数学建模
- 格式:doc
- 大小:62.50 KB
- 文档页数:3
什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。
数学建模可以帮助我们更好地理解、分析、解决实际问题。
它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。
数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。
在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。
2. 建立模型。
在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。
模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。
3. 求解模型。
在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。
4. 验证模型。
在这个阶段,我们需要根据模型的求解结果,进行模型的验证。
验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。
5. 应用模型。
在这个阶段,我们需要将模型的结果应用于实际问题的解决中。
根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。
数学建模具有广泛的应用领域和重要性。
在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。
在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。
在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。
在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。
总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。
什么是数学建模第一篇:数学建模基础数学建模是指利用数学方法及其它学科的知识和技术,对实际问题进行抽象、分析和求解的一种综合性学科。
数学建模的目的是通过对实际问题的建模进行定量分析和解决,从而为实际问题提供可行的解决方案,为现代社会的发展提供技术和理论支持。
数学建模可以分为三个阶段:问题分析阶段、建模阶段和求解阶段。
在问题分析阶段,需要对实际问题进行详细的调查和分析,了解实际问题的背景以及运作模式。
在建模阶段,需要对实际问题进行抽象、量化并建立数学模型,确定模型的参数、变量及其相互关系。
在求解阶段,需要运用数学方法和技术对建立的数学模型进行求解,并给出实际问题的解决方案。
数学建模是一门综合性的学科,需要掌握数学、物理学、工程学等多学科的知识。
在数学方面,需要熟练掌握微积分、线性代数、统计学等数学基础知识,并能够灵活运用这些知识;在其它学科方面,需要了解相关学科的基本知识和应用技术,如电子技术、通信技术等。
此外,数学建模还需要高超的计算机应用技术,能够用计算机模拟实际问题的过程,并对其进行分析和求解。
总之,数学建模是一门综合性、学科交叉性强的学科,对全面培养学生的综合素质提出了更高的要求。
通过学习数学建模,可以培养学生的创新思维能力和解决实际问题的能力,提高综合应用数学知识解决实际问题的能力,并为未来走向各个领域和专业打下坚实基础。
第二篇:数学建模与实际应用数学建模是数学和实际应用之间的桥梁,主要应用于工程、自然科学和社会科学等领域。
在工程领域,数学建模可以应用于各种工程设计和工程管理中,如市政供水、排水、高速公路等。
在自然科学领域,数学建模可以应用于气象、生态学、地理学、天文学等领域,如预测天气、分析生态系统破坏的原因等。
而在社会科学领域,数学建模可以应用于经济、管理学、政治学等领域中,如预测股票市场走势、企业管理优化等。
数学建模与实际应用密不可分,具有卓越的应用价值和广阔的应用前景。
随着科技和工业的不断发展,实际问题的规模和复杂性也在不断提高,对数学建模提出了更高的要求。
新手入门:什么是数学建模数学建模数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。
数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
建模示例:椅子能在不平的地面上放稳吗日常生活中一件普通的事实:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍挪支几次,就可以使四只脚同时着地,放稳了。
