2016中考数学复习-二次函数与三角形的面积问题
- 格式:doc
- 大小:1.26 MB
- 文档页数:11
二次函数中三角形面积问题【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE解:令x=0, y=3 点C的坐标为(0,3);令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),设AB所在直线的解析式为y=kx+b.求出直线AB所在直线的解析式为y=-x+3.设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3mS△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE=1/2×3( -m2+3m)=--3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB解:S△ABC=S△OAC+S△OBC-S△OAB=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3=-3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。
解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。
二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。
二次函数中三角形面积问题的三种求解方法二次函数是一种广泛应用于数学解题中的重要运算工具,有时需要根据给定的几何图形求解相关表达式,比如求出三角形的面积。
三角形面积问题在很多学科中都有着广泛的应用,下面将介绍三种求解三角形面积的方法,这三种方法均基于二次函数的概念。
第一种求解三角形面积的方法是通过使用二次函数的半径求解。
首先,根据给定的三角形边长,使用勾股定理求出该三角形的半径,然后用半径公式计算出三角形的面积,半径公式为πr/2,其中π是常数3.14159。
这种方法的优点是简单易行,只需要掌握勾股定理和半径公式即可求解三角形的面积。
第二种求解三角形面积的方法是使用三角函数求解。
有些三角形的边长有着特殊的关系,可以使用三角函数求出三角形的面积。
举例来说,如果某三角形的三条边长分别为a,b,c,那么可以使用以下公式求出此三角形的面积:S= a*b*sin(c)/2。
这种方法的优点是可以准确求出三角形的面积,但是要掌握的知识比较多,需要熟练掌握三角函数的概念。
第三种求解三角形面积的方法是使用二次函数求解。
如果给定三角形的三条边长都可以用二次函数表示,那么可以使用椭圆公式求解三角形的面积。
椭圆公式为S=∫ab√(f(x))dx,其中f(x)表示三角形边长可以表示为二次函数的表达式,a,b表示积分下限和上限。
这种方法的优点是准确度高,但使用难度也比较大,需要掌握椭圆公式和二次函数的概念。
以上就是介绍了三种求解三角形面积的方法。
不同的求解方法都有各自的优势和局限性,在不同场景下要根据实际情况选择合适的求解方法,使用二次函数可以有效地求出三角形的面积。
二次函数中有关三角形面积的计算
例1 如图,经过点A(8,0)、B(0,4)的抛物线y=ax c
x 27
2(1)求抛物线的解析式;
(2)若一条与y 轴重合的直线l 以每秒2个单位长度的速度向右平移,分别交线段OA 、AB 和抛物线于点C 、D 和点E ,连接EA 、EB 、AB ,设直线l 移动的时间为t (0<t<4)秒,当t 为何值时,△ABE 的面积最大,最大面积是多少?
2.如图,已知抛物线c
y2经过A、B两点,A、B两点的坐标分
x
bx
别为(-1,0)、(0,-3)
(1)求抛物线的解析式;
(2)点E为抛物线的顶点,点C为抛物线与x 轴的另一个交点,点D为y 轴上一点,若DC=DE,求点D的坐标;
(3)在(2)的条件下,若点P为第四象限内抛物线上一动点,点P的横坐标为m , △DCP面积为S,求S关于m的函数关系式,并求出S的最大值。
∙∙∙∙初中数学二次函数中三角形面积问题解析一、命题意图二次函数中三角形面积相结合的题目是近年来中考数学中常见的问题,题型常考常新,体现了数形结合、化归转化、分类讨论数学思想等。
如果将三角形这一平面图形问题与二次函数相结合,就需要学生以逻辑思维和空间思维相结合的方式进行学习,以培养学生逻辑思维与空间思维能力相结合的基本数学思想,让学生学会自主思考问题的过程。
二、考点及对应的考纲要求初中数学课程教学中关于三角形面积问题的讨论一直是教学重点,这其中牵涉了二次函数与几何问题的融合,是初中数学课程中的一个难点。
求面积常用的方法:(1)直接法,若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的高,那么三角形的面积能直接用公式算出来。
(2)简单的组合,解决问题的途径常需要进行图形割补、等积变形等图形变换。
(3)面积不变同底等高或等底等高的转换,利用平行线得到三角形同底等高进行面积转化。
(4)如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”. 可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半。
