2017_2018版高中数学第一讲优穴三黄金分割法__0.618法二课件新人教A版选修4_720180504224
- 格式:ppt
- 大小:1.49 MB
- 文档页数:11
三黄金分割法——0.618法(二)一、基础达标1.假设因素区间为[1,2],用0.618法选取的第一个试点是( )A.1.618B.1.5C.1.382D.1.618或1.382解析用0.618法选取的第一个试点为x1=1+0.618(2-1)=1.618,或2-(2-1)×0.618=1.382答案 D2.现决定优选加工温度,假定最佳温度在60 ℃到70 ℃之间,用0.618法进行优选,则第二次试点温度为( )A.63.82 ℃B.66.18 ℃C.63.82 ℃或66.18 ℃D.65 ℃解析若第一次试点x1=60+0.618×(70-60)=66.18,则第二次试点x2=60+70-66.18=63.82.若第一次试点x1=70-(70-60)×0.618=63.82,则第二次试点x2=60+70-63.82=66.18.答案 C3.用0.618法优选寻找最佳点时,达到精度0.001所做试验的次数至少为( )(已知lg 0.618=-0.209)A.16B.15选A.答案 A4.用0.618法进行优选时,若某次存优范围[2,b]上的一个好点是2.382.则b=( )A.3B.2.618C.3.618D.3或2.618解析由2.382=2+(b-2)×(1-0.618)或2.382=2+(b-2)×0.618,解得b=2.618或b=3,选D.答案 D5.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10 mL到110 mL之间,用黄金分割法寻找最佳加入量时,若第1试点是差点,第2试点是好点,则第三次试验时葡萄糖的加入量为________mL.解析 由黄金分割法可知,第一个试点为x 1=10+(110-10)×0.618=71.8,第二个试点为x 2=10+110-71.8=48.2,由于x 2是好点,故第三次试验时葡萄糖的加入量为10+71.8-48.2=33.6 mL.答案 33.66.用0.618法进行单因素优选时,若在试验范围[1,2] 的0.382处与0.618处的试验结果一样,则存优范围是________________________________________.解析 最佳点应在1+0.382与1+0.618之间,故存优范围为[1.382,1.618].答案 [1.382,1.618]二、能力提升7.某试验的因素范围是[3 000,4 000].用0.618法求最佳值.a n 表示第n 次试验加入量(结果取整数),则a 3=________.解析 a 1=3 000+0.618×(4 000-3 000)=3 618,a 2=3 000+4 000-3 618=3 382.若a 2为好点,则a 3=3 000+3 618-3 382=3 236;若a 1为好点,则a 3=3 382+4 000-3 618=3 764.答案 3 236或3 7648.某产品生产的过程中,温度的最佳点可能在1 000~2 000 ℃之间.某人用0.618法试验得到最佳温度为1 001 ℃.试问:此人做了多少次试验?并依次给出各次试验的温度.解 因最佳温度为1001 ℃.试验范围为2 000-1 000=1 000(℃)可知,达到精度为0.001,则用0.618法寻找最佳点的次数n ≥lg 0.001lg 0.618+1≈-3-0.209+1≈15.4.知应安排16次试验.各次试验的温度分别为1 618 ℃、1 382 ℃、1 236 ℃、1 146 ℃、1 090 ℃、1 056 ℃、1 034 ℃、1 022 ℃、1 012 ℃、1 010 ℃、1 002 ℃、1 008 ℃、1 006 ℃、1 004 ℃、1 003 ℃、1 001 ℃.9.若已知目标函数是单峰函数,在用0.618法在因素范围[m ,n ]内进行最佳点探求时,设第n 次试验加入量为a n ,其对应的试验结果值用b n 表示,如果b n -1>b n (n >1),我们就说试验点a n -1的结果比试验点a n 要好,即a n -1与a n 中a n -1为好点.(1)如果b 2=b 1时,则说明了什么?此时存优范围可怎样取?(2)若在已试验的过程中,都有b 2n -1=b 2n 时,则这个试验的存优范围是如何变化的?精度可怎样计算? 解 (1)由b 2=b 1,说明a 2与 a 1的试验效果一样好.又因为目标函数f (x )是[m ,n ]上是一个单峰函数,x。
