2017年吉林省长春市第78中学中考数学复习之一次函数与图像测试题(无答案)
- 格式:doc
- 大小:411.50 KB
- 文档页数:6
一次函数一次函数的图像和性质)(2,3P-m+-2xy=,且与8题)一次函数的图象经过点轴、1.(2017湖南怀化第xy轴分别交于点、,则的面积是( ) AOB△BA11C.4D.8 A. B. 422.(2017福建第9题)若直线经过点和,且1)n?m?m,n?3)1,21y?kx?k?((,则的值可以是()n20?k?A.3 B.4 C.5 D.61nm)是直线)和点(,.(2017四川省眉山市)设点(﹣1,32b??1)y?(kx2nkm)上的两个点,则、.的大小关系为(0<<12kyMmNn(都是函数)、=-(-8,)4. (2017山东滨州第10题若点)(-7,kxkmn的大小关系是()和+4)1+(+2为常数)的图象上,则mnmnmn.D=.不能确定B.<.AC>??nm,?y?3x?b的图像上,且江苏苏州第6题)若点在一次函数5. (20173m?n?2b的取值范围为,则b?2b??2b?2b??2C. B. D..A6. (2017年山东省泰安市第13题)已知一次函数的图象与轴x???ykxm2y1 / 13的负半轴相交,且函数值随自变量的增大而减小,则下列结论正确的是x y()B. C. D. A.0?k?0,?k2,m?0mk?2,m?k2,m?0?0是题)一次函数2017新疆乌鲁木齐第67. (bk,kxy??b(的解集)的图象,如图所示,则不等式常数,0b?0?kx?k)(是.. B C. D A.2x?0x?x?x?20与如图,函数6题)8. (2017山东菏泽第,则关于的图象相交于点的不等式的解集是()BA.. C..Dkk)一次函数﹣0时,的图象不经过(.9(2017四川省广安市)当<C .第三限象象第B 象第A.一限.二限 D.第四象限与直线(10. 2017黑龙江绥化)在同一平面直角坐标系中,直线1x?y4?的交点不可能在()by??x?2 / 13.第 D第三象限 A.第一象限 B.第二象限C.四象限PxP′,且)关于轴的对称点为1,225.(2017四川省广安市)已知点(P个单位,所得的直线解析式′在直线3上,把直线3的图象向上平移2 .为l:21浙江省台州市)如图,直线与11.(20171lPb).,相交于点(1直线:42bm的值;,1)求(xll分别交于点轴的直线与直线,(2)垂直于21CDa的值.,求,,若线段长为2一次函数的应用1.(2017四川省南充市)小明从家到图书馆看报yx之间的与离家的时间然后返回,他离家的距离对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为.3 / 132. (2017哈尔滨第10题)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小)单位:与他所用的时间((涛离家的距离单位:m)ty之间的函数关系如图所示,下列说法中正确的是 ( ) 900mA.小涛家离报亭的距离是小涛从家去报亭的平均速度是B.60m/min C.小涛从报亭返回家中的平均速度是min/80m D.小涛在报亭看报用了153.(2017重庆A卷第17题)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间4 / 13A地相距的路程是 x(分钟)之间的关系如图所示,则乙到达A地时,甲与米.在同一条道路上,浙江省丽水市)4.(2017ABAB地,乙地到地,乙车从甲车从地到先出发,图中的折线段表示甲、乙两车之间xy(小时)的函的距离(千米)与行驶时间数关系的图象,下列说法错误的是().乙先出发的时间为0.5小时A /小时.甲的速度是B80千米小时后两车相遇0.5C.甲出发1AB小时地比乙到.甲到D地早125.(2017重庆市B卷)甲、乙两人在一条笔直的AB地,乙地到道路上相向而行,甲骑自行车从BA地,他地到们分别以不同的速度匀速驾车从行驶,已知甲先出发6分钟后,乙才出发,在整5 / 13xy(分)之间的关个过程中,甲、乙两人的距离(千米)与甲出发的时间BA.分钟到达终点时,甲还需系如图所示,当乙到达终点6.(2017四川省达州市)甲、乙两动点分别从线段AB运动,的两端点同时出发,甲从点出发,向终点BA运动.已知线段长为90乙从点,甲出发,向终点xs),甲、乙两点之(的速度为2.5.设运动时间为yyx的函数图象如图所示,则图中线段所表示的函数间的距离为(),与关系式为.(并写出自变量取值范围)7. (2017新疆乌鲁木齐第22题)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离(千米)与行驶时间(小时)x y的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后与之间的函数关系式;x y(4)何时两车相距千米. 3006 / 13题)“低碳环保、绿色出行”的理念得到25(2017黑龙江齐齐哈尔第8.广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸150爸同时从家骑自行车去图书馆,爸爸先以分钟,5分的速度骑行一段时间,休息了米/分的速度到达图书馆.小军始终以/再以米m与时同一速度骑行,两人行驶的路程(米)y(分钟)的关系如图.请结合图象,解答间x下列问题:;;;)(1 ?b?m?a(2)若小军的速度是120米/分,求小军在图中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是米/分,且在图中与爸爸恰好相遇两次(不包括v家、图书馆两地),请直接写出的取值范围.v7 / 139. (2017黑龙江绥化第27题)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶.两车之间的路程(千米)与轿车行驶时间(小时)的函数图象如图所示.请结合图象提y t供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;的坐标;(2)求轿车在乙城停留的时间,并直接写出点D)千米请直接写出轿车从乙城返回甲城过程中离甲城的路程()(3s 不要求写出自变量的取()之间的函数关系式.(与轿车行驶时间小时t )值范围首条贯通丝绸之路经济带的高铁线宝兰客专题)27(2017青海西宁第10.宝兰客专的通车对加快西北地区与“一带一路”沿.进入全线拉通试验阶段人文交流具有十分重线国家和地区的经贸合作、试运行期间,一列动车从西安开往西.要的意义宁,一列普通列车从西宁开往西安,两车同时出(小时),两车发,设普通列车行驶的时间为x(千米),如图中的折线表示之间的距离为与yy8 / 13之间的函数关系. x根据图象进行以下探究:【信息读取】(1)西宁到西安两地相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,普通列车的速度是千米/小时. 【解决问题】(3)求动车的速度;(4)普通列车行驶小时后,动车的达终点西宁,求此时普通列车还需行t驶多少千米到达西安?11.(2017浙江衢州第21题)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
中考数学常考考点专题之一次函数测试卷一.选择题(共15小题)1.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB ∥x 轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么平行四边形ABCD 的面积为( )A .4√5B .4C .8√5D .82.一次函数y =mx +m 2(m ≠0)的图象过点(0,4),且y 随x 的增大而增大,则m 的值为( )A .﹣2B .﹣2或2C .1D .23.如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,若点P 的横坐标为﹣1,则关于x 的不等式x +b >kx ﹣1的解集是( )A .x ≥﹣1B .x >﹣1C .x ≤﹣1D .x <﹣14.如果直线y =3x +6与y =2x ﹣4交点坐标为(a ,b ),则解为{x =a y =b 的方程组是( )A .{y −3x =62y +x =−4B .{y −3x =62y −x =4C .{3x −y =63x −y =4D .{3x −y =−62x −y =45.在平面直角坐标系中,点A 1(﹣1,1)在直线y =x +b 上,过点A 1作A 1B 1⊥x 轴于点B 1,作等腰直角三角形A 1B 1B 2(B 2与原点O 重合),再以A 1B 2为腰作等腰直角三角形A 2A 1B 2;以A2B2为腰作等腰直角三角形A2B2B3;按照这样的规律进行下去,那么A2019的坐标为()A.(22018﹣1,22018)B.(22018﹣2,22018)C.(22019﹣1,22019)D.(22019﹣2,22019))6.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 7.关于x的一次函数y=﹣4x+8的图象,下列说法不正确的是()A.直线不经过第三象限B.直线经过点(1,4)C.直线与x轴交于点(2,0)D.y随x的增大而增大8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B的,8:20乙从B地出发骑自行车到A地,甲乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.8:30B.8:35C.8:40D.8:410.“漏壶”是古代一种计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间.在漏壶漏完水之前,漏壶内水的深度与对应的漏水时间满足的函数关系式()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系11.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 12.对于某个一次函数y=kx+b(k≠0),根据两位同学的对话得出的结论,错误的是()A.k>0B.kb<0C.k+b>0D.k=−1 2b13.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.14.若直线BC和直线y=x+3平行,其中点B的坐标为B(﹣2,3),将直线BC向右平移1个单位后为()A.y=﹣x+2B.y=﹣x+4C.y=x+6D.y=x+415.如图,甲从A村匀速骑自行车到B村,乙从B村匀速骑摩托车到A村,两人同时出发,到达目的地后,立即停止运动,甲、乙两人离A村的距离y(km)与他自骑车的时间x (h)之间的函数关系如图所示,则下列说法错误的是()A.A、B两村的距离为120km B.甲的速度为20kmhC.乙的速度为40km/h D.乙运动3.5h到达目的地二.填空题(共5小题)16.我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.17.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第象限.18.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,l1和l2分别表示两人到小亮家的距离s(km)和时间t(h)的关系,则出发h后两人相遇.19.