和质量控制的过程中。
热
电阻的准确性和可靠性得到了工业界的认可,它可以根据温度的变化而产生电流,让仪表读数更加准确。
热电阻技术的发展,将为工业部门的测温提供更加有效的参考依据。
热电偶和热电阻知识
Design By L.X.
热电偶
两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现像。
热电偶由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)。
将它插入待测温度的介质中;而热电偶的另一端 (参比端或自由端)则与显示仪表相连。
如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。
热电阻
利用金属导体或半导体有温度变化时电阻本身也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上或通过激光溅射工艺在基片形成。
当被测介质
有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。
关于选择
根据测温范围选择:500℃以上一般选择热电偶,500℃以下一般选择热 电阻
根据测量精度选择:对精度要求较高选择热电阻,对精度要求不高选择 热电偶
根据测量范围选择:热电偶所测量的一般指“点”温,热电阻所测量的 一般指空间平均温度
热电偶的分度号有哪几种?
有何特点?
•热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。
其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。
•T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度。