北师大版八年级上册数学第一章勾股定理1.2.2勾股定理的逆定理的应用
- 格式:doc
- 大小:1.07 MB
- 文档页数:2
第一章勾股定理3 勾股定理的应用教学目标1.利用勾股定理及其逆定理解决简单的实际问题.2.通过观察图形,探索图形间的关系,发展学生的空间观念,在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.教学重难点重点:构建直角三角形,利用勾股定理及其逆定理解决实际问题.难点:从实际问题中合理抽象出数学模型.教学过程导入新课游乐场有一个圆柱形的大型玩具,如图所示,现要从点A开始环绕圆柱侧面修建梯子,正好到达A点的正上方B点,已知圆柱形玩具的底面周长是12米,高AB为5米,那么梯子的长度是多少米?探究新知一、合作探究【探究1】确定立体物体表面上两点之间的最短距离.【例1】如图,有一个圆柱,它的高等于12 cm,底面圆的周长为18 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(1)在你自己做的圆柱上,尝试从点A到点B沿圆柱侧面画几条路线,你觉得哪条路线最短?(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B的最短路线是什么?你画对了吗?(3)蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?∵AB2 = 122+92,∴AB = 15(cm).答:蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是15 cm.变式训练:如图,长方体的底面边长分别为2 cm和4 cm,高为5 cm.如果一根细线从点P开始经过四个侧面绕一圈到达点Q,那么所用细线最短需要_________cm.答案:13【探究2】应用勾股定理解决实际问题【例2】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE = 3 m,CD = 1 m,试求滑道AC的长.【解】设滑道AC的长度为x m,则AB的长度为x m,AE的长度为(x-1)m.在Rt△ACE中,∠AEC = 90°,由勾股定理得AE2+CE2 = AC2,即(x-1)2+32 = x2,解得x = 5.故滑道AC的长度为5 m.变式训练:在一次消防演习中,消防员架起一架25米长的云梯,如图所示那样斜靠在一面墙上,梯子底端离墙7米.(1)这架云梯的顶端距地面有多高?(2)如果消防员接到命令,要把云梯的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?解:(1)由题图可以看出云梯、墙、地面可围成一个直角三角形,即云梯为斜边,云梯底部到墙的线段为一条直角边,云梯顶端到地面的线段为另一条直角边.根据题意252-72 = 242,所以云梯顶端距地面有24米.(2)当云梯顶端下降4米后,云梯顶部到地面的距离为20米.因为252-202 = 152,且15-7 = 8(米),所以云梯底部应水平滑动8米.课堂练习1.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,则问这根铁棒应有多长?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它爬的最短距离为____.m=0.33m)的正方形.在水池正中央3.有一个水池,水面是一个边长为10尺(1尺=13有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问:这个水池的深度和这根芦苇的长度各是多少?4.如图,台风过后,某小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂的吗?参考答案1.解:如图,由题意得当铁棒在B处:AC = 1.5米,BC = 2米.∵AB2 = AC2+CB2 = 2.52,∴AB = 2.5米.∵油桶外的部分是0.5米,∴AD = 2.5+0.5 = 3(米).当铁棒垂直进入,得出油桶中的长度1.5米+桶外的0.5米= 2米.答:这根铁棒的长度范围是2米到3米.2.253.解:设水池的深度为x尺,则芦苇的长度为(x+1)尺.根据题意得x²+5² =(x+1)².解得x =12.x+1=12+1=13(尺).答:这个水池的深度和这根芦苇的长度各是12尺和13尺.4.解:设旗杆在离底部x米的位置断裂,由题意得x2+82 = (16-x)2,解得x = 6米.答:旗杆在离底部6米的位置断裂.课堂小结确定立体物体表面上两点之间的最短距离的方法:将其转化为平面上两点间的距离,利用两点之间,线段最短来求解.布置作业习题1.4第1,2,3,4题板书设计3 勾股定理的应用1.确定立体物体表面上两点之间的最短距离例1 如图,有一个圆柱,它的高等于12 cm,底面圆的周长为18 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?2.应用勾股定理解决实际问题例2 如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE = 3 m,CD = 1 m,试求滑道AC的长.。
勾股定理题型分类一:借助勾股定理求边长或面积例1:如图,在ΔABC中,AB=15cm, AC=13cm, BC=14cm, 求ΔABC的面积例2: 在RtΔABC中,∠ACB=90º, AB=10cm, AB边上的高CD=4.8cm, 则RtΔABC的周长为______cm. 变式练习1:如图在RtΔABC中,∠C=90º, 点D是BC上一点,AD=BD,若AB=8, BD=5,求CD的长变式练习2:如果直角三角形的三边长分别为10,6,x, 则最短边上的高为________例3: 如图,以RtΔABC的三边为斜边向外做等腰三角形,若斜边AB=3, 则图中ΔABE的面积是_____,阴影部分面积为____,ΔAHC, ΔBCF, ΔABE的面积间的关系为______变式练习3:如图,RtΔABC的周长为12,以AB, AC为边向外作正方形ABPQ和正方形ACMN,若这两个正方形的面积之和为25,则ΔABC的面积是___二:勾股定理解决一些实际问题例4:如图,校园内有两根电线杆,相距8米,一根电线杆高13米,另一根电线杆高7米,若一只小鸟从一根电线杆的顶端飞到另一根电线杆的顶端,则小鸟至少飞多少米?