若函数y=|2x﹣3|﹣2a始终大于y=|x+a|,则a的取值范围为.20.根据图象,可得关于x的不等式kx>﹣x+3的解集是.三.解答题(共5小题)21.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.22.在平面直角坐标系中,点B、E的坐标分别为B(﹣2,√3),E(4,0),过点E作直线l⊥x轴,设直线l上的动点A的坐标为(4,m),连接AB,将线段BA绕点B顺时针方向旋转30°得到线段BA′,在射线BA′上取点C,构造Rt△ABC,使得∠BAC=90°.(1)当m=−√3时,求直线AB的函数表达式.(2)当点C落在坐标轴上时,求△ABC的面积.(3)已知点B关于原点O的对称点是点D,在点A的运动过程中,是否存在某一位置,使以A,C,D为顶点的三角形与△ABC相似?若存在,求出点A的坐标;若不存在,请说明理由.23.在平面直角坐标系中,已知一次函数y1=3x﹣5与y2=2x﹣4.(1)求这两个函数图象的交点坐标;(2)求一次函数y2=2x﹣4的图象与坐标轴所围成三角形的面积.24.在平面直角坐标系xOy中,对于第一象限的P,Q两点,给出如下定义:若y轴正半轴上存在点P',x轴正半轴上存在点Q',使PP'∥QQ',且∠1=∠2=α(如图1),则称点P 与点Q为α﹣关联点.(1)在点Q1(3,1),Q2(5,2)中,与(1,3)为45°﹣关联点的是;(2)如图2,M(6,4),N(8,4),P(m,8)(m>1).若线段MN上存在点Q,使点P与点Q为45°﹣关联点,结合图象,求m的取值范围;(3)已知点A(1,8),B(n,6)(n>1).若线段AB上至少存在一对30°﹣关联点,直接写出n的取值范围.25.近年,净月潭公园将环潭公路改造为东北三省最长的人车分离彩色环保公路,平坦宽敞的路面分橙、黑两色,拓宽了原有的人行步道,成为市民健身的好去处.小明和爸爸参加了此公园举办的“亲子健身赛”,两人的行程y(千米)随时间x(时)变化的图象(全程)如图所示.(1)两人出发后小时相遇,此次“亲子健身赛”的全程是千米.(2)求出AB所在直线的函数关系式.(3)若小明想和爸爸一起到达终点,则需在两人出发 1.5小时后,将速度调整为千米/时.。
中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。
一 次 函 数 历 届 中 考 题一.选择题1.(14年长春市中考题7题 3分).如左图,在平面直角坐标系中,点A (2,m )在第一象限.若点A 关于x 轴的对称点B 在直线1+-=x y 上,则m 的值为( ) (A )1-. (B )1.(C )2. (D )3.2.(13年长春市中考题8题3分).如右图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O 'A 'B ',点A 的对应点在直线34y x =上一点,则点B 与其对应点B '间的距离为( )(A )94. (B )3. (C )4. (D )5 . 3.(12年长春市中考题6题3分).有一道题目:已知一次函数2y x b =+,其中b<0,…,与这段描述相符的函数图象可能是( )(A ) (B ) (C ) (D )4.(14年长春市试考题8题3分).如左图,在平面直角坐标系中,点P (12-,a )在直线22y x =+与直线24y x =+之间,则a 的取值范围是( )(A )2<a <4. (B )1<a <3. (C )1<a <2. (D )0<a <2.5.(12年长春市试考题8题3分).如右上图,在平面直角坐标系中,若点A (2,3)在直线12y x b=-+与x 轴正半轴、y 轴正半轴围成的三角形内部,则b 的值可能是( ) (A )3-. (B )3. (C )4. (D )5.6.如图,在平面直角坐标系中,点(1)A m -,在直线23y x =+上.连结OA ,将线段OA 绕点O 顺时针旋转90︒,点A 的对应点B 恰好落在直线y x b =-+上,则b 的值为 ( )(A )2-(B )1(C )32(D )27.(13年长春市试考题7题3分).如右图,在平面直角坐标系中,直线42+=x y 与x 轴交于点A ,与yP xyy=2x +4 y=2x +2Oxy ABO轴交于点B .若点P (1-,a )在△AOB 内部,则a 的取值范围是 (A )0<a <2.(B )0<a <2.5.(C )2<a <4.(D )0<a <4.二.填空题8.(11年长春市中考题13题3分).如左图,一次函数b kx y +=(0k <)的图象经过点A .当3y <时,x 的取值范围是 .9.(14年吉林省中考题12题3分).如中图,直线24y x =+与x 、y 轴分别交于点A 、B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点'C 恰好落在直线AB 上,则点C ′的坐标为 .三.解答题:10. (14年长春市中考题21题 8分)甲、乙两支清雪队同时开始清理某路段积雪.一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务.已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨.甲、乙两队在此路段的清雪总量y (吨)与清雪时间x (时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成清雪总量为 吨. (2)求此次任务的清雪总量m .(3)求乙队调离后,y 与x 之间的函数关系式.11. (13年长春市中考题21题 8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y (米)与时间x (时)的函数图象为线段OA ,乙队铺设完的路面长y (米)与时间x (时)的函数图象为折线BC -CD -DE ,如图所示,从甲队开始工作时计时.(1)分别求线段BC 、DE 所在直线对应的函数关系式. (2)当甲队清理完路面时,求乙队铺设完的路面长.(第7题)Pxy •ABO12.(12年长春市中考题23题7分)某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人积极性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的部分函数图象为折线OA-AB-BC,如图所示.(1)求工人一天加工零件不超过20个时每个零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元.在这两天中,小王第一天加工零件不足20个,求小王第一天加工的零件个数.13.(11年长春市中考题25题10分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2分)(2)求乙组加工零件总量a的值.(3分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)14.(09年长春市中考题25题10分)某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y甲(棵),乙班植树的总量为y乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时).y甲、y乙分别与x之间的部分函数图象如图所示.(1)当0≤x≤6时,分别求y甲、y乙与x之间的函数关系式.(3分)(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当x=8时,甲、乙两班植树的总量之和能否超过260棵.(3分)(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x=8时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.(4分)15.(10年长春市中考题25题 10分)如图①,A 、B 、C 三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A 容器阀门,以4升/分的速度向B 内注水5分钟,然后关闭,接着打开B 容器阀门,以10升/分的速度向C 内注水5分钟,然后关闭.设A 、B 、C 三个容器内的水量分别为y A 、y B 、y C (单位:升),时间为t (单位:分).开始时,B 容器内有水50升.y A 、y C 与时间t 的函数图象如图②所示.请在100≤≤t 的范围内解答下列问题:(1)求t =0时,y B 的值.(2分)(2)求y B 与t 的函数关系式,并在图②中画出其函数图象.(6分) (3)求y A :y B :y C =2:3:4时t 的值.(2分)16.(08年长春市中考题23题7分)甲车由A 地出发沿一条公路向B 地行驶,3小时到达.甲车行驶的路程y (千米)与所用时间x (时)之间的函数图象如图所示.(1)求y 与x 之间的函数关系式.(5分)(2)若乙车与甲车同时从A 地出发,沿同一公路匀速行驶至B 地. 乙车的速度与甲车出发1小时后的速度相同,在图中画出乙车行驶的路程y (千米)与所用时间x (时)的函数图象.(2分)17.(07年长春市中考题22题6分).在北方冬季,对某校一间坐满学生、门窗关闭的教室中CO 2的总量进行检测,部分数据如下:教室连续使用时间x (分)5 10 15 20 CO 2总量y(m 3)0.61.11.62.1经研究发现,该教室空气中CO 2总量y(m 3)是教室连续使用时间x (分)的一次函数. (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)根据有关资料推算,当该教室空气中CO 2总量达到6.7m 3时,学生将会稍感不适.请通过计算说明,该教室连续使用多长时间学生将会开始稍感不适?(3)如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室空气中CO 2的总量减少到0.1m 3,求开门通风时教室空气中CO 2平均每分钟减少多少立方米?210180150120906030 3.532.521.510.5(时)x (千米)y O18.(06年长春市中考题25题10分)小张骑车往返于甲、乙两地,距甲地的路程y (千米)与时间x (小时)的函数图象如图所示.(1)小张在路上停留__________小时,他从乙地返回时骑车的速度为__________千米/时.(3分) (2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止...途中小李与小张共相遇3次.请在图中..画出小李距甲地的路程y (千米)与时间x (小时)的函数的大致图象.(3分) (3)小王与小张同时出发,按相同的路线前往乙地,距甲地的路程y (千米)与时间x (小时)的函数关系为1012+=x y .小王与小张在途中共相遇几次?请你计算第一次相遇的时间.(4分)19.(05年长春市中考题19题6分).如图,直线y=―2x+8与两坐标轴分别交于P 、Q 两点,在线段PQ 上有一点A ,过点A 分别作两坐标轴的垂线,垂足分别为B 、C 。
函数与一次函数考点一、平面直角坐标系(3分)1平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点0 (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a, b)表示,其顺序是横坐标在前,纵坐标在后,中间有;’"分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当a严b时,(a, 3和(b, a)是两个不同点的坐标。
