典型化工设备设计_换热器结构
- 格式:ppt
- 大小:4.97 MB
- 文档页数:79
固定管板式换热器的结构设计摘要换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。
换热器的型式繁多,不同的使用场合使用目的不同。
其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。
固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。
这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。
固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。
固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。
管束安装在壳体内,两端固定在管板上。
管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。
换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。
一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。
关键词:换热器;固定管板式换热器;结构;设计The Structural Design of Fixed Tube Plate Heat ExchangerAuthor : Chen Hui -juanTutor : Li HuiAbstractHeat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy.The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, themost widely used in various industry departments.Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat exchange tube bundle, tube plate, the front tube box (also known as the roof or head) and the back-end structure parts. Tube bundle is installed on both ends of casing, which is fixed on the tube plate. Tube box and the back-end respectively connected to theflange bolts at the ends of the shell structure, maintenance or cleaning for easy disassembly. The merits of the heat exchanger design ultimately depends on whether applicable, economic, safe, flexible and reliable running, convenient maintenance cleaning, etc. A high heat transfer efficiency, compact, low cost, safe and reliable production of heat exchanger, requires carefully considered in the design of all sorts of problems. The accurate thermal design and calculation, but also for intensity and conform to the requirement of process manufacturing level.Keywords: Heat exchanger,Fixed tube plate heat exchanger, Structure,Design目录1 绪论.......................................... 错误!未定义书签。
XX大学XX学院化工原理课程设计班级姓名学号指导教师 ____二零一X年X月X日化工原理课程设计任务书皖西学院生物与制药工程学院课程设计说明书题目:水冷却煤油列管式换热器的设计课程:化工原理系(部):专业:班级:学生姓名:学号:指导教师:完成日期:课程设计说明书目录第一章设计资料一、设计简介 (5)二、设计任务、参数和质量标准 (7)第二章工艺设计与说明一、工艺流程图 (8)二、工艺说明 (8)第三章物料衡算、能量衡算与设备选型一、物料衡算 (9)二、能量衡算 (11)三、主要设备选型 (13)第四章结论与分析结论与分析 (15)第五章设计总结设计总结 (17)参考文献 (17)第一章设计资料一、设计简介换热器是许多工业生产部门的通用工艺设备,尤其是石油、化工生产应用更为广泛。
在化工厂中换热器可用作加热器、冷却器、冷凝器、蒸发器和再沸器等。
进行换热器的设计,首先是根据工艺要求选用适当的类型,同时计算完成给定生产任务所需的传热面积,并确定换热器的工艺尺寸。
根据操作条件设计出符合条件的换热器,设计方案的确定包括换热器形式的选择,加热剂或冷却剂的选择,流体流入换热器的空间以及流体速度的选择。
本课程设计是根据任务给出的操作目的及条件、任务,合理设计适当的换热器类型,以满足生产要求。
1、固定板式换热器(代号G)设备型号内容有:壳体公称直径(mm),管程数,公称压力(×9.81×104 Pa),公称换热面积(m2),如G800I-6-100型换热器,G表示固定板式列管换热器,壳体公称直径为800mm,管程数为1,公称压力为6×9.81×104 Pa,换热面积为100m22、浮头式列管换热器(代号F)设备型号内容有:壳体公称直径(mm),传热面积(m2),承受压力(×9.81×104 Pa),管程数,如F A600-13-16-2型换热器,F代表浮头是列管换热器,B表示换热器为管径错误!未找到引用源。