这个看来似乎与数学无关的现象能用数学语言给以表述,并用数学工具来证实吗?模型假设对椅子和地面应该作一些必要的假设:1. 椅子四条腿一样长,椅脚与地面接触处可视为一个点,四脚的连线呈正方形。
2. 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面。
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。
假设1显然是合理的。
假设2相当于给出了椅子能放稳的条件,因为如果地面高度不连续,譬如在有台阶的地方是无法使四只脚同时着地的。
至于假设3是要排除这样的情况:地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,出现深沟或凸峰(即使是连续变化的),致使三只脚无法同时着地。
模型构成中心问题是用数学语言把椅子四只脚同时着地的条件和结论表示出来。
首先要用变量表示椅子的位置。
数学建模是什么
数学建模是指利用数学工具和方法分析和解决实际问题的过程,是一种跨学科的综合性应用科学研究方法。
数学建模的基本步骤包括:问题建模、假设、模型的构建、模型求解和模型评价。
在这个过程中,数学建模的核心是模型的构建和求解,其中模型的构建需要理解实际问题的基本特征和数学方法的应用,而模型求解则需要掌握数学分析、数值计算等技能和方法。
数学建模的应用范围非常广泛,包括但不限于自然科学、社会科学、经济学、工程学等领域的问题。
数学建模在现实生活中的应用包括:企业生产、物流配送、城市交通规划、自然资源评估、环境保护、金融、医学等各个领域。
数学建模的方法多种多样,常见的数学方法包括:微积分、线性代数、概率论、统计学、优化理论等。
通过对实际问题的建模、数学方法的应用和模型求解的计算和分析,数学建模可进一步为决策提供科学依据和参考。
数学建模的主要特点是模型化思维、跨学科交叉和创新性思维。
在这个过程中,数学建模要求研究者对问题进行深入的分析和研究,要对数学方法的应用有较大的理解和掌握,并且要结合实际考虑模型的可行性。
数学建模的创新性思维则要求研究者在模型的构建和求解中体现出一定的创新性和思维深度。
无论是学术界还是实际应用领域,数学建模的应用都已经深入到各个角落。
在数学建模中,数学是一种工具性语言,
而模型则是实际问题的一种映射。
数学建模不仅促进了数学研究和应用之间的相互促进和发展,还连接了传统学科和新兴学科之间的桥梁,推动了知识的跨领域传播和交流。
数学建模的概念数学建模是指将现实世界中的问题,通过数学语言和技术进行分析、表述、求解的过程。
它是数学与应用学科相结合的一项重要工作。
数学建模包括以下三个阶段:第一、问题的数学化,即将实际问题转化为符合数学语言和数学规律的数学问题;第二、建立数学模型,根据数学问题的特性和问题的需求建立数学模型,确定数学模型中的各个参数;第三、求解数学模型,利用数学方法和计算机技术进行建模求解,从而给出实际问题的数值解或者给出实际问题的变化规律。
数学建模在解决实际问题中具有重要意义。
首先,它能够帮助人们对实际问题进行深入的分析和理解,将问题形式化,从而更好地理解问题的本质和内在规律。
其次,它可以为实际问题提供更加准确、可靠的解决方案,并且在求解问题中提高效率,降低成本。
最重要的是,数学建模还能够帮助人们预测问题发展的趋势,提前做预防和控制,从而减少潜在风险和代价。
在数学建模的过程中,需要注意以下几个方面:一、正确理解实际问题。
这是数学建模的前提和基础。
要深入理解问题的背景、目的、约束条件以及关键因素,从而确定问题的数学表达方式和求解方法。
二、合理选择数学模型。
数学模型一是根据实际问题的特点和要求,二是根据数学方法和工具的可行性与有效性的考虑,进行选择。
建立的数学模型应当简单明了,能够反映实际问题的本质,准确捕捉关键因素的变化趋势,并且方便求解和分析。
三、确定数学模型的参数。
参数的选择应该考虑模型的可靠性和准确性,必须要有实际意义,并且需要根据实际数据和情况进行校正和调整。
四、有效求解数学模型。
为了提高效率和准确性,需要选择合适的数学工具和计算机软件,并且要按照求解计划进行前期数据处理、模型运行、结果验证等多个环节。
总之,数学建模是一项综合性的工作,需要涉及到多个学科和领域的知识。
在实际工作中,需要有一定的数学知识和操作技能,并且要具备对实际问题的深入理解、清晰思路、认真负责的态度。
这样才能够将数学建模发挥出其最大的应用价值。
什么叫数学建模:数学建模指的是,利用数学方法和理论对现实问题进行描述、分析和解决的过程。
这种过程需要数学、自然科学、工程技术等学科的知识和技能,同时需要对现实问题的深入理解和实地调查。