考点二、不同位置的点的坐标的特征(3分)1各象限内点的坐标的特征点P(x, y)在第一象限二x 0, y 0点P(x, y)在第二象限 u x ::: 0, y 0点P(x, y)在第三象限u x ::: 0, y ::: 0点P(x, y)在第四象限x 0, y ::: 02、坐标轴上的点的特征点P(x, y)在x轴上=y = 0 , x为任意实数点P(x, y)在y轴上=x = 0 , y为任意实数点P(x, y)既在x轴上,又在y轴上:=x, y同时为零,即点P坐标为(0, 0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x, y)在第一、三象限夹角平分线上=x与y相等点P(x, y)在第二、四象限夹角平分线上=x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p'关于x轴对称二横坐标相等,纵坐标互为相反数点P与点p'关于y轴对称=纵坐标相等,横坐标互为相反数点P与点p'关于原点对称=横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x, y)到坐标轴及原点的距离:(1 )点P(x, y)到x轴的距离等于y(2)点P(x, y)到y轴的距离等于|x(3)点P(x, y)到原点的距离等于x2 ' y2在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
2017中考数学真题汇编 ----一次函数一•选择题11 •下列函数中,是一次函数的有(.)(1) y= n x ( 2) y=2x - 1 (3 ) y= (4 ) y=2 - 3xA 若函个数By=3 (个+1C x+k 个-D 是正比例函数,则k 的值为(2A. 0 B . 1 C . 土 1D .-3 •下列关系中的两个量成正比例的是( )A •从甲地到乙地,所用的时间和速度B •正方形的面积与边长C •买同样的作业本所要的钱数和作业本的数量D •人的体重与身高4•已知函数y= (1 - 3m ) x 是正比例函数,且 y 随x 的增大而增大,那么 m 的1 1取值范围是( ) 3 A . m >B . m vC . m > 1D . m v 15•若2y+1与x - 5成正比例,则( )A. y 是x 的一次函数B. y 与x 没有函数关系C. y 是x 的函数,但不是一次函数_ ILD.y 是x 的正比例函数 T'6•已知函数y= ( m+1)是正比例函数,且图象在第二、四象限内,贝Um的值是()A . 2B . -2C . ± 2D •(5) y=x - 1.27.-------------- A次函数y=kx+3 的自变量取值增加 2,函数值就相应减少2,则k 的值为()A . 2B . -2C . -1D . 48. y= =(m - 1) x ' m+3m 表示一次函数, 则m 等于()A . 1B . -1C . 0或-1D . 1 或-19 •下列问题中,是正比例函数的是( )A •矩形面积固定,长和宽的关系B •正方形面积和边长之间的关系C •三角形的面积一定,底边和底边上的高之间的关系 y=f ( x )具已知・二.填知题『=(k - 1) x+k - 1是正比例函数,则k= ____________2■12.若函数y= ( m+时,函数是正比例函数,则该函数的图象经过是一次函数.象限. 13 .当 m=-'^m+1「 14.下列函数关系式:① y=2x - 1 :②:③:④s=20t .其中表示一次函数如果对于一切实数 X ,有f ( x ) =x - 2x+5,贝"f (x - 1)的解析式是(填序号)2■16 •某商人购货,进价已按原价 a 扣夫25%,他希望对货物订一新价格,以便按新价让利20%销售后仍可获得25%的利润,则此商人经营这种货物的件数 x 与按新价让利总额y 之间的函数关系式为17 .潍坊市出租车计价方式如下:行驶距离在 2.5km 以内(含2.5km )付起步价6元,超过2.5km 后,每多行驶1km 加收1.4元,试写出乘车费用 y (元)与乘 车距离x (km )(x >2.5)之间的函数关系为18 .当 m ,n 为何值时,y= ( 5m - 3) x三.解答题2T ,+ ( m+n )是关于x 的一次函数?当m ,19为何值时y= (k 是关于-k 的正比例函数?I k |(3x ) =3x +b ,且 f ( 1) =0,贝U10 •我们可以把一个函数记作(• 寸/ 4C . f (x ) =3x - 3 7汇-肮D •匀速运动中,速度固定时,(1 )求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.、)))))))证明:T f (- x ) = (- x )2 + 1= X 2 + 1=f ( x )•I f (X )是偶函数. 根据以上材料',解答下面的问题:」已知函数① 若f (x )是偶函数,且 ,求f (- 1 );② 若a=1,求证:f (X )是偶函数.20 •已知,若函数 y= (m - 1)+3是关于x 的一次函数(1 )求m 的值,并写出解析式.(2)判断点(1, 2)是否在此函数图象上,说明理由.21 .已知一次函数 y= (2m+4 ) x+ (3 - n )(1) 求m , n 为何值时,函数是正比例函数? (2) 求m , n 是什么数时,y 随x 的增大而减小?(3) 若图象经过第一,二,三象限,求 m ,n 的取值范围.22 .阅读下列材料:y=f ( x )表示,对于自变量 x 取值范围内 来总明函数f -(x ) =x+x )是偶函数J 称函数y=f (X )为偶函数•用上述定2现给如下定义:以x 为自变量的函数用5 >i_J' I J ■ ( 来证明函心、参考答案与解析一•选择题11 •下列函数中,是一次函数的有( ■)an(1) y= n x ( 2) y=2x - 1 (3 ) y= (4) y=2 - 3x (5 ) y=x2 - 1.【分析】根据-一次函数的定义对各选项进行逐一分析即可.【解答】解:(1) y= nx —次函数;(2 )1y=2x -1是一次函数;(3 )y=是反比例函数,不是一次函数;(4 )y=2 - 3x是一次函数;(5 )y=x2 —1是二次函数,不是一次函数.是一次函数的有3个.故选:B.【点评】本题考查的是一次函数的定义,即一般地,形如是常数)的函数,叫做一次函数.2.若函数y= (k+1) x+k - 1是正比例函数,则k的值为2A. 0B. 1C. 土1D.- 1y=kx+b ( k z 0, k、b【分析】先根据正比例函数的定义列出关于k的方程组,求出k的值即可.【解答】解 :•••函数y= (k+1) x+k2 - 1是正比例函数,I k2-l=O解得k=1.故选B.【点评】本题考查的是正比例函数的定义,即形如y=kx ( k z 0)的函数叫正比例A. 4个B. 3个C. 2个D. 1个函数.3.下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度B •正方形的面积与边长C •买同样的作业本所要的钱数和作业本的数量D •人的体重与身高【分析】 根据正比例函数的定义计算.【解答】 解:A 、从甲地到乙地,所用的时间和速度,用关系式表达为C 、 买同样的作业本所要的钱数和作业本的数量, 是正比例函数, 故本选项正确;D 、 人的体重与身高不成正比例关系,故本选项错误.故选C .【点评】 本题主要考查正比例函数的定义:一般地,两个变量 x , y 之间的关系式可以表示成形如y=kx ( k 为常数,且k 工0)的函数,那么y 就叫做x 的正比例 函数.4•已知函数y= (1 - 3m ) x 是正比例函数,且 y 随x 的增大而增大,那么 m 的1 1取值范围是( )石 A . m > B . m v C . m > 1 D . m v 1【分析】 先根据正比例函数的性质列出关于 m 的不等式,求出 m 的取值范围即可.1【解答】 解:•••正比例函数y= (1 - 3m ) x 中,y 随x 的增大而增大, 1 - 3m > 0,解得 m v .故选:B .【点评】 本题考查的是正比例函数的性质,即正比例函数 y=kx (k z 0)中,当k > 0时,y 随x 的增大而增大.5.若2y+1与x - 5成正比例,则( )s=vt ,不故本选项错误;2A. y是x的一次函数B. y与x没有函数关系C. y是x的函数,但不是一次函数D. y是x的正比例函数【分析】根据2y+1与x- 5成正比例可得出2y+仁k (x - 5) 2 0),据此可得出结论. 【解答】解:T 2y+1与x-5成正比例,••• 2y+1=k (x - 5)(k 工0),••• y= x - ,••• y是x的一次函数.故选A.【点评】本题考查的是正比例函数的定义,熟知一般地,形如y=kx (k是常数,k z0)的函数叫做正比例函数,其中k叫做比例系数是解答此题的关键.6. 已知函数y= (m+1)是正比例函数,且图象在第二、四象限内,贝U m的值是()A. 2B. - 2 C •土2 D .2【分析】根据正比例函数的定义得出【解答】解:•••函数y= (m+1 )是正比例函数,且图象在第二、四象限内,m2 - 3=1 , m+1 v 0,解得:m= 土2,则m的值是-2.故选:B.【点评】此题主要考查了正比例函数的定义以及其性质,得出m+1的符号是解题关键.7. —次函数y=kx+3的自变量取值增加2,函数值就相应减少2,贝U k的值为()A. 2B.- 2 C .- 1 D . 4【分析】先根据自变量取值增加2,函数值就相应减少2,得到ka+3 - [ k (a+2)+3] =2,据此求得k的值.【解答】解:当x=a时,y=ka+3 ,m - 3=1 , m+1 v 0,进而得出即可.当x=a+2 时,y=k (a+2)+3,v ka+3 - [ k (a+2)+3] =2 ,ka+3 —[ ka+2k+3] =2 ,•••- 2k=2,••• k= — 1,故选:C.【点评】本题考查了一次函数的定义以及待定系数法的运用,注意理解函数解析上的点满足函数解析式.8 y= (m-1)x ' m +3m表示一次函数,则m等于()A. 1B.- 1C. 0 或-1D. 1 或-1【分析】根据一次函数的定义,自变量x的次数为1,一次项系数不等于0列式解答即可.【解答】解:由题意得,| m| =1且m- 1工0,解得m= 土1且m工1 ,所以,m= - 1.故选B.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k工0,自变量次数为1.9.下列问题中,是正比例函数的是()A •矩形面积固定,长和宽的关系B •正方形面积和边长之间的关系C•三角形的面积一定,底边和底边上的高之间的关系D .匀速运动中,速度固定时,路程和时间的关系【分析】根据正比例函数的定义对各选项进行逐一分析即可.【解答产舖‘7正方形面积和,边长是二的长和宽成反选项错故本选项错误;22C、v S= ah,二三角形的面积一定,底边和底边上的高是反比例关系,故本选2项错误;D 、: S=vt ,二速度固定时,路程和时间是正比例关系,故本选项正确.【点评】 本题考查的是正比例函数的定义,即一般地,形如 y=kx ( k 是常数,k工0)的函数叫做正比例函数.y=f ( x ),若已知 f (3x ) =3x +b ,且 f ( 1) =0,则10 .