化工原理课程设计-列管式换热器(热水冷却器)化工原理课程设计任务书课题名称列管式换热器(热水冷却器)课题性质工程设计类班级应用化学(一)班学生姓名 XXXXXX学号 20090810030117指导教师 XXXXXX目录目录 ------------------------------------------------------ 2 任务书---------------------------------------------------- 4一(设计题目 ------------------------------------------ 4二(设计的目的 ---------------------------------------- 4三(设计任务及操作条件 -------------------------------- 4四(设计内容 ------------------------------------------ 5 符号说明 -------------------------------------------------- 5 确定设计方案---------------------------------------------- 61.选择换热器类的 -------------------------------------- 62.流程的安排 ------------------------------------------ 6 确定物性数据---------------------------------------------- 6估算换热面积 ------------------------------------------ 81. 热流量 ----------------------------------------- 8 工艺结构尺寸---------------------------------------------- 91. 管径和管内流速 ------------------------------------ 92. 管程数和传热管数 ---------------------------------- 93.平均传热温差校正及壳程数 ---------------------------- 94.传热管排列和分程方法 ------------------------------- 105.壳体内径 ------------------------------------------- 106.折流板---------------------------------------------- 117.其它附件 ------------------------------------------- 118.接管------------------------------------------------ 11 换热器核算----------------------------------------------- 121.热流量核算 ----------------------------------------- 12(1)壳程表面传热系数 ----------------------------- 12(2)关内表面传热系数 ------------------------------- 13(3)污垢热阻和管壁热阻 --------------------------- 13(4)传热系数Kc ------------------------------------- 14(5) 传热面积裕度 -------------------------------- 142.壁温核算 ------------------------------------------- 15换热器内流体的流动阻力 ------------------------------- 16(1)管程流体阻力 --------------------------------- 16(2)壳程阻力 ------------------------------------- 17 换热器主要结构尺寸和计算结果表 -------------------------- 18 参考文献 ------------------------------------------------- 19 设计结果评价--------------------------------------------- 20 总结 ----------------------------------------------------- 22任务书一(设计题目热水冷却器的设计二(设计的目的通过对热水冷却器的列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择合适的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。
化工设备设计全书换热器设计换热器是一种用于传递热量的设备,常用于化工工艺中。
换热器设计的目标是在满足工艺要求的前提下,最大限度地提高热量传递效率,并确保设备的稳定运行和安全性。
换热器设计过程包括以下几个主要步骤:1. 确定热量传递需求:首先,需要明确工艺中所需的热量传递量,即冷热流体之间的温度差和传热面积。
2. 选择合适的换热器类型:根据工艺要求和特定的应用场景,选择适合的换热器类型。
常见的换热器类型包括壳管式换热器、板式换热器、螺旋板换热器等。
3. 确定传热介质和流体参数:确定冷热流体的物性参数,如温度、压力、流量等,并选择合适的传热介质,如水、蒸汽、油等。
4. 计算传热面积:根据热量传递需求和换热器类型,计算所需的传热面积。
传热面积的大小直接影响换热器的尺寸和成本。
5. 设计换热器结构:根据换热器类型和传热面积,设计换热器的结构参数,如管束布置、管道直径、板间距等。
6. 选择合适的材料:根据工艺要求和流体特性,选择合适的材料来制造换热器,确保其耐腐蚀性和耐高温性。
7. 进行强度计算:对换热器结构进行强度计算,确保其能承受工作条件下的压力和温度。
8. 进行传热和流动阻力计算:通过传热和流动阻力计算,评估换热器的传热效率和流体流动特性是否满足工艺要求。
9. 进行换热器的工艺模拟和优化:使用计算机辅助设计软件,进行换热器的工艺模拟和优化,以提高热量传递效率和设备性能。
