车身控制系统-总线系统
- 格式:doc
- 大小:355.00 KB
- 文档页数:10
车身电控系统的组成车身电控系统是现代汽车中不可或缺的一部分,它由多个组成部分组成,包括传感器、控制器、执行器等。
这些部件协同工作,以确保车辆的安全性、性能和舒适性。
本文将详细介绍车身电控系统的组成。
1. 传感器传感器是车身电控系统的重要组成部分,它们用于监测车辆的各种参数,例如车速、转向角度、油门位置、刹车压力、气囊状态等。
这些传感器将收集到的数据传输给控制器,以便控制器能够根据车辆的状态做出相应的决策。
2. 控制器控制器是车身电控系统的大脑,它接收传感器传来的数据,并根据预设的算法和逻辑进行计算和分析,最终控制车辆的各种功能。
例如,当传感器检测到车速过快时,控制器会自动减速以确保车辆的安全性。
3. 执行器执行器是车身电控系统的执行部分,它们根据控制器的指令执行相应的操作。
例如,当控制器决定要减速时,执行器会控制刹车系统减速。
执行器还包括发动机控制单元、变速器控制单元等,它们控制着发动机和变速器的工作状态,以确保车辆的性能和燃油经济性。
4. 通信总线通信总线是车身电控系统中的重要组成部分,它将传感器、控制器和执行器连接在一起,以便它们之间能够进行数据交换和通信。
通信总线还可以将车辆的数据传输到车载信息娱乐系统中,以便驾驶员能够了解车辆的状态和性能。
5. 电源系统电源系统是车身电控系统的能量来源,它提供电力给传感器、控制器和执行器等组件。
电源系统还包括电池、发电机和稳压器等部件,以确保车辆的电力供应稳定和可靠。
6. 诊断系统诊断系统是车身电控系统的监测和维护部分,它能够检测车辆的故障和问题,并提供相应的解决方案。
诊断系统还可以记录车辆的运行数据和故障码,以便技术人员进行故障排除和维修。
车身电控系统是现代汽车中不可或缺的一部分,它由多个组成部分组成,包括传感器、控制器、执行器、通信总线、电源系统和诊断系统等。
这些部件协同工作,以确保车辆的安全性、性能和舒适性。
随着汽车技术的不断发展,车身电控系统也将不断升级和改进,以满足人们对汽车的更高要求。
CAV总线系统名词解释引言C A V(Co nn ec te da nd A ut on om ou sV eh icl e s)总线系统是一种用于连接智能汽车各个部件和系统的通信架构。
通过CA V总线系统,车辆内部的各个电子控制单元(E CU)可以相互通信,实现信息传输和功能协调。
本文将对CA V总线系统中常见的名词进行解释,以帮助读者更好地理解相关概念。
名词解释1.C A V总线系统C A V总线系统指的是用于智能汽车内部各个部件和系统之间进行通信和数据传输的一种架构。
它采用总线的结构,通过一根主线连接各个EC U,实现数据的交换和共享,为智能驾驶、车载娱乐、车身安全等功能提供支持。
2.E C UE C U(El ec tr on ic Co n tr ol Un it)是指智能汽车中的电子控制单元,它是车辆的大脑之一,负责监测、控制和调节车辆的各个系统。
例如发动机控制单元、制动控制单元、安全气囊控制单元等都属于E CU的范畴。
3.数据总线数据总线是C AV总线系统中的一部分,用于在不同E CU之间传输数据和信息。
它一般分为高速数据总线和低速数据总线两种类型。
高速数据总线主要用于传输速度要求较高的数据,例如视频信号和传感器数据等;低速数据总线主要用于传输控制信号和一些较低速率的数据。
4.控制器局域网(C A N)控制器局域网(C ont r ol le rA re aN et wor k,简称C AN)是一种应用于实时控制系统的串行总线通信协议,常用于汽车领域。
它具有高可靠性、实时性强、传输距离远等特点,适用于连接E CU进行实时数据交换和控制。
5.以太网以太网是一种广泛应用于计算机网络领域的局域网技术,也被用于智能汽车中的数据通信。
通过以太网,各个E CU可以以高带宽、低延迟的方式进行数据传输,支持复杂的车载应用和服务。
6.F l e x R a yF l ex Ra y是一种用于实时数据传输的串行总线标准,主要用于高带宽和实时性要求较高的系统。
汽车车身CAN总线系统设计作者:郝魁孙华伟腾彦飞来源:《科技与创新》2014年第07期摘要:随着现代汽车电子技术的发展与广泛应用,汽车车身的电子设备越来越多,各部分通信控制之间更为复杂。
传统电器之间的连接使用点对点方式的单一通信,而使用CAN总线技术使车身电控系统之间的连接更加智能化。
车身使用的是低速的CAN总线网络,对于车身整体控制性要求较低。
车身控制一般包括对门锁、前后视镜、天窗、室内空调等的控制。
关键词:汽车;车身控制;CAN总线;电子技术中图分类号:U469.11 文献标识码:A 文章编号:2095-6835(2014)07-0001-02CAN总线技术主要应用于动力系统子网和车身系统子网,我们研究的车身网络控制属于低速CAN网络。
随着CAN总线技术的广泛应用,其开发流程与方法成为了研究的重点。
基于CAN总线技术的车身控制代替了车身点对点的复杂连接,使用CAN总线式网络拓扑形式,将车身各个控制节点连接,利用软件实现对车身网络节点的综合控制。
1 汽车网络总线开发流程CAN总线技术在车身的广泛应用,使人们更加关注CAN总线的整体开发流程。
车身CAN总线网络的开发流程主要包括系统整体设计和具体实现方法。
系统整体网络设计包括了所有要遵循的设计方法。
使用网络拓扑形式的设计方法时,首先要分析CAN总线的系统功能要求、整体结构的设计与仿真,制订符合CAN总线要求的通信与控制协议,这样才能为供货商提供整车ECU节点设计(包括软件节点、硬件节点、软件与硬件结合节点的系统集成),完成CAN总线的验证与仿真。
具体实现方法包括实现这些功能所需要的硬件和软件的选型与设计。
2 车身CAN总线系统的拓扑结构设计车身网络系统拓扑结构主要包括中央控制器、左右前后车门控制器、车内空调控制器、前后座控制器等,这些控制器都挂接在CAN总线上。
这里我们选择中央控制模块进行研究。
车身网络控制选择的是低速通信,因此传输波特率选择50 kb/s作为CAN总线的通信速率。
班级:姓名:学号:评定:
班级:
姓名: 学号: 评定:
学习项目单
班级:
姓名: 学号: 评定:
)CAN-H对正极短路工作模式下CAN波形图采集与绘制(注意周期、幅值标注))CAN-H与CAN-L互短模式下CAN波形图采集与绘制(注意周期、幅值标注)
)CAN-L对地短路工作模式下CAN波形图采集与绘制(注意周期、幅值标注))CAN-L对正极短路工作模式下CAN波形图采集与绘制(注意周期、幅值标注)
3.LIN线正常工作模式下波形图采集与绘制(注意周期、幅值标注)
线工作模式下波形图采集与绘制(注意周期、幅值标注)
学习项目单
班级:
姓名: 学号: 评定:。