我们可以把一个函数记作2 1 , 1 9 p 1,,■ - C . f (x ) =3x - 3・ I :-J oo【分析】 将x=1代入・f (3x ) =3x +b 可以求得b= - 3,然后将.3x 代入四个答案验(f(x ? =3 【解答】解:v f (3x ) =3x 2+b=nJ(3x ) 2+b• •• f (x) =x 2 + b ,1•- f ( 1 ) =0,• x 12+b=0,J解得b=-_ 1 1 w 1O•- f (x ) =X 2 —.故选A .【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的变形证即可得到答案. 11题『=(k - 1) x+k - 1是正比例函数,则 k= - 1••• k - 1 工 0, k 2 -••• k= - 1,2故答案为-1・【点评】 考查正比例函数的定义:一次项系数不为0,常数项等于0・12•若函数y= (m+1 ) X 是正比例函数,则该函数的图象经过第一、三象限.【分析】 根据一次函数定义可得: 一次函数的性质进而可得答案.【解答】 解:由题意得:| m| =1,且m+1工0, 解得:m=1 , 则 m+1=2 > 0,则该函数的图象经过第一、三象限, 故答案为:一、三.函数,因此自变量的指数为13.当 m= - 3, 0,-数.【分答】解据二由项的(数为零),旬得一次函数.2m1+4x - 5 (X M 0)是一次函数,得m+3=0 . f2jn+l-l 解得m = -3;②,解得m=0;③ 2m+1=0 ,解得: m=-;'时,y= (m - 3) X 2m 1 +4x - 5 是一次函数.1 +综上所述,当m= -3, 0,- 故答案为:-3, 0,-.【点评】 本题考查了一次函数的定义,一次函数y=kx+b 的定义条件是:k 、b 为| m| =1,且m+1工0,计算出m 的值,再根据【点评】此题主要考查了正比例函数定义和性质,关键是掌握正比例函数是一次—时, £函数 y= (m+3) x +4x - 5 ( X M 0)是一次函2m +1常数,k M 0, 自变量次数为1.15 b*n14 •下列函数关系式:① y=2x - 1 :②:③:④s=20t •其中表示一次函数的有 ①②④(填序号)【分析】 根据一次函数和反比例函数的定义可找出:一次函数有①②④; 反比例1 函数有③•此题得解. 1・ 【解答】 解:一次函数有:① y=2x - 1、② 、④s=20t 是一次函数;反比例函数有:③ 故答案为:①②④【点评】本题考查了一次函数的定义以及反比例函数的定理, 牢记一次(反比例)函数的定义是解题的关键.x ,有f (x ) =x - 2x+5,则f ( x - 1)的解析式是 ______________f (x )的函数解析式即可得出答案.+5=x - 4x+8.故答案为:f ( x - 1) =X 2- 4x+8 . 【点评】此题考查了函数关系式的知识, (x - 1)当作自变量代入.16 .某商人购货,进价已按原价 a 扣去25%,他希望对货物订一新价格,以便按_a新价让利20%销售后仍可获得25%的利润,丿U 此商人经营这种货物的件数 x 与按新价让利总额y 之间的函数关系式为 y= x .【分析】 根据题意得出:新价让利总额 =新价X 20% X 售出件数,进而得出等量关系.解答本题关键是理解自变量的含义,将帖.1如果对于一切实数2f (x - 1 ) = (x - 1) -2 2 ( x - 1 )【解答】解:设新价为b元,则销售价为:(1 - 20%) b,进价为a ( 1 - 25%),则(1 - 20%) b -( 1 - 25%) a是每件的纯利,1••• b ( 1 - 20%) - a (1 - 25%) =b ( 1 - 20%) X 25%,化简得:b= a,4••• y=b?20%?x= a?20%?x ,即 y= x .£ 4故答案为:y= x .17 .潍坊市出租车计价方式如下:行驶距离在 2.5km 以内(含2.5km )付起步价6元,超过2.5km 后,每多行驶1km 加收1.4元,试写出乘车费用 y (元)与乘车距离x (km ) (x >2.5)之间的函数关系为 1.4x+2.5 .【分析】 根据乘车费用 -起步价+超过2.5km 的付费得出.【解答】 解:依题意有:y=6+1.4 (x - 2.5) =6+1.4x - 1.4 X 2.5=1.4x+2.5 ,故答案为: 1.4X+2.5 .【点评】此题考查的知识点是函数关系式,找到所求量的等量关系是解决问题的关键.本题乘车费用 =起步价+超过3千米的付费.+ ( m+n )是关于x 的一次函数?当 m ,n 为何值时,y 是关于x 的正比例函数?【分答解据一次函数5的定契正比(函数y= (5m - 3) X 2 n + (m+n )是关于 x 的一次函数.若y= (5m - 3) X 2 n + ( m+n )是关于x 的正比例函数, (?^= 0 丫0二11 15 口+IDF O 1,y= ( 5m - 3) x 2 n + (m+n )是关于x 的正比例函数.【点评】此题主要考查了函数关系式的应用,得出进件与利润之间的关系是解题,n 为何值时,y= ( 5m - 3) x所有当m= - 1且n 解得时,18.19 .已知y= (k - 1) x - k是一次函数.I k|(1 )求k的值;(2)若点(2, a)在这个一次函数的图象上,求a的值.【分析】(1)由一次函数的定义可知:k - 1工0且| k| =1,从而可求得k的值;(2)将点的坐标代入函数的解析式,从而可求得a的值.【解答】解:(1 ) V y是一次函数,二| k| =1,解得k= ± 1 .又V k - 1工0,k 工1.••• k= - 1.(2)将k= - 1代入得一次函数的解析式为y= - 2x+1 .V( 2, a )在y= - 2x+1 图象上,a= - 4+1= - 3.【点评】本题主要考查的是一次函数的定义,依据一次函数的定义求得k的值是解题的关键.mx20 .已知,若函数y= (m - 1) +3是关于x的一次函数(1 )求m的值,并写出解析式.(2)判断点(1, 2)是否在此函数图象上,说明理由.【分析】(1)根据一次函数的定义,可得答案;(2)根据点的坐标满足函数解析式,点在函数图象上,可得答案.【解答】解:(1 )由y= (m - 1) +3是关于x的一次函数,得[nrlHO,解得m= - 1,函数解析式为y= - 2x+3(2 )将x=1代入解析式得y=1工2,故不在函数图象上.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k工0,自变量次数为1.21 .已知一次函数y= (2m+4 ) x+ (3 - n)(1 )求m , n为何值时,函数是正比例函数?(2)求m , n是什么数时,y随x的增大而减小?(3)若图象经过第一,二,三象限,求m,n的取值范围.【分析】(1)根据正比例函数的定义来求出m, n的值即可;(2)根据一次函数的性质即可得出结论;(3)根据一次函数所经过的象限判定m , n的取值范围.【解答】解:(1)依题意得:2m+4工0,且3 - n=0 ,解得m工-2,且n=3;(2)依题意得:2m+4 v 0,且3 - n是任意实数.解得m v- 2, n是任意实数;(3一次函数y= (2m+4 ) x+ (3 - n)的图象经过第一,二,三象限,2m+4 > 0 且3 - n > 0,解得m >- 2, n v 3.【点评】本题考查的是一次函数的定义和正比例函数的性质,解题的关键是熟悉函数图象与系数的关系.22 .阅读下列材料: 现给如下定义:以x为自变量的函数用y=f ( x)表示,对于自变量x取值范围内的一切值,总有f (- x) =f (x)成立,则称函数y=f (x)为偶函数.用上述定义明莪祜来证明函数=((込)=x2+=x是偶函数卩2 2二f (X)是偶函数.f —-—-PMl (根据以上材料,解答下面的问题:已知函数-二①若f (x)是偶函数,且,求f (- 1);②若a=1,求证:f (X)是偶函数.【分析】①根据偶函数定义,f (- 1) =f ( 1),进行求解即可;②把a=1代入,求出f (- x)的表达式,整理后再与f (x)进行比较即可进行判断.【解答】解:①••• f (X)是偶函数,f ( 1 )=,njr U••• f (- 1) =f (1) = ; 12"x-l 2②证明:7a=1 时,f (- x) = - x ( + ),1-2* 2=-x (+ ),2 T 十1 12a -i 2=X (- -),2 莖 _] 2=X ( + ),=f ( X),即对于自变量X取值范围内的一切值,总有 f (- X) =f ( X)成立,••• f (X)是偶函数.【点评】本题考查了偶函数的概念,读懂题目信息,整理出f (- X) 解题的关键.设计方案设计方案设计方案精品文档考试教学资料施工组织精品文档考试教学资料施工组织精品文档考试教学资料施工组织的表达式是精品文档考试教学资料施工组织设计方案。
中考数学《一次函数》专项练习题及答案一、单选题1.已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2−4ac与反比例函数y=4a+2b+cx在同一平面直角坐标系中的图象大致是()A.B.C.D.2.已知一次函数y=kx−k的图象过点(−3,4),则下列结论正确的是()A.y随x增大而增大B.k=1C.直线过点(1,0)D.直线过原点3.如图,正比例函数y1=−2x与一次函数y2=ax+3的图象相交于点A(−1,m),则关于x 的不等式−2x>ax+3的解集是()A.x>2B.x<2C.x>−1D.x<−14.如图,若一次函数y1=x+a与一次函数y2=kx+b的图象交于点P(1,3),则关于x的不等式x+a≤kx+b的解集为()A.x≤1B.x≥1C.x≤0D.x≥35.已知y1=2x﹣5,y2=﹣2x+3,如果y1<y2,则x的取值范围是()A.x>2B.x<2C.x>﹣2 D.x<﹣26.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点A,则不等式0<2x<kx+b的解集是()A.x<1 B.x<0或x>1C.0<x<1D.x>17.已知:抛物线y=−x2−4x+5与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.平行于x轴的直线l与该抛物线交于点D(x1,y1),E(x2,y2),与线段AC交于点F(x3,y3),令g=x3x1+x2,则g的取值范围是()A.0≤g≤52B.−52≤g≤0C.0≤g≤54D.−54≤g≤08.如果一元一次方程3x﹣b=0的根x=2,那么一次函数y=3x﹣b的图象一定过点()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)9.如图是一次函数y=-32x+3的图象,当-3<y<3时,x的取值范围是( )A.x>4B.0<x<2C.0<x<4D.2<x<410.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x>﹣2B.x<﹣2 C.x>﹣4 D.x<﹣411.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的周长C随着边长x的变化而变化B.正方形的面积S随着边长x的变化而变化C.面积为20的三角形的一边a随着这边上的高h的变化而变化D.水箱以0.5L/min的流量往外放水,水箱中的剩水量VL随着放水时间tmin的变化而变化12.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为50万元B.污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元二、填空题13.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.14.一次函数y=kx+b的图象如图所示,当x>0时,y的取值范围为.15.一个正方形的边长为3 cm,它的边长减少xcm后,得到新正方形的周长为y,y与x之间的函数表达式为.16.若函数y=kx+b的图象平行于直线y=2x,且过点(2,﹣4),则该函数的表达式是.17.一次函数y=2x-6的图象与坐标轴围成的三角形面积为。