10. 编制设计报告和施工图纸:最后,根据设计结果编制详细的设计报告和施工图纸,作为生产制造和安装的依据。
换热器设计需要综合考虑工艺要求、设备特性和经济效益等因素,并遵循相关的设计规范和标准,以确保设计的准确性和安全性。
化工原理课程设计管壳式换热器选型姓名:学号:10091693班级:工092指导老师:袁萍前言1.换热器的设备简介传热是热能从热流体间接或直接传向冷流体的过程。
其性质复杂,不但要考虑经过间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。
在化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
其中间壁式换热器詹用量最大,据统计,这类换热器占总用量的99%。
间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料基本齐全,在许多国家都有了系列化的标准。
因此,作为广泛应用于各个领域的工业设备,它在国民经济中具有非常重要的作用。
换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。
管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填料函式换热器和双管板换热器等。
前3种应用比较普遍。
固定管板式换热器的结构:主要有外壳、管板、管束、顶盖(又称封头)等部件构成。
它的特点是结构简单,没有壳侧密封连接,相同的壳体内径排管最多,在有折流板的流动中旁路最小,管程可以分成任何管程数,因两个管板由管子互相支撑,故在各种管壳式换热器中它的管板最薄,造价最低,因而得到广泛应用。
这种换热器的缺点是:壳程清洗困难,有温差应力存在。
这种换热器适用于两种介质温差不大,或温差较大但壳程压力不高及壳程介质清洁,不易结垢的场合。
在满足工艺过程要求的前提下,换热器应达到安全与经济的目标。
换热器设计的主要任务是参数选择和结构设计、传热计算及压降计算等。
设计主要包括壳体形式、管程数、换热管类型、管长、管子排列、管子支承结构、冷热流体的流动通道等工艺设计和封头、壳体、管板等零部件的结构、强度设计计算。
化工原理课程设计——换热器设计本课题研究的目的要紧是针对给定的固定管板式换热器设计要求,通过查阅资料、分析设计条件,以及换热器的传热运算、壁厚设计和强度校核等设计,差不多确定固定管板式换热器的结构。
通过分析固定管板式换热器的设计条件,确定设计步骤。
对固定管板式换热器筒体、封头、管板等部件的材料选择、壁厚运算和强度校核。
对固定管板式换热器前端管箱、后端管箱、传热管和管板等结构进行设计,对换热器进行开孔补强校核。
绘制符合设计要求的固定管板式换热器的图纸,给出相关的技术要求;在固定管板换热器的结构设计过程中,要参考相关的标准进行设计,比如GB-150、GB151……,使设计能够符合相关标准。
同时要是设计的结构满足生产的需要,达到安全生产的要求。
通过设计过程达到熟悉了解换热器各部分结构特点及工作原理的目的。
关键词:换热器;固定管板;设计;强度名目摘要 ....................................................... 错误!未定义书签。
1绪论 (1)1.2固定管板换热器介绍 (2)1.3本课题的研究目的和意义 (3)1.4换热器的进展历史 (4)2产品冷却器结构设计的总体运算 (6)2.1 产品冷却器设计条件 (6)2.2前端管箱运算 (8)2.2.1前端管箱筒体运算 (8)2.2.2前端管箱封头运算 (10)2.3后端管箱运算 (11)2.3.1后端管箱筒体运算 (11)2.3.2后端管箱封头运算 (12)2.4壳程圆筒运算 (13)3各部分强度校核 (15)3.1开孔补强运算 (15)3.2壳程圆筒校核 (18)3.3管箱圆筒校核 (19)4换热管及法兰的设计 (20)4.1换热管设计 (20)4.2管板设计 (21)4.3管箱法兰设计 (22)4.4壳体法兰设计 (25)4.5各项系数运算 (27)5 产品冷却器制造过程简介 (34)5.1 总则 (34)5.2零部件的制造 (34)结论 (43)参考文献: (44)致谢 (44)1绪论1.1换热器的作用及分类在工业生产中,换热设备的要紧作用是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到工艺过程规定的指标,以满足工艺过程上的需要。
化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。
本文将介绍化工原理课程设计中换热器的设计过程和要点。
2. 设计目标在进行换热器设计之前,首先要确定设计的目标。
设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。
3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。
这些参数可以通过实验测定或者查阅相关文献获得。
3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。
传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。
3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。
传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。
3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。
常见的换热器类型包括管壳式换热器、板式换热器等。
3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。
3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。
性能评价主要包括换热器的传热效率、压降以及经济性等方面。
4. 实例分析下面通过一个实例来说明换热器的设计过程。
实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。
根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。