湖南省蓝山二中高二数学《第一讲 优选法 三、黄金分割法0.618法》教案 新人教A 版一、黄金分割常数对于一般的单峰函数,如何安排试点才能迅速找到最佳点?假设因素区间为[0, 1],取两个试点102、101 ,那么对峰值在)101,0(中的单峰函数,两次试验便去掉了长度为54的区间(图1);但对于峰值在)1,102(的函数,只能去掉长度为101的区间(图2),试验效率就不理想了.怎样选取各个试点,可以最快地达到或接近最佳点?在安排试点时,最好使两个试点关于[a ,b ]的中心 2b a + 对称. 为了使每次去掉的区间有一定的规律性,我们这样来考虑:每次舍去的区间占舍去前的区间的比例数相同. 黄金分割常数:251+-,用ω表示. 试验方法中,利用黄金分割常数ω确定试点的方法叫做黄金分割法.由于215-是无理数,具体应用时,我们往往取其近似值0.618.相应地,也把黄金分割法叫做0.618法.二、黄金分割法——0.618法例.炼钢时通过加入含有特定化学元素的材料,使炼出的钢满足一定的指标要求.假设为了炼出某种特定用途的钢,每吨需要加入某元素的量在1000g 到2000g 之间,问如何通过试验的方法找到它的最优加入量?人我们用存优范围与原始范围的比值来衡量一种试验方法的效率,这个比值叫做精度,即n 次试验后的精度为原始的因素范围次试验后的存优范围n n =δ 用0.618法确定试点时,从第2次试验开始,每一次试验都把存优范围缩小为原来的0.618.因此, n 次试验后的精度为1618.0-=n n δ一般地,给定精度δ,为了达到这个精度,所要做的试验次数n 满足,1618.01<≤-δn 即.0lg 618.0lg )1(<≤-δn 所以.1618.0lg lg +≥δn 黄金分割法适用目标函数为单峰的情形,第1个试验点确定在因素范围的0.618处,后续试点可以用“加两头,减中间”的方法来确定.课后作业1.阅读教材P. 5-P.10;2.《学案》第一讲第三课时.。
第一讲优选法三、黄金分割法——0.618法第一讲 优选法三、黄金分割法——0.618法知识与技能:黄金分割法——0.618法是非常著名的优选法,在生产实践中有广泛应用,通过学习这一内容,不仅可以使学生学会一种用数学知识解决实际问题的方法(数学建模),了解黄金分割常数,而且还可以使学生感受数学在解决实际问题中的作用.情感、态度与价值:通过本课学习,增加学生的数学文化内涵,让学生感受到数学的美.教学过程一、黄金分割常数对于一般的单峰函数,如何安排试点才能迅速找到最佳点?假设因素区间为[0, 1],取两个试点102、101 ,那么对峰值在)101,0(中的单峰函数,两次试验便去掉了长度为54的区间(图1);但对于峰值在)1,102(的函数,只能去掉长度为101的区间(图2),试验效率就不理想了.怎样选取各个试点,可以最快地达到或接近最佳点?在安排试点时,最好使两个试点关于[a ,b ]的中心 2b a 对称.为了使每次去掉的区间有一定的规律性,我们这样来考虑:每次舍去的区间占舍去前的区间的比例数相同. 黄金分割常数:251+-,用ω表示. 试验方法中,利用黄金分割常数ω确定试点的方法叫做黄金分割法.由于215-是无理数,具体应用时,我们往往取其近似值0.618.相应地,也把黄金分割法叫做0.618法.二、黄金分割法——0.618法例.炼钢时通过加入含有特定化学元素的材料,使炼出的钢满足一定的指标要求.假设为了炼出某种特定用途的钢,每吨需要加入某元素的量在1000g 到2000g 之间,问如何通过试验的方法找到它的最优加入量?人我们用存优范围与原始范围的比值来衡量一种试验方法的效率,这个比值 叫做精度,即n 次试验后的精度为原始的因素范围次试验后的存优范围n n =δ 用0.618法确定试点时,从第2次试验开始,每一次试验都把存优范围缩小为原来的0.618.因此,n 次试验后的精度为1618.0-=n n δ一般地,给定精度δ,为了达到这个精度,所要做的试验次数n 满足,1618.01<≤-δn即.0lg 618.0lg )1(<≤-δn 所以.1618.0lg lg +≥δn 黄金分割法适用目标函数为单峰的情形,第1个试验点确定在因素范围的0.618处,后续试点可以用“加两头,减中间”的方法来确定.课后作业1.阅读教材P. 5-P.10;2.《学案》第一讲第三课时.。