2017全国部分省市中考数学真题汇编----一次函数的图像专题练习专题练习函数的图像一次函数的图像小题))一.选择题选择题((共18小题1.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为( )A.1.1千米 B.2千米C.15千米D.37千米2.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y 与x之间函数关系的图象是( )A.B.C.D.3.已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是( )A.B.C.D.4.小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系( )A.B.C. D.5.函数y=的大致图象是( )A.B.C.D.6.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是( )A.B.C.D.7.下面哪幅图,可以大致刻画出苹果成熟后从树上下落过程中(落地前),速度变化的情况( )A.B.C.D.8.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为( )A.5L B.3.75L C.2.5L D.1.25L9.下列图象中,能反映等腰三角形顶角y(度)与底角x(度)之间的函数关系的是( )A. B.C. D.10.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是( )A.B.C.D.11.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时12.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑步完成余下的路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离学校的路程S,则S与t之间函数关系的图象大致是( )A.B.C.D.13.b>a,将一次函数y=ax+b与y=bx+a的图象画在同一个直角坐标系内,则能有一组a、b 的取值,使得如下四个图中为正确的是( )A.B.C. D.14.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.则情境a,b所对应的函数图象分别是( )A.③、②B.②、③C.①、③D.③、①15.平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数的图象上整点的个数是( )A.2个 B.4个 C.6个 D.8个16.甲、乙两位运动员在一段2000米长的笔直公路上进行跑步比赛,比赛开始时甲在起点,乙在甲的前面200米,他们同时同向出发匀速前进,甲的速度是8米/秒,乙的速度是6米/秒,先到终点者在终点原地等待.设甲、乙两人之间的距离是y米,比赛时间是x秒,当两人都到达终点计时结束,整个过程中y与x之间的函数图象是( )A.B.C.D.17.端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是( )A.乙队比甲队提前0.25min到达终点B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min 18.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )A.B.C.D.小题))二.填空题填空题((共12小题19.已知A,B两地相距10千米,上午9:00甲骑电动车从A地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为 .20.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A 时,甲还需 分钟到达终点B.21.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是 .22.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.23.甲、乙两人在一条直线道路上分别从相距1500米的A,B 两点同时出发,相向而行,当两人相遇后,甲继续向点B前进(甲到达点B时停止运动),乙也立即向B点返回.在整个运动过程中,甲、乙均保持匀速运动.甲、乙两人之间的距离y(米)与乙运动的时间x(秒)之间的关系如图所示.则甲到B点时,乙距B点的距离是 米.24.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为 米.25.直线y=kx+b(k≠0)的图象如图所示,由图象可知当y<0时,x的取值范围是 .26.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,下列结论:①若通话时间少于120分,则A方案比B方案便宜20元;②若通话时间超过200分,则B方案比A方案便宜12元;③若通讯费用为60元,则B方案比A方案的通话时间多;④若两种方案通讯费用相差10元,则通话时间是145分或185分.其中正确结论的序号是 .27.已知A.B两地相距100km,甲乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶.甲乙两人离A地的距离s(千米)与骑车时间t(小时)满足的函数关系图象如图所示.当甲乙两人相遇时,乙距离A地 km.28.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到学校上学,放学回到了家.情境a,b,c所对应的函数图象分别是 (按次序填写a,b,c对应的序号)29.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x时,y1>y2.30.甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地 千米.三.解答题小题))解答题((共10小题“”为:※a b=31.定义运算※34;(1)计算:※y=2x的图象.(2)画出函数※32.顺丰快递公司派甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1(h)到达B地,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:(1)分别计算甲、乙两车的速度及a的值;(2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离S(km)与时间t(h)的函数图象.33.我们知道对于x轴上的任意两点A(x1,0),B(x2,0),有AB=|x1﹣x2|,而对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|称为P l,P2两点间的直角距离,记作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.(1)已知O为坐标原点,若点P坐标为(1,3),则d(O,P)=;(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(3)试求点M(2,3)到直线y=x+2的最小直角距离.34.司机小王开车从A地出发去B地送信,其行驶路s与行驶时间t之间的关系如图所示,当汽车行驶若干小时到达C地时,汽车发生了故障,需停车检修,修理了几小时后,为了按时赶到B地,汽车加快了速度,结果正好按时赶到,根据题意结合图回答下列问题:(1)上述问题中反映的是哪两个变量之间的关系?指出自变量和因变量.(2)汽车从A地到C地用了几小时?平均每小时行驶多少千米?(3)汽车停车检修了多长时间?车修好后每小时走多少千米?35.某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)试求加油前油箱余油量Q与行驶时间t之间的关系式;(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.36.小明的家和苏州图书馆在同一条笔直的马路(人民路)旁,周六小明准备沿着这条马路去图书馆.她先从家步行到公交车站台甲,然后乘车到公交车站台乙下车,最后步行到图书馆(假设在整个过程中小明步行的速度不变,公交车匀速行驶).图中折线ABCDE表示小明和图书馆之间的距离y(米)与她离家时间x(分钟)之间的函数关系.(1)联系生活实际说出线段BC表示的实际意义;(2)求公交车的速度及图书馆与公交站台乙之间的距离.37.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?(3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?38.小明同学骑自行车去郊外春游,骑行1个小时后,自行车出现损坏,维修好后继续骑行,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的图象.(1)根据图象回答:小明到达离家最远的地方用了几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?39.李大爷按每千克 2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降 1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?40.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中 的路程与时间的关系,线段OD表示赛跑过程中 的路程与时间的关系.赛跑的全程是 米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?参考答案与解析考答案与解析小题))一.选择题选择题((共18小题1.(2017?邵阳)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为( )A.1.1千米 B.2千米C.15千米D.37千米【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为 1.1千米.【解答】解:由图象可以看出菜地离小徐家 1.1千米,故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.2.(2017?齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是 2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.3.(2017?