一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。
2、冷却介质:循环水,入口温度35℃。
3、允许压强降:不大于1×105Pa。
4、每年按330天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸设计。
3、设计结果概要或设计结果一览表。
4、设备简图(要求按比例画出主要结构及尺寸)。
5、对本设计的评述及有关问题的讨论。
第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。
由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。
1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
所以传热是最常见的重要单元操作之一。
无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。
此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。
归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。
②削弱传热过程,如设备和管道的保温,以减少热损失。
1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。
在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。
广东石油化工学院化工原理课程设计说明书题目:柴油预热原油的管壳式换热器学生班级:学生姓名:学生学号: 18指导教师:李燕化学化工学院年月日化工原理课程设计任务书一、设计题目:列管式换热器设计二、设计任务及操作条件某炼油厂用柴油将原油预热。
柴油和原油的有关参数如下表, 两侧的污垢热阻均可取1.72×10-4m2.K/W,要求两侧的阻力损失均不超过0.5×105Pa。
试选用一台适当型号的列管式换热器。
(x:学号)三、设计要求提交设计结果,完成设计说明书。
设计说明书包括:封面、目录、设计任务书、设计计算书、设计结果汇总表、参考文献及设计自评表、换热器装配图等。
(设计说明书及图纸均须手工完成)四、定性温度下流体物性数据物料温度℃质量流量kg/h比热kJ/kg.℃密度kg/m3导热系数W/m.℃粘度Pa.s 入口出口柴油175 T2 34220 2.48 715 0.133 0.64×10-3原油70 110 44330 2.20 815 0.128 3.0×10-3 推荐总K=45~280 W/m.℃注:若采用错流或折流流程,其平均传热温度差校正系数应大于0.8五、参考书目:1、姚玉英 . 化工原理 ,上册,1版.天津:天津大学出版社,19992、柴诚敬.化工原理课程设计. 1版.天津:天津大学出版社,19943、匡国柱.化工单元过程及设备课程设计. 1版.北京:化学工业出版社,20024、李功祥.常用化工单元设备设计.1版.广州:华南理工大学出版社,2003目录1.设计任务书 (1)2.概述 (2)3.设计条件及物性参数表 (2)4.方案设计和拟定 (3)5.设计计算 (6)6.热量核算 (11)7.参考文献 (16)8.心得体会 (17)1.设计任务书1.1设计题目用柴油预热原油的管壳式换热器1.2设计任务1.查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2.根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3.根据换热器工艺设计及计算的结果,进行换热器结构设计;4.以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5.编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。
一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。
2、冷却介质:循环水,入口温度35℃。
3、允许压强降:不大于1×105Pa。
4、每年按330天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸设计。
3、设计结果概要或设计结果一览表。
4、设备简图(要求按比例画出主要结构及尺寸)。
5、对本设计的评述及有关问题的讨论。
第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。
由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。
1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
所以传热是最常见的重要单元操作之一。
无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。
此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。
归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。
②削弱传热过程,如设备和管道的保温,以减少热损失。
1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。
在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。
化⼯原理课程设计__换热器⼀、设计任务书⼆、确定设计⽅案2.1 选择换热器的类型本设计中空⽓压缩机的后冷却器选⽤带有折流挡板的固定管板式换热器,这种换热器适⽤于下列情况:①温差不⼤;②温差较⼤但是壳程压⼒较⼩;③壳程不易结构或能化学清洗。
本次设计条件满⾜第②种情况。
另外,固定管板式换热器具有单位体积传热⾯积⼤,结构紧凑、坚固,传热效果好,⽽且能⽤多种材料制造,适⽤性较强,操作弹性⼤,结构简单,造价低廉,且适⽤于⾼温、⾼压的⼤型装置中。
采⽤折流挡板,可使作为冷却剂的⽔容易形成湍流,可以提⾼对流表⾯传热系数,提⾼传热效率。
本设计中的固定管板式换热器采⽤的材料为钢管(20R 钢)。