数学建模在解决现实问题方面起着非常重要的作用,尤其是涉及到科学、工程、经济和社会等各个领域。
数学建模可以帮助人们更好地理解问题的本质和特征,从而提供更精确和有效的解决方案。
数学建模的过程可以分为以下几个步骤:1.问题描述。
将现实问题转化为数学问题,确定问题的目标、限制条件、变量等。
2.建立模型。
通过分析问题的本质和特征,选择合适的数学方法和理论,建立数学模型。
3.求解模型。
采用数学计算方法和技术,对模型进行求解和优化,得出问题的解决方案。
4.模型验证。
将建立的模型与实际情况进行比较和验证,检验模型的有效性和可行性。
5.预测和应用。
根据问题的特点,应用建立好的模型进行预测和实际应用。
数学建模在现代科学技术和社会发展中扮演着至关重要的角色。
它可以帮助人们更好地理解复杂的现实问题,并提供科学有效的解决方案。
同时,数学建模也推动了数学学科的发展和应用。
在应用领域,数学建模被广泛应用于车辆运输、环境保护、金融投资、医疗卫生、城市规划等多个方面。
例如,在车辆运输领域,数学建模可以在路面拥堵、车辆行驶路径、节能减排等方面提供解决方案;在环境保护领域,数学建模可以针对大气污染、水质污染等问题提供有效的控制策略。
总之,数学建模是一种非常有价值的方法,它能够帮助人们更好地理解问题、提供科学有效的解决方案,是现代科学技术和社会发展中不可或缺的重要工具。
四、模型的建立与求解
管辖范围划分模型的建立
问题1要要求为各个巡警服务平台分配管辖范围,使其在其管辖得范,我们必须先根据题中所给的数据计算出各标志点任意两两之间的最短距离。
然后再根据8.0<ij d 或6.1<ij d 得到第一类学校和第二类学校周边的有效标志点。
最后结合可能出现的一个警员负责多个学校(n>2)的情况,利用线性优化得到是警员数量最少的模型,求出至少需要的警员数量,同时还可以得到警员布置的初步方案。
1、首先我们可以根据题中所给的各个街口的坐标,用matlab 计算出任意两点之间的直线距离,得到92*92的距离矩阵:
⎪⎪⎪⎪⎪⎪⎭
⎫
⎝⎛=nn n n n n m m m m m m m m m m
2
1
22221
11211 2、根据题中的分布图,我们可以得到各个相邻的街口的邻接矩阵:
⎪⎪⎪⎪⎪
⎪⎭
⎫
⎝⎛=nn n n n n n n n n n n n n n n
2
1
22221
11211,即如果两个点相邻,则邻接矩阵中相对应的元素的值为1,否则为0;例如:1和2这两个点相邻,那么
n
12
=n 21=1。
3、根据Floyd 算法,我们是要求出各街口任意两两之间的距离,所以我们需要得到相邻两个接口的直线距离。
我们可以利用距离矩阵的元素ij m 与ij n 的点乘积得到相邻标志点间的距离矩阵:
⎪⎪⎪⎪⎪⎪⎭
⎫
⎝⎛==nn n n n n D D D D D D D D D n m D
2
1
22221
11211*. 4、我们可以将D 中不相邻点间距离0改为无穷大(Inf )从而得到标志点与标志点间的权值矩阵:,即如果1和5之间不相邻,也即不能直接到达,那么D 中的D 15=0和D 51=0都将变成W 15
和W
51
等于无穷大(Inf ),否则则等于D 中
相应元素的数据。
5、运用Floyd 算法求出任意两点间最短距离,得到最短距离矩阵d :
⎪⎪⎪⎪⎪⎪⎭
⎫
⎝⎛=nn n n n n d d d d d d d d d d
2
1
22221
11211
1、7、根据上述分类,我们可以利用matlab 编程,
2、
封锁各个路口模型的建立
封锁路口时我们主要考虑的是将路口堵住,因而至少要派出13个以上得平台的就警力,还有剩下的7个得警力,维持我们在模型建立的时候也考虑到将所有的警力都派出去,而约束的条件为当第13个路口堵住后占用的时间,这样我们既可以在最短的时间内到达现场,同样的也可以充分的利用警力。
封锁时利用0-1规划模型,有0-1规划矩阵5、运用Floyd 算法
⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=mn m m n n i i i i i i i i
2
1
2222111211i i
⎪⎪⎩
⎪⎪⎪⎨⎧≥=∑∑===
1
1..1
1n
j ij m
i ij c c t s
c
⎩
⎨⎧==当当不01ij c =
1
1
≥∑
=n
j ij c
构建距离矩阵⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=mn m m n l l l l l l l l
2
1
22221
ln 1211l l
对于问题三的巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情
况,我们对各个平台负责的区域内的工作量进行统计。