宁夏)已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是( )A.B.C.D.【分析】由点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,可得A与B关于y 轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵A(﹣1,1),B(1,1),∴A与B关于y轴对称,故C,D错误;∵B(1,1),C(2,4),当x>0时,y随x的增大而增大,而B(1,1)在直线y=x上,C(2,4)不在直线y=x上,所以图象不会是直线,故A错误;故B正确.故选B.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.4.(2017?凉山州)小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象中哪一个表示哥哥离家时间与距离之间的关系( )A. B. C.D.【分析】根据哥哥看了20分钟书后,用15分钟返家即可判断哥哥的离家时间与距离之间的关系.【解答】解:根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选D.【点评】本题考查函数的图象,解题的关键是正确将文字语言转化为图形语言,本题属于基础题型.5.(2017?呼和浩特)函数y=的大致图象是( )A.B.C.D.【分析】本题可用排除法解答,根据y始终大于0,可排除D,再根据x的绝对值越接近于0(如x=±0.1,或x=±0.01)时,每个图象两侧都是无限上升,可排除A,根据函数y=和y=x有交点即可排除C,即可解题.【解答】解:x取±1,±2,±3,会发现最小值是x取±1时y=2,由此选项C,D错误;x的绝对值越接近于0(如x=±0.1,或x=±0.01)时,每个图象两侧都是无限上升,可排除A,∵当直线经过(0,0)和(1,1)时,直线解析式为y=x,当y=x=时,x无解,∴y=x与y=没有有交点,∴B正确;故选B.【点评】此题主要考查了函数图象的性质,考查了平方根和绝对值大于等于0的性质,本题中求得直线与函数的交点是解题的关键.6.(2017?广元)为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是( )A.B. C.D.【分析】根据题意求出电费与用电量的分段函数,然后根据各分段内的函数图象即可得解.【解答】解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100),=60+0.8x﹣80,=0.8x﹣20,所以,y与x的函数关系为y=,纵观各选项,只有C选项图形符合.故选C.【点评】本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.7.(2017?雅安)下面哪幅图,可以大致刻画出苹果成熟后从树上下落过程中(落地前),速度变化的情况( )A.B.C.D.【分析】根据苹果下落过程中的速度是随时间的增大逐渐增大的,对各选项分析判断后利用排除法.【解答】解:根据常识判断,苹果下落过程中的速度是随时间的增大逐渐增大的,A、速度随时间的增大变小,故本选项错误;B、速度随时间的增大而增大,故本选项正确;C、速度随时间的增大变小,故本选项错误;D、速度随时间的增大不变,故本选项错误.故选B.【点评】本题考查了函数图象的确认,根据速度随时间的增大而增大确定函数图象是解题的关键.8.(2017?南通)一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为( )A.5L B.3.75L C.2.5L D.1.25L【分析】观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量﹣每分钟增加的水量”即可算出结论.【解答】解:每分钟的进水量为:20÷4=5(升),每分钟的出水量为:5﹣(30﹣20)÷(12﹣4)=3.75(升).故选:B.【点评】本题考查了函数图象,解题的关键是根据函数图象找出数据结合数量关系列式计算.9.(2017?牡丹江)下列图象中,能反映等腰三角形顶角y(度)与底角x(度)之间的函数关系的是( )A. B. C.D.【分析】等腰三角形的两个底角相等,由内角和定理可知:x+x+y=180,从而得y=180﹣2x,由y>0得x<90,又x>0,故0<x<90,据此可得答案.【解答】解:由等腰三角形的性质知y=180﹣2x,且0<x<90,故选:C.【点评】本题考查了三角形内角和定理,一次函数的实际应用及其图象画法,熟练掌握等腰三角形的性质及一次函数图象的画法是解题的关键.10.(2017?东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是( )A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.11.(2017?丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B、∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=1(小时),由最后时间为 1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为: 1.75﹣0.5=1.25(小时),故甲车的速度为:=80(km/h),故B选项正确,不合题意;C、由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D、由以上所求可得,乙到A地比甲到B地早:1.75﹣1=(小时),故此选项错误,符合题意.故选:D.【点评】本题考查了利用函数的图象解决实际问题,解决本题的关键正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.12.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑步完成余下的路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离学校的路程S,则S与t之间函数关系的图象大致是( )A.B.C.D.【分析】根据去学校,可得与学校的距离逐渐减少,根据跑步比步行快,可得答案.【解答】解:由题意,得步行时,小明距离学校的路程S缓慢减少,匀速跑步时,小明距离学校的路程S迅速减少直至为零,故D符合题意,故选:D.【点评】本题考查了函数图象,理解题意与学校的距离逐渐减少是解题关键.13.b>a,将一次函数y=ax+b与y=bx+a的图象画在同一个直角坐标系内,则能有一组a、b 的取值,使得如下四个图中为正确的是( )A.B.C. D.【分析】先假设y=axb正确,得出a、b的符号,再对y=bx+a的图象进行分析即可.【解答】解:A、假设y=ax+b正确,则a>0,b>0,则函数y=bx+a的图象应经过一、二、三象限,故本选项错误;B、假设y=ax+b正确,则a>0,b>0,因为b>a,所以函数y=bx+a与y轴的交点在y=ax+b 与y轴交点的下方,故本选项正确;C、假设y=ax+b正确,则a<0,b>0,则函数y=bx+a的图象过一、三、四象限,因为函数y=ax+b与y=bx+a的交点坐标为(1,a+b),由图象可知a=﹣b和b>a,两结论矛盾,故本选项错误;D、假设y=ax+b正确,则a<0,b>0,则函数y=bx+a的图象过一、三、四象限,故本选项错误.故选B.【点评】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.14.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.则情境a,b所对应的函数图象分别是( )A.③、②B.②、③C.①、③D.③、①【分析】根据图象,一段一段的分析,再一个一个的排除,即可得出答案;【解答】解:∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,故选D【点评】此题考查函数图象问题,主要考查学生的观察图象的能力,同时也考查了学生的叙述能力,用了数形结合思想,题型比较好,但是一道比较容易出错的题目.15.平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数的图象上整点的个数是( )A.2个 B.4个 C.6个 D.8个【分析】把所给函数解析式化为整式,进而整理为两数积的形式,根据整点的定义判断积的可能的形式,找到整点的个数即可.【解答】解:将函数表达式变形,得2xy﹣y=x+12,4xy﹣2y﹣2x=24,2y(2x﹣1)﹣(2x﹣1)=24+1,(2y﹣1)(2x﹣1)=25.∵x,y都是整数,∴(2y﹣1),(2x﹣1)也是整数.∴或或或或或.。
一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x ﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( )A . 过点(0,3),(0,﹣)的直线B . 过点(1,5),(0,﹣)的直线C . 过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( )A .B .C .D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( )A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( )A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B.C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