例5:如图,一辆小汽车在一条限速为70km/h的公路上直线行驰,某一时刻刚好行驰到路对面车速检测仪A正前方30m的B处,过了2s后,测得小汽车(位于C处)与车速检测仪A的距离为50m, 这辆小汽车超速了吗?变式练习4:如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m, 将它往高推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m, 秋千的绳索始终拉的很直,则绳索AD的长度为____m变式练习5:如图,有一只喜鹊在一颗3m 高的小树顶觅食,它的巢筑在距离该树24m 远的一颗大树上,大树高14m, 且巢距离树顶部1m, 当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s, 那么它至少需要多长时间才能赶回巢中?三:勾股定理的逆定理及应用例6: 若a, b, c 是ΔABC 的三边长,且a, b, c 满足(a −5)2+(b −12)2+|c-13|=0, 则ΔABC 是直角三角形吗?说明理由例7: 如图,MN 为我国领海线,其方向为南北方向,MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我国领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意,反走私艇B 和走私艇C 的距离是13海里,A, B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,则最早会在什么时候进入我国领海?变式练习6: 如图,在ΔABC 中,BC=6, AC=8, 在ΔABE 中,DE 是AB 边上的高,DE=7, ΔABE 的面积为35求:(1)AB 的长 (2)四边形ACBE 的面积变式练习7:在B 港口有甲, 乙两艘渔船,若甲船沿北偏东60º方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿什么方向航行的吗?四::勾股定理求解折叠问题例8:如图,将长方形纸片ABCD 的一边AD 向下折叠,使D 和F 点重合,已知AB=CD=8, BC=AD=10,求EC 的长变式练习8:如图是一张直角三角形的纸片,两直角边AC=6cm, BC=8cm, 现将ΔABC折叠,使点B 与点A重合,折痕为DE,则BE的长为___变式练习9:如图,在长方形ABCD中,AB=8, BC=6, P为AD上一点,将ΔABP沿BP翻折至ΔEBP, PE与CD相交于点O,且OE=OD, 则AP的长为___五:勾股定理求解距离最短距离例9:已知某植物绕着树干向上生长(1)如果树干的周长(即图中圆柱的底面周长)为30cm, 绕行一圈升高(即圆柱的高)40cm, 则它绕行一圈的长度是多少?(2)如果树干的周长为80cm, 绕行一圈的长度是100cm, 绕10圈到达数顶,则数干高多少?变式练习10. 如图,一只蚂蚁在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对顶角G 处,若AB=3cm, BC=5cm, BF=6cm, 问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?变式练习11. 如图是放在地面上的一个长方体盒子,其中AB=18, BC=12, BF=10, 点M在棱AB 上,且AM=6, 点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N, 它需要爬行的最短路程的平方为______六: 勾股定理在动点问题中的应用例10:如图,在ΔABC中,∠ACB=90º, AB=5cm, BC=3cm, 点P从点A出发以2cm/s的速度沿折线A-C-B-A运动,当点P回到点A时,停止运动,设运动时间为t(t>0)s(1) 若点P在AC上,且满足PA=PB, 求t的值(2)若点P恰好在∠BAC平分线上,求t的值变式练习12. 如图,已知ΔABC中,∠B=90º, AB=8cm, BC=6cm, P, Q是ΔABC边上的两个动点,点P 从点A开始沿A-B方向运动,且速度为1cm/s, 点Q从点B开始沿B-C-A方向运动,且速度为2cm/s, 它们同时出发,设运动时间为t(1) 求运动几秒时,ΔAPC是等腰三角形(2)当点Q在边CA上运动时,求能使ΔBCQ成为等腰三角形的运动时间七:利用勾股定理探究规律例11:如图,已知ΔABC是腰长为1的等腰直角三角形,以RtΔABC的斜边AC为直角边,画第二个等腰直角三角形ACD, 再以RtΔACD的斜边AD为直角边画第三个等腰直角三角形ADE... 依次类推,第2013个等腰直角三角形的斜边的平方为______变式练习13:如图,OP=1, 过点P作P P1⊥OP, 且P P1=1, 得O P12=2, 再过点P1作P1P2⊥O P1,且P1P2=1,得O P22=3, 又过点P2作P2P3⊥O P2,且P2P3=1,得O P32=4…依次作下去,得2=_______O P2012。
北师大数学八年级上册各章单元教材分析第一章勾股定理教材的地位和作用直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余、本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,勾股定理把几何图形与代数计算紧密地联系起来,充分体现了数形结合的思想方法,为后面的学习圆,解直角三形等知识的掌握,奠定了计算基础。
我古代的数学家对勾股定理的研究有许多重要的成就,不仅在很久以前独立发现了勾股定理,已使用许多巧妙的方法证明了它,尤其在勾股定量的应用方面,对其它国家的影响很大,这些都是古人对人类的重要贡献。
通过勾股定理背景知识的了解,让学生感受勾股定理的丰富文化内涵,激发学生热爱祖国悠久文化的思想感情。
单元学情分析勾股定理的探索、证明过程较为抽象、复杂,如果只是简单地介绍定理过程,学生会觉得这个知识点枯燥无味,并且被动地接收知识,也使得学生对勾股定理的理解不深刻。
因此,教学逐步设计了通过数格子的方法得到边长的特殊的等腰直角三解形,已知边长的一直角三角形,一直到不通过数格子得到边长的一般直角三角形,让学生动手操作、实验,经历小组合作探索,由易渐难,从特殊到一般,利用割补面积法来发现、得到勾股定理,这样的过程符合学生学习新知识的心理特点,能激发学生的学习兴趣。