三 黄金分割法——0.618法(一)一、基础达标1.有一优选问题,存优范围为[10,20],在安排试点时,第一个试点为16,则第二个试点最好为( ) A.12 B.13 C.14D.15解析 在优选过程中,安排试点时,最好使两个试点关于[10,20]的中点15对称,所以第二个试点最好为14. 答案 C2.在存优范围[10,100]安排两个实验点x 1,x 2,则x 1,x 2关于( )对称. A.0.618 B.65.62 C.55 D.61.8解析 x =x 1+x 22=10+1002=55.答案 C3.用0.618法确定试点,则经过4次试验后,存优范围缩小为原来的( ) A.0.6182B.0.6183C.0.6184D.0.6185解析 由黄金分割法知:每次舍去的区间占舍去前的区间的比例数相等,故4次试验后,存优范围缩小为原来的0.6183. 答案 B4.假设因素区间为[0,1],取两个试点0.1和0.2,则对峰值在(0,0.1)内的单峰函数,两次试验存优范围缩小到区间________上.解析 如图所示:因为峰值在(0,0.1)内,故应舍去区间[0.2,1],两次试验后存优范围缩小到区间[0,0.2]上. 答案 [0,0.2]5.人体的正常体温为36~37 ℃,在炎炎夏日将空调设为__________℃,人体感觉最佳.(精确到0.1 ℃)解析 36×0.618到37×0.618,即22.2~22.8. 答案 22.2~22.86.一个身高为170 cm 的人,肚脐离地面的最佳高度为__________ cm(精确到 1 cm).解析 由170×0.618=105.06≈105. 答案 105 二、能力提升7.已知一种材料的最佳加入量在110 g 到210 g 之间,若用0.618法安排试验,则第一次试点的加入量可以是________g.解析 根据0.618法可知,第一试点的加入量为110+0.618×(210-110)=171.8(g)或110+210-171.8=148.2(g) 答案 171.8或148.28.在炼钢过程中为了得到特定用途的钢,需要加入含有特定元素的材料.若每吨钢需要加入某元素的量在1 000 g 到2 000 g 之间,假设最佳点在1 400 g ,如果用0.618法试验,求第三个试验点.解 由0.618法知x 1=1 000+0.618(2 000-1 000)=1 618(g),x 2=1 000+2 000-x 1=1 382(g).由于1 382 g 接近1 400 g ,所以此时的存优范围为(1 000,1 618),∴x 3=1 000+1 618-1 382=1 236(g).9.如图,椭圆中心在坐标原点,F 为左焦点,A 为长轴的右端点,B 当FB ⊥AB 时,其离心率为5-12,此类椭圆为“黄金椭圆”. (1)类似“黄金椭圆”,推算“黄金双曲线”的离心率.(2)设AB 为黄金双曲线x 2a 2-y 2b2=1的弦,M 为AB 的中点,若AB ,OM 的斜率存在,求k OM ·k AB .解 (1)类似“黄金椭圆”,作出“黄金双曲线”,如图,则BF ⊥AB . 则BO =b ,FO =c ,OA =a ,在Rt△ABF 中,b 2=ac . 又∵b 2=c 2-a 2,∴c 2-a 2=ac⇒⎝ ⎛⎭⎪⎫c a 2-ca-1=0.∴e =c a =1±52.又e >1,∴e =1+52.(2)如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧x 21a 2-y 21b2=1, ①x 22a 2-y 22b 2=1. ②由①-②得(x 1-x 2)(x 1+x 2)a 2=(y 1-y 2)(y 1+y 2)b2. ∵M 是AB 的中点,且x 1≠x 2, ∴x 0=x 1+x 22,y 0=y 1+y 22,从而y 1-y 2x 1-x 2=b 2a 2·x 0y 0.故k OM ·k AB =y 0x 0·y 1-y 2x 1-x 2=b 2a 2=1+52.三、探究与创新10.已知线段AB ,怎样作出它的黄金分割点?解 法一 在AB 的端点B 作BD ⊥AB ,使BD =12AB ,连接AD ,在AD 上截取DE =DB ,再在AB 上截取AC =AE ,则点C 为所求作的黄金分割点,如图1.事实上,由作法可知AD =52AB ,则AC =AE =AD -DB =AD -12AB =5-12AB , 即证.图1法二 在AB 上作正方形ABMN ,在AN 上取中点E ,在NA 的延长线上取EF =EB .以AF 为一边作正方形ACDF ,则点C 为所求作的黄金分割点,如图2. 事实上,由AC =AF =EF -AE =EB -AE =AB 2+⎝ ⎛⎭⎪⎫12AB 2-12AB=5-12AB ,即证.图2附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