2017年吉林省长春市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣13C.13D.32.(3分)据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106B.6.7×105 C.6.7×107 D.6.7×1083.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.4.(3分)不等式组{x−1≤02x−5<1的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<35.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a+2bB .3a+4bC .6a+2bD .6a+4b7.(3分)如图,点A ,B ,C 在⊙O 上,∠ABC=29°,过点C 作⊙O 的切线交OA 的延长线于点D ,则∠D 的大小为( )A .29°B .32°C .42°D .58°8.(3分)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(﹣4,0),顶点B 在第二象限,∠BAO=60°,BC 交y 轴于点D ,DB :DC=3:1.若函数y=x x(k >0,x >0)的图象经过点C ,则k 的值为( )A .√33B .√32C .2√33D .√3二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:√2×√3= .10.(3分)若关于x 的一元二次方程x 2+4x+a=0有两个相等的实数根,则a 的值是.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.12.(3分)如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则xx̂的长为.(结果保留π)13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC 与△A'B'C'关于点P成中心对称,则点A'的坐标为.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.19.(7分)如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q 从点C 出发,沿CA 方向以每秒43个单位长度的速度运动,P ,Q 两点同时出发,当点P 停止时,点Q 也随之停止.设点P 运动的时间为t 秒.(1)求线段AQ 的长;(用含t 的代数式表示)(2)连结PQ ,当PQ 与△ABC 的一边平行时,求t 的值;(3)如图②,过点P 作PE ⊥AC 于点E ,以PE ,EQ 为邻边作矩形PEQF ,点D 为AC 的中点,连结DF .设矩形PEQF 与△ABC 重叠部分图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式;②直接写出DF 将矩形PEQF 分成两部分的面积比为1:2时t 的值.24.(12分)定义:对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x ﹣1,它的相关函数为y={−x +1(x<0)x −1(x ≥0). (1)已知点A (﹣5,8)在一次函数y=ax ﹣3的相关函数的图象上,求a 的值;(2)已知二次函数y=﹣x 2+4x ﹣12.①当点B (m ,32)在这个函数的相关函数的图象上时,求m 的值;②当﹣3≤x ≤3时,求函数y=﹣x 2+4x ﹣12的相关函数的最大值和最小值; (3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.2017年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.﹣3 B.﹣13C.13D.3【解答】解:3的相反数是﹣3故选:A.2.(3分)据统计,2016年长春市接待旅游人数约67000000人次,67000000这个数用科学记数法表示为()A.67×106B.6.7×105 C.6.7×107 D.6.7×108【解答】解:67000000这个数用科学记数法表示为6.7×107.故选:C.3.(3分)下列图形中,可以是正方体表面展开图的是()A.B.C.D.【解答】解:下列图形中,可以是正方体表面展开图的是,故选:D.4.(3分)不等式组{x−1≤02x−5<1的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<3【解答】解:{x−1≤0x 2x−5<1x解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选:C.5.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°【解答】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故选:C.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.7.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA 的延长线于点D,则∠D的大小为()A.29° B.32° C.42° D.58°【解答】解:作直径B′C,交⊙O于B′,连接AB′,则∠AB′C=∠ABC=29°,∵OA=OB′,∴∠AB′C=∠OAB′=29°.∴∠DOC=∠AB′C+∠OAB′=58°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=90°﹣58°=32°.故选:B .8.(3分)如图,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(﹣4,0),顶点B 在第二象限,∠BAO=60°,BC 交y 轴于点D ,DB :DC=3:1.若函数y=x x(k >0,x >0)的图象经过点C ,则k 的值为( )A .√33B .√32C .2√33D .√3 【解答】解:∵四边形ABCD 是平行四边形,点A 的坐标为(﹣4,0), ∴BC=4,∵DB :DC=3:1,∴B (﹣3,OD ),C (1,OD ),∵∠BAO=60°,∴∠COD=30°,∴OD=√3,∴C(1,√3),∴k=√3,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)计算:√2×√3= √6.【解答】解:√2×√3=√6;故答案为:√6.10.(3分)若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是 4 .【解答】解:∵关于x的一元二次方程x2+4x+a=0有两个相等的实数根,∴△=42﹣4a=16﹣4a=0,解得:a=4.故答案为:4.11.(3分)如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为 6 .【解答】解:∵a∥b∥c,∴xx xx =xx xx, ∴12=3xx, ∴EF=6,故答案为6.12.(3分)如图,则△ABC 中,∠BAC=100°,AB=AC=4,以点B 为圆心,BA 长为半径作圆弧,交BC 于点D ,则xx ̂的长为 8x 9.(结果保留π)【解答】解:∵△ABC 中,∠BAC=100°,AB=AC ,∴∠B=∠C=12(180°﹣100°)=40°, ∵AB=4,∴xx ̂的长为40x ×4180=8x 9. 故答案为8x 9.13.(3分)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD 和四边形EFGH 都是正方形,△ABF 、△BCG 、△CDH 、△DAE 是四个全等的直角三角形.若EF=2,DE=8,则AB 的长为 10 .【解答】解:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG﹣BF=6,∴直角△ABF中,利用勾股定理得:AB=√xx2+xx2=√82+62=10.故答案是:10.14.(3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC 与△A'B'C'关于点P成中心对称,则点A'的坐标为(﹣2,﹣3).【解答】解:如图,点B,C的坐标为(2,1),(6,1),得BC=4.由∠BAC=90°,AB=AC,得AB=2√2,∠ABD=45°,∴BD=AD=2,A(4,3),设AB的解析式为y=kx+b,将A,B点坐标代入,得{2x+x=1,4x+x=3,解得{x=1x=−1AB的解析式为y=x﹣1,当y=0时,x=1,即P(1,0),由中点坐标公式,得x A′=2x P﹣x A=2﹣4=﹣2,y A′=2y A′﹣y A=0﹣3=﹣3,A′(﹣2,﹣3).故答案为:(﹣2,﹣3).三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(6分)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.【解答】解:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.16.(6分)一个不透明的口袋中有三个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.【解答】解:列表如下:a b ca(a,a)(b,a)(c,a)b(a,b)(b,b)(c,b)c(a,c)(b,c)(c,c)所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P=39=1 3.17.(6分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)【解答】解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.18.(7分)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.【解答】解:设跳绳的单价为x 元,则排球的单价为3x 元,依题意得:750x ﹣9003x=30, 解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.19.(7分)如图,在菱形ABCD 中,∠A=110°,点E 是菱形ABCD 内一点,连结CE 绕点C 顺时针旋转110°,得到线段CF ,连结BE ,DF ,若∠E=86°,求∠F 的度数.【解答】解:∵菱形ABCD ,∴BC=CD ,∠BCD=∠A=110°,由旋转的性质知,CE=CF ,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE ,在△BCE 和△DCF 中,{xx =xx ∠xxx =∠xxx xx =xx,∴△BCE ≌△DCF ,∴∠F=∠E=86°.20.(7分)某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【解答】解:(1)n=12+24+15+6+3=60;(2)(6+3)÷60×600=90,答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.21.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为80 件;这批服装的总件数为1140 件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【解答】解:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.22.(9分)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:AC=BD .(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为54.【解答】解:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=12 AC,同【探究】的方法得,FG=12 BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;故答案为AC=BD;(2)如图2,由【探究】得,四边形EFGH是平行四边形,∵F ,G 是BC ,CD 的中点,∴FG ∥BD ,FG=12BD , ∴△CFG ∽△CBD ,∴x △xxx x △xxx =14, ∴S △BCD =4S △CFG ,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5,∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =54, 同理:S △DHG +S △BEF =54, ∴S 四边形EFGH =S 四边形ABCD ﹣(S △CFG +S △AEH +S △DHG +S △BEF )=5﹣52=52, 设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG=12BD , ∴CM=OM=12OC , 同理:AN=ON=12OA , ∵OA=OC ,∴OM=ON ,易知,四边形ENOP ,FMOP 是平行四边形,∴S 阴影=12S 四边形EFGH =54, 故答案为54.23.