勾股定理以及直角三角形判定条件的应用是本章的重点,因此,在课后应该督促学生进行适量的练习,来巩固本章的知识点。
单元目标导向知识技能1. 了解勾股定理的历史,体验勾股定理的探索过程,感受它的多种证明法。
2. 会运用直角三角形的判定条件,即勾股定理的逆定理来判定直角三角形。
3. 会用勾股定理及其逆定理解决简单的问题。
数学思考1. 通过观察一些以直角三角形两直角边为长的小正方形的面积与以斜边为边长的正方形的面积的关系,利用图形之间的割补,得到图形面积之间的相等关系,从而发现勾股定理,发展合情推理探索数学结论的能力。
2. 通过画图、实验发现特殊关系的边长能构造出直角三角形,体会数学的实验操作。
新版北师大版八年级数学上册知识点全面总结第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。
满足222a b c +=的三个正整数称为勾股数。
常见勾股数:(3、4、5)(6、8、10)(5、12、13)(8、15、17)第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果2x a =,那么x 是a的平方根,记作:a(2)性质:①当a ≥00;当a=aa =。
2.立方根的概念及其性质:(1)概念:若3a ,那么x是a(2a =;②3a = 3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5 (a ≥0,b ≥0) a ≥0,b >0)。
第三章 图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
勾股定理第一节 探索勾股定理●应知 基础知识1、勾股定理(1)勾股定理的内容:在直角三角形中,两直角边的 等于 的平方.(2)勾股定理的表示方法:如果直角三角形的两直角边分别为,a b ,斜边为c ,那么有 。
2、理解(1)勾股定理存在和运用的前提条件是在直角三角形中,如果不是直角三角形,那么三边之间不存在这种关系。
(2)勾股定理把“图形”与“数量”有机地结合起来,即把直角三角形的“形”与三边关系的“数”结合起来,是数形结合思想的典型代表之一。
(3)利用勾股定理,可以在直角三角形中已知两边长的情况下,求出未知的第三边长。
一般情况下,用,a b 表示直角边,c 表示斜边,则有:222222222a b c b c a a c b +==-=- 在运用勾股定理求第三边时,首先应确定是求直角边还是求斜边,在选择利用勾股定理的原形公式还是变形公式。
【例1】在ABC ∆中,90C ︒∠=, (1)若3,4,a b ==则c = ; (2)若6,10a c ==,则b = ;(3)若:3:4,15a b c ==,则a = ,b = 。
【例2】已知直角三角形的两边长分别是3和4,如果这个三角形是直角三角形,求以第三边为边长的正方形的面积。
3、勾股定理的验证至少掌握勾股定理的三种验证方法,并从中体会到这种验证方法所体现的数学思想。
【例3】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾 股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所 示).如果大正方形的面积是13,小正方形的面积是1,直角三角形较短直角边为a ,较长 直角边为b ,那么2()a b 的值为( ).A .13B .19C .25D .169 ●应会 基本方法1、如何利用勾股定理求长度利用勾股定理求长度,关键是找出直角三角形或构造直角三角形,把实际问题转化为直 角三角形问题。
在已知两边求第三边时,关键是弄清已知什么边,要求什么边,用平方和还 是平方差。
北师大版八年级数学上册重要知识及数学学习方法第一章勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2 =c2。
2、勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
3、勾股数满足的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)第二章实数1、实数的概念及分类①实数的分类②无理数无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:开方开不尽的数,如√7 , 3 √2 等;有特定意义的数,如圆周率π,或化简后含有π的数,如π /₃+8等;某些三角函数值,如sin60 ° 等2、实数的倒数、相反数和绝对值①相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
②绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
|a|≥0。
0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
③倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
0没有倒数。
④数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
⑤估算3、平方根、算数平方根和立方根①算术平方根一般地,如果一个正数x的平方等于a ,即x 2=a,那么这个正数x就叫做a 的算术平方根。
特别地,0的算术平方根是0。
性质:正数和零的算术平方根都只有一个,0的算术平方根是0。
北师大版初二上册知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足的三222c b a =+个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类一是分类是:正数、负数、0; 另一种分类是:有理数、无理数将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
第 1 页 共 2 页
1.2.2勾股定理的逆定理的应用
1.进一步理解勾股定理的逆定理;(重点)
2.灵活运用勾股定理及逆定理解决实际问题.(难点)
一、情境导入
某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?