三 黄金分割法0.618法(一)一、基础达标1.有一优选问题,存优范围为[10,20],在安排试点时,第一个试点为16,则第二个试点最好为( ) A.12 B.13 C.14D.15解析 在优选过程中,安排试点时,最好使两个试点关于[10,20]的中点15对称,所以第二个试点最好为14. 答案 C2.在存优范围[10,100]安排两个实验点x 1,x 2,则x 1,x 2关于( )对称. A.0.618 B.65.62 C.55 D.61.8解析 x =x 1+x 22=10+1002=55.答案 C3.用0.618法确定试点,则经过4次试验后,存优范围缩小为原来的( ) A.0.6182B.0.6183C.0.6184D.0.6185解析 由黄金分割法知:每次舍去的区间占舍去前的区间的比例数相等,故4次试验后,存优范围缩小为原来的0.6183. 答案 B4.假设因素区间为[0,1],取两个试点0.1和0.2,则对峰值在(0,0.1)内的单峰函数,两次试验存优范围缩小到区间________上.解析 如图所示:因为峰值在(0,0.1)内,故应舍去区间[0.2,1],两次试验后存优范围缩小到区间[0,0.2]上. 答案 [0,0.2]5.人体的正常体温为36~37 ℃,在炎炎夏日将空调设为__________℃,人体感觉最佳.(精确到0.1 ℃)解析 36×0.618到37×0.618,即.2~.8. 答案 .2~.86.一个身高为170 cm 的人,肚脐离地面的最佳高度为__________ cm(精确到 1 cm).解析 由170×0.618=105.06≈105. 答案 105 二、能力提升7.已知一种材料的最佳加入量在110 g 到210 g 之间,若用0.618法安排试验,则第一次试点的加入量可以是________g.解析 根据0.618法可知,第一试点的加入量为110+0.618×(210-110)=171.8(g)或110+210-171.8=148.2(g) 答案 171.8或148.28.在炼钢过程中为了得到特定用途的钢,需要加入含有特定元素的材料.若每吨钢需要加入某元素的量在1 000 g 到2 000 g 之间,假设最佳点在1 400 g ,如果用0.618法试验,求第三个试验点.解 由0.618法知x 1=1 000+0.618(2 000-1 000)=1 618(g),x 2=1 000+2 000-x 1=1 382(g).由于 1 382 g 接近 1 400 g ,所以此时的存优范围为(1 000,1 618),∴x 3=1 000+1 618-1 382=1 236(g).9.如图,椭圆中心在坐标原点,F 为左焦点,A 为长轴的右端点,B 点,当FB ⊥AB 时,其离心率为5-12,此类椭圆为“黄金椭圆”. (1)类似“黄金椭圆”,推算“黄金双曲线”的离心率.(2)设AB 为黄金双曲线x 2a 2-y 2b 2=1的弦,M 为AB 的中点,若AB ,OM 的斜率存在,求k OM ·k AB .解 (1)类似“黄金椭圆”,作出“黄金双曲线”,如图,则BF ⊥AB . 则BO =b ,FO =c ,OA =a ,在Rt△ABF 中,b 2=ac . 又∵b 2=c 2-a 2,∴c 2-a 2=ac⇒⎝ ⎛⎭⎪⎫c a 2-ca-1=0.∴e =c a =1±52.又e >1,∴e =1+52.(2)如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧x 21a 2-y 21b2=1, ①x 22a 2-y 22b 2=1. ②由①-②得(x 1-x 2)(x 1+x 2)a 2=(y 1-y 2)(y 1+y 2)b2. ∵M 是AB 的中点,且x 1≠x 2, ∴x 0=x 1+x 22,y 0=y 1+y 22,从而y 1-y 2x 1-x 2=b 2a 2·x 0y 0.故k OM ·k AB =y 0x 0·y 1-y 2x 1-x 2=b 2a 2=1+52.三、探究与创新10.已知线段AB ,怎样作出它的黄金分割点?解 法一 在AB 的端点B 作BD ⊥AB ,使BD =12AB ,连接AD ,在AD 上截取DE =DB ,再在AB 上截取AC =AE ,则点C 为所求作的黄金分割点,如图1.事实上,由作法可知AD =52AB ,则AC =AE =AD -DB =AD -12AB =5-12AB , 即证.图1法二 在AB 上作正方形ABMN ,在AN 上取中点E ,在NA 的延长线上取EF =EB .以AF 为一边作正方形ACDF ,则点C 为所求作的黄金分割点,如图2. 事实上,由AC =AF =EF -AE =EB -AE =AB 2+⎝ ⎛⎭⎪⎫12AB 2-12AB=5-12AB ,即证.图2。