(10分)如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P 运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q 在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF 分成两部分的面积比为1:2时t的值.【解答】解:(1)在Rt △ABC 中,∵∠C=90°,AB=10,BC=6,∴AC=√xx 2−xx 2=√102−62=8, ∵CQ=43t , ∴AQ=8﹣43t (0≤t ≤4).(2)①当PQ ∥BC 时,xx xx =xx xx, ∴5x 10=8−43x 8, ∴t=32s . ②当PQ ∥AB 时,xx xx =xx xx , ∴43x 8=6−3(x −2)6, ∴t=3,综上所述,t=32s 或3s 时,当PQ 与△ABC 的一边平行.(3)①如图1中,a 、当0≤t ≤32时,重叠部分是四边形PEQF .S=PE•EQ=3t•(8﹣4t ﹣43t )=﹣16t 2+24t . b 、如图2中,当32<t ≤2时,重叠部分是四边形PNQE .S=S 四边形PEQF ﹣S △PFN =(16t 2﹣24t )﹣12•45[5t ﹣54(8﹣43t )]•35[5t ﹣54(8﹣43t )]=163x 2+8x −24. c 、如图3中,当2<t ≤3时,重叠部分是五边形MNPBQ .S=S 四边形PBQF ﹣S △FNM =43t•[6﹣3(t ﹣2)]﹣12•[43t ﹣4(t ﹣2)]•34[43t ﹣4(t ﹣2)]=﹣203t 2+32t ﹣24.②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(4﹣4t):(4﹣43t)=1:2,解得t=35s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴DE:DQ=NE:FQ=1:3,∴(4t﹣4):(4﹣43t)=1:3,解得t=65 s,综上所述,当t=35s或65s时,DF将矩形PEQF分成两部分的面积比为1:2.24.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y={−x +1(x<0)x −1(x ≥0). (1)已知点A (﹣5,8)在一次函数y=ax ﹣3的相关函数的图象上,求a 的值;(2)已知二次函数y=﹣x 2+4x ﹣12.①当点B (m ,32)在这个函数的相关函数的图象上时,求m 的值;②当﹣3≤x ≤3时,求函数y=﹣x 2+4x ﹣12的相关函数的最大值和最小值; (3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象有两个公共点时n 的取值范围.【解答】解:(1)函数y=ax ﹣3的相关函数为y={−xx +3(x<0)xx −3(x ≥0),将点A (﹣5,8)代入y=﹣ax+3得:5a+3=8,解得:a=1.(2)二次函数y=﹣x 2+4x ﹣12的相关函数为y={x 2−4x +12(x<0)−x 2+4x −12(x ≥0) ①当m <0时,将B (m ,32)代入y=x 2﹣4x+12得m 2﹣4m+12=32,解得:m=2+√5(舍去)或m=2﹣√5.当m ≥0时,将B (m ,32)代入y=﹣x 2+4x ﹣12得:﹣m 2+4m ﹣12=32,解得:m=2+√2或m=2﹣√2.综上所述:m=2﹣√5或m=2+√2或m=2﹣√2.②当﹣3≤x <0时,y=x 2﹣4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小,∴此时y 的最大值为432. 当0≤x ≤3时,函数y=﹣x 2+4x ﹣12,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣12,当x=2时,有最大值,最大值y=72. 综上所述,当﹣3≤x ≤3时,函数y=﹣x 2+4x ﹣12的相关函数的最大值为432,最小值为﹣12; (3)如图1所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有3个公共点∵抛物线y=x 2﹣4x ﹣n 与y 轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n <﹣1时,线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有2个公共点.如图3所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=﹣x 2+4x+n 经过点(0,1),∴n=1.如图4所示:线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有2个公共点.∵抛物线y=x 2﹣4x ﹣n 经过点M (﹣12,1), ∴14+2﹣n=1,解得:n=54. ∴1<n ≤54时,线段MN 与二次函数y=﹣x 2+4x+n 的相关函数的图象恰有2个公共点.综上所述,n 的取值范围是﹣3<n <﹣1或1<n ≤54.。
初三数学总复习—函数与图像测试题
班级 姓名
一、选择题(每题4分,共32分)
1. 把二次函数422+-=x x y 化为()k h x a y +-=2
的形式,下列变形正确的是( )
A. ()312
++=x y B. ()322
+-=x y C. ()512
+-=x y D. ()312
+-=x y
2.在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为( )
A .与x 轴相离、与y 轴相切
B .与x 轴、y 轴都相离
C .与x 轴相切、与y 轴相离
D .与x 轴、y 轴都相切 3.抛物线2
(1)3y x =-+的顶点坐标是( )
A .(1,3)
B .(1-,3)
C .(1-,3-)
D .(1,3-) 4.已知点A (2,y 1)、B (m ,y 2)是反比例函数(0)k
y k x
=
>的图象上的两点,且y 1<y 2. 满足条件的m 值可以是( )
A .6-
B .1-
C .1
D .3
5.象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘, 如果“马”的坐标是(-2,2),它是抛物线)0(2
≠=a ax y 上的一个点,那么下面哪个棋子在该抛物线上( ) (A)帥 (B)卒 (C)炮 (D)仕
6.某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过..200元的部分可以享受打折优惠.
若购买商品的实际付款金额y (单位:元)与商品原价x (单位:元)的函数关系的图象如图所示,则超.过.200元的部分可以享受的优惠是( )
A .打八折
B .打七折
C .打六折
D .打五折
7. 抛物线()2
1y x t =-+与x 轴的两个交点之间的距离为4,则t 的值是( ) A .1-
B .2-
C .3-
D .4-
8.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ∆,
使︒=∠90BAC ,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )
二、填空题(每题4分,共16分)
9.x 的取值范围是____________.
10.在下列函数①21y x =+;②2
2y x x =+;③3
y x
=
;④3y x =-中,与众不同的一 个是_____(填序号),你的理由是________ .
11.次函数()5122
--=x y 的最小值是__________.
12.某函数符合如下条件:①图象经过点(1,3);②y 随x 的增大而减小.请写出一个符合上述条件的函数表达式 .
三、解答题(13题12分,14-17每小题10分,共52分) 13、已知二次函数122
12
++=
x x y . (1)写出抛物线的开口方向、顶点坐标、对称轴、最大或最小值;
(2)求抛物线与x 轴、y 轴的交点; (3)作出函数图象的草图;
(4)观察图象,x 为何值时,y >0;x 为何值时,y= 0;x 为何值时,y <0?
14.已知二次函数2
(1)2(3)y m x mx m =-+++.
(1)如果该二次函数的图象与x 轴无交点,求m 的取值范围;
(2)在(1)的前提下如果m 取最小的整数,求此二次函数表达式
15.有这样一个问题:探究函数x
y=
x+1
的图象与性质. 小怀根据学习函数的经验,对函数x
y=x+1
的图象与性质进行了探究.
下面是小怀的探究过程,请补充完成: (1)函数x
y=
x+1
的自变量x 的取值范围是___________; (2)列出y 与x 的几组对应值.请直接写出m 的值,m=__________;
(3)请在平面直角坐标系xOy中,
描出以上表中各对对应值为坐标
的点,并画出该函数的图象;
(4)结合函数的图象,写出函数
x
y=
的一条性质.
x+1
16.为了美化生活环境,小明的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩
形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米,设AB 的长为x米,矩形花圃的面积为y平方米.
(1)用含有x的代数式表示BC的长,BC= ;
(2)求y与x的函数关系式,写出自变量x的取值范围;
(3)当x为何值时,y有最大值?
17.在平面直角坐标系xOy中,直线y= -x+2与y轴交于点A,点A关于x轴的对称点
为B,过点B作y轴的垂线l,直线l与直线y= -x+2交于点C;抛物线y=nx2-2nx+n+2
(其中n <0)的顶点坐标为D . (1) 求点C ,D 的坐标;
(2) 若点E (2,-2)在抛物线y =nx 2-2nx +n +2(其中n <0)上,求n 的值;
(3)若抛物线y =nx 2-2nx +n +2(其中n <0)与线段BC 有唯一公共点,求n 的取值范围.
选做题:(20分)若抛物线L :()02≠++=abc c b a c bx ax y 是常数,且,,与直线l 都经过y 轴上的同一点,且抛物线L 的顶点在直线l 上,则称此抛物线L 与直线l 具有“一带一路”关系,并
且将直线l 叫做抛物线L 的“路线”,抛物线L 叫做直线l 的“带线”.
(1) 若“路线”l 的表达式为42-=x y ,它的“带线”L 的顶点在反比例函数x y 6=
(x <0)的图
象上,求“带线”L 的表达式;
(2) 如果抛物线122-+-=m mx mx y 与直线1+=nx y 具有“一带一路”关系,求m ,n 的值;
(3)设(2) 中的“带线”L 与它的“路线”l 在 y 轴上的交点为A . 已知点P 为“带线”L 上的点,当以点P 为圆心的圆与“路线”l 相切于点A 时,求出点P 的坐标.。