二、合作探究
探究点:勾股定理的逆定理的应用
【类型一】 运用勾股定理的逆定理求角度
如图,已知点P 是等边△ABC 内一点,P A =3,
PB =4,PC =5,求∠APB 的度数.
解析:将△BPC 绕点B 逆时针旋转60°得△BEA ,连接EP ,判断△APE 为直角三角形,且∠APE =90°,即可得到∠APB 的度数.
解:∵△ABC 为等边三角形,∴BA =BC .可将△BPC 绕点B 逆时针旋转60°得△BEA ,连EP ,∴BE =BP =4,AE =PC =5,∠PBE =60°,∴△BPE 为等边三角形,∴PE =PB =4,∠BPE =60°.在△AEP 中,AE =5,AP =3,PE =4,∴AE 2=PE 2+P A 2,∴△APE 为直角三角形,且∠APE =90°,∴∠APB =90°+60°=150°.
方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE 为直角三角形.
【类型二】 运用勾股定理的逆定理求边长
在△ABC 中,D 为BC 边上的点,AB =13,
AD =12,CD =9,AC =15,求BD 的长.
解析:根据勾股定理的逆定理可判断出△ACD 为直角三角形,即∠ADC =∠ADB =90°.在Rt △ABD 中利用勾股定理可得出BD 的长度.
解:∵在△ADC 中,AD =12,CD =9,AC =15,∴AC 2=AD 2+CD 2,∴△ADC 是直角三角形,∠ADC =∠ADB =90°,∴△ADB 是直角三角形.在Rt △ADB 中,∵AD =12,AB =13,∴BD =AB 2-AD 2=5,∴BD 的长为5.
方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.
【类型三】 勾股定理逆定理的实际应用
如图,是一农民建房时挖地基的平面图,按
标准应为长方形,他在挖完后测量了一下,发现AB =DC =8m ,AD =BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格?
解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.
解:∵AB =DC =8m ,AD =BC =6m ,∴AB 2+BC 2
=82+62=64+36=100.又∵AC 2=92=81,∴AB 2+BC 2≠AC 2,∴∠ABC ≠90°,∴该农民挖的不合格.
方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.
【类型四】 运用勾股定理的逆定理解决方位角问题
第 2 页 共 2 页
如图,南北向MN 为我国领海线,即MN 以
西为我国领海,以东为公海,上午9时50分,我国反走私A 艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意.反走私艇A 和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得距离C 艇12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?
解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE 即为走私船所走的路程.由题意可知,△ABE 和△ABC 均为直角三角形,可分别解这两个直角三角形即可得出.
解:设MN 与AC 相交于E ,则∠BEC =90°.∵AB 2
+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,且∠ABC =90°.∵MN ⊥CE ,∴走私艇C 进入我国领海的最短距离是CE .由S △ABC =12AB ·BC =12AC ·BE ,得BE
=
6013海里.由CE 2+BE 2=122,得CE =14413海里,∴144
13
÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=
10时41分.
答:走私艇C 最早在10时41分进入我国领海. 方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.
三、板书设计
1.利用勾股定理逆定理求角的度数 2.利用勾股定理逆定理求线段的长 3.利用勾股定理逆定理解决实际问题
在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的
实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想. 巩固练习: 1、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。
2、已知:如图,四边形ABCD 中,AB =3,BC =4,CD =5,AD =25,
∠B =90°,求四边形ABCD 的面积.
3、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截。
已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西n °,问:甲巡逻艇的航向?
A
B
C
C A
B
N
13。