2.2 流动⽅向及流速的确定本冷却器的管程⾛压缩后的热空⽓,壳程⾛冷却⽔。
热空⽓和冷却⽔逆向流动换热。
根据的原则有:(1)因为热空⽓的操作压⼒达到1.1Mpa ,⽽冷却⽔的操作压⼒取0.3Mpa ,如果热空⽓⾛管内可以避免壳体受压,可节省壳程⾦属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较⼤,对流传热系数较⼤者宜⾛管间,因壁⾯温度与对流表⾯传热系数⼤的流体温度相近,可以减少热应⼒,防⽌把管⼦压弯或把管⼦从管板处拉脱。
(3)热空⽓⾛管内,可以提⾼热空⽓流速增⼤其对流传热系数,因为管内截⾯积通常⽐管间⼩,⽽且管束易于采⽤多管程以增⼤流速。
查阅《化⼯原理(上)》P201表4-9 可得到,热空⽓的流速范围为5~30 m ·s -1;冷却⽔的流速范围为0.2~1.5 m ·s -1。
本设计中,假设热空⽓的流速为8 m ·s -1,然后进⾏计算校核。
2.3 安装⽅式冷却器是⼩型冷却器,采⽤卧式较适宜。
空⽓⽔⽔空⽓三、设计条件及主要物性参数3.1设计条件注:要求设计的冷却器在规定压⼒下操作安全,必须使设计压⼒⽐最⼤操作压⼒略⼤,本设计的设计压⼒⽐最⼤操作压⼒⼤0.1MPa 。
3.2确定主要物性数据3.2.1定性温度的确定可取流体进出⼝温度的平均值。
化工原理换热器设计化工原理换热器设计换热器是一种用于加热、降温、密闭蒸发及真空加热干燥等工艺的热交换设备,广泛应用于化工、制药、食品、能源等行业。
在化工生产中,换热器的选型和设计是关键步骤,它能够对生产过程中的能源消耗、产品质量和安全生产产生极大的影响。
一、换热传热原理对于换热器而言,传热是其中最核心的原理。
换热器常用的传热方式有三种:对流、传导和辐射。
在化工过程中,主要采用对流传热方式,即通过流体间热量的传递来进行换热。
同时,设计中还需要考虑到热传导、影响换热效果的温度、流速、密度、热容等物理量,以及流体本身的性质。
二、换热器类型和结构换热器的类型和结构有很多种,根据传热方式的不同可以分为管壳式、板壳式和实心管式等。
其中,管壳式换热器是最常见的一种类型,通常由套管、管子和管板等组成。
套管是换热器的外壳,一般用钢板、铝合金等制成,套管的内部是一组纵向安装且参差不齐的管子,管板则用来固定管子并将其分组。
三、化工原理换热器设计要点1. 选取合适的传热面积在换热器的设计中,传热面积是十分重要的参数之一,不仅影响换热器的传热效率,而且直接影响其尺寸和重量。
所以需要根据具体工艺流程的要求,选择合适的表面积,以达到工艺流程的要求。
2. 制定合理的流动方案流量对于换热器的传热效率也有着极大的影响,因此,需要制定合理的流动方案,避免流体产生剧烈的流动过程,以做到最小的传质阻力。
3. 合理选择材质基于化工领域的产品多变性与毒性,需要选择合理的材质进行制造,在保证产品质量和腐蚀性的前提下,可以选择不同种类的金属材料。
4. 合理设计换热器管子结构在进行换热器设计时,需要注意管子设计的合理性,以避免产生过大的压降和传热不均的情况,同时,管子的连接方式和防止泄露的措施也需要斟酌。
5. 充分考虑安全因素工业生产中关于安全问题的考虑,不能仅仅局限于工艺生产过程中,对于换热器的选型排除并发生的安全风险,更应该谨慎。
综上所述,换热器在化工领域中起着重要的作用,设计人员可以根据自己实际的需求和知识技能,选择适当的换热器类型,根据传热原理结合热力学理论和操作经验,进行合理设计来达到更好的生产效益。
换热器内部构造
换热器的内部构造主要包括以下几个部分:
1. 换热管束:这是换热器的核心部分,由多根换热管组成,用于实现热量传递。
换热管通常被固定在管板上,管板与壳体连接,形成整个换热器的框架。
2. 壳体:壳体是换热器的外部框架,用于支撑和固定管束,同时提供流体流动的通道。
3. 封头:封头位于壳体的两端,用于封闭流体通道,防止流体泄漏。
4. 折流挡板:折流挡板被安装在壳体内,用于改变流体的流动方向,增加流体的湍流程度,从而提高换热效率。
此外,根据换热器的不同类型和应用场景,还可能包括其他内部构件,如浮头、U型管、填料函等。
这些构件的设计和选择取决于具体的工艺要求和操作条件。
总的来说,换热器的内部构造复杂且多样化,需要根据不同的应用场景和工艺要求进行设计和选择。
同时,在使用过程中,需要定期对换热器进行检查和维护,以确保其正常运行和延长使用寿命。
化工原理课程设计设计任务:换热器班级:13级化学工程与工艺(3)班姓名:魏苗苗学号:1320103090目录化工原理课程设计任务书 (2)设计概述 (3)试算并初选换热器规格 (6)1。
流体流动途径的确定 (6)2. 物性参数及其选型 (6)3。
计算热负荷及冷却水流量 (7)4. 计算两流体的平均温度差 (7)5。
初选换热器的规格 (7)工艺计算 (10)1. 核算总传热系数 (10)2. 核算压强降 (13)设计结果一览表 (16)经验公式 (16)设备及工艺流程图 (17)设计评述 (17)参考文献 (18)化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件: 1、苯:入口温度80℃,出口温度40℃。
2、冷却介质:循环水,入口温度32。
5℃。
3、允许压强降:不大于50kPa 。
4、每年按300天计,每天24小时连续运行。
三、设备型式: 管壳式换热器四、处理能力: 109000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸的设计.3、设计结果概要或设计结果一览表.4、设备简图。
(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。
六、附表:1。
设计概述 1。
1热量传递 出口温度 40。
5℃壳体内部空间利用率 70%选定管程流速u (m/s ) 1壳程流体进出口接管流体流速u1(m/s ) 1的概念与意义1。
1。
1热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热.由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。
1.1.2化学工业与热传递的关系化学工业与传热的关系密切.这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。