三黄金分割法——0.618法〔二〕一、根底达标1.假设因素区间为[1,2],用0.618法选取的第一个试点是( )C.1.382D.1.618或1.382解析用0.618法选取的第一个试点为x1=1+0.618(2-1)=1.618,或2-(2-1)×0.618=1.382答案 D2.现决定优选加工温度,假定最正确温度在60 ℃到70 ℃之间,用0.618法进行优选,那么第二次试点温度为( )A.63.82 ℃B.66.18 ℃C.63.82 ℃或66.18 ℃D.65 ℃解析假设第一次试点x1=60+0.618×(70-60)=66.18,那么第二次试点x2=60+70-66.18=63.82.假设第一次试点x1=70-(70-60)×0.618=63.82,那么第二次试点x2=60+70-63.82=66.18.答案 C3.用0.618法优选寻找最正确点时,到达精度0.001所做试验的次数至少为( )(lg0.618=-0.209)A.16B.15选A.答案 A4.用0.618法进行优选时,假设某次存优范围[2,b]上的一个好点是 2.382.那么b=( )C.3.618D.3或2.618解析由2.382=2+(b-2)×(1-0.618)或2.382=2+(b-2)×0.618,解得b=2.618或b=3,选D.答案 D5.配制某种注射用药剂,每瓶需要参加葡萄糖的量在10 mL到110 mL之间,用黄金分割法寻找最正确参加量时,假设第1试点是差点,第2试点是好点,那么第三次试验时葡萄糖的参加量为________mL.解析 由黄金分割法可知,第一个试点为x 1=10+(110-10)×0.618=71.8,第二个试点为x 2=10+110-71.8=48.2,由于x 2是好点,故第三次试验时葡萄糖的参加量为10+71.8-48.2=33.6 mL. 答案 33.66.用0.618法进行单因素优选时,假设在试验范围[1,2] 的0.382处与0.618处的试验结果一样,那么存优范围是________________________________________.解析 最正确点应在1+0.382与1+0.618之间,故存优范围为[1.382,1.618]. 答案 [1.382,1.618]二、能力提升7.某试验的因素范围是[3 000,4 000].用0.618法求最正确值.a n 表示第n 次试验参加量(结果取整数),那么a 3=________.解析 a 1=3 000+0.618×(4 000-3 000)=3 618,a 2=3 000+4 000-3 618=3 382.假设a 2为好点,那么a 3=3 000+3 618-3 382=3 236;假设a 1为好点,那么a 3=3 382+4 000-3 618=3 764.答案 3 236或3 7648.某产品生产的过程中,温度的最正确点可能在1 000~2 000 ℃之间.某人用0.618法试验得到最正确温度为 1 001 ℃.试问:此人做了多少次试验?并依次给出各次试验的温度.解 因最正确温度为1001 ℃.试验范围为2 000-1 000=1 000(℃)可知,到达精度为0.001,那么用0.618法寻找最正确点的次数n ≥lg 0.001lg 0.618+1≈-3-0.209+1≈15.4.知应安排16次试验.各次试验的温度分别为1 618 ℃、1 382 ℃、1 236 ℃、1 146 ℃、1 090 ℃、1 056 ℃、1 034 ℃、1 022 ℃、1 012 ℃、1 010 ℃、1 002 ℃、1 008 ℃、1 006 ℃、1 004 ℃、1 003 ℃、1 001 ℃.9.假设目标函数是单峰函数,在用0.618法在因素范围[m ,n ]内进行最正确点探求时,设第n 次试验参加量为a n ,其对应的试验结果值用b n 表示,如果b n -1>b n (n >1),我们就。