三、试题讲解过程如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,-4)三点.(1)求该抛物线的解析式; (2)若点D 是该抛物线上一动点,且在第四象限,当∆面积最大时,求点D 的坐标.解:(1)解法一: 由题意得,c=-4, ∴⎩⎨⎧=-+=--0441604b a b a ,解得:⎩⎨⎧-==31b a , ∴=x y 解法二: 由题意得,设y=a (x+1)(x-4), ∴∴y=(x+1)(x-4), ∴432--=x x y ,(2)解法一:由(1)可知,y=x 2-3x -4,设点D 为(x, x 2-3x -4),过点D 作DE ∥OC 交BC 设直线BC 的解析式为y=kx +b,则∙∙∙⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4, ∴E (x, x -4)∴DE=(x -4)-(x 2-3x -4)= -x 2+4x,∵a=-1<0, ∴当x=2时, DE 取最大值,S △BCD 解法二:由(1)可知,y=x 2-3x -4, 设点D 为(x,y ),过点D 作DF ⊥OB 于点F,S △BCD =S 梯形OCDF +S △BDF -S △OBC=21x (4-y )+21(-y )(4-x )-8 =2x -2y -8=2x -2(x 2-3x -4)-8=-2x 2+8x,∵a=-2<0, ∴当x=2时, S △BCD 取最大值,∴D (2,-6解法三:由(1)可知,y=x 2-3x -4, 过点D 作DE ∥设直线BC 的解析式为y=kx +b, 则⎩⎨⎧=+-=044b k b ,∴⎩⎨⎧-==41b k ,∴y=x -4,∴设直线DE 的解析式为y=x +d,则x 2-3x -4=x +d, x 2∴当△=(-4)2-4(-4-d )=0, d=-8, S △BCD 取最大值, ∴x 2-4x +4=0, ∴(x-2)2=0, ∴x 1=x 2=2, ∴D (2,-6). 四、试题的拓展延伸及变式分析如图,在平面直角坐标系中,抛物线c bx ax y ++=2C (0,3)三点.(1)若点D 是抛物线的对称轴上一点,当ACD ∆求点D 的坐标;(2)在(1)的情况下,抛物线上是否存在除点A 得PCD ∆ 的面积与ACD ∆P 的坐标;若不存在,请说明理由.解:(1)∵抛物线c bx ax y ++=2经过A (1,0),B (3∴抛物线的对称轴l 是x=231+=2, ∵△ACD 的周长=AD+AC+CD, AC 是定值, ∴当AD+CD 最小时,△ACD 的周长最小,∵点A 、点B 关于对称轴l 对称,∴连接BC 交l 于点D ,即点D 为所求的点, 设直线BC 的解析式为n kx y +=,∴ ⎩⎨⎧=+=033n k n ,∴⎩⎨⎧=-=31n k ,∴直线BC 的解析式为3+-=x y ,∙∙当x=2时,y=-x+3=-2+3=1,∴点D 的坐标是(2,1).(2)解:由(1)可知,∵抛物线c bx ax y ++=2经过A (1,0),B (3,0),C (0,3)三点,∴c=3, ∴⎩⎨⎧=++=++033903b a b a ,解得:⎩⎨⎧-==41b a ,∴342+-=x x y ,解法一:如图,①过点A 作AP 1∥CD 交抛物线于点P 1,∴设直线AP 1的解析式为d x y +-=, ∴∴d=1,∴直线AP 1的解析式为1+-=x y , 解方程1+-x =342+-x x ,(x-1)(x-2)∴x 1=1, x 2=2,当x 1=1时,11+-=x y =0当x 2=2时,12+-=x y =-1,∴点P 1②设直线AP 1交y 轴于点E (0,1)把直线BC 向上平移2个单位交抛物线于P 2得直线P 2P 3的解析式为5+-=x y ,解方程5+-x =342+-x x , x 2-3x -2=0,∴x 3=2173+, x 4=2173-, 当x 3=2173+时,53+-=x y =2177-, 当x 4=2173-时,54+-=x y =2177+, ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 解法二:如图,过A 点作AE∥y 轴,交BC 于点E .则E 点的纵坐标为231=+-.∴ AE=2. 设点P 为(n ,342+-n n ),过P 点作PF∥y 轴,交BC 于点F ,则点F 为(n ,n -3),PF∥AE. 若PF =AE ,则△PCD 与△ACD 的面积相等.∙∙①若P 点在直线BC 的下方,则PF =(n -3)-(342+-n n )=n 2-∴n n 32+-=2.解得21=n ,12=n .当2=n 时,3-n-2∴P 1点坐标为(2,-1). 同理 当1=n 时,P 点坐标为(1,0)(不合题意,舍去).②若P 点在直线BC 的上方,则PF=(342+-n n )-(n -3)=n n 32-∴232=-n n .解得21733+=n ,4=n 当21733+=n 时,P 点的纵坐标为2177221733-=++-; 当21734-=n 时,P 点的纵坐标为2177221733+=+--. ∴点P 2的坐标是(2173+,2177-),点P 3的坐标是(2173-,2177+), 综上所述, 抛物线上存在点P 1(2,-1),P 2(2173+,2177-), P 3(2173-,2177+), 使得△PCD 的面积与△ACD 的面积相等. 在以上问题的分析中研究思路为:(1)分析图形的成因;(2)识别图形的形状;(3)找出图形的计算方法。
二次函数与三角形面积问题二次函数与三角形面积问题的关系是通过求解二次函数图像与x轴交点来得到三角形的面积。
具体而言,如果给定二次函数的表达式,我们可以求解方程f(x) = 0的解,这些解就是二次函数图像与x轴交点的横坐标。
通过这些横坐标,我们可以确定三角形的底边的长度。
同时,我们可以求解二次函数的最值来确定三角形的高,进而计算出三角形的面积。
首先,让我们来回顾一下二次函数的定义和性质。
二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c是实数且a不等于零。
二次函数的图像是一个抛物线,它的开口方向由a的正负号决定,当a 大于零时开口向上,当a小于零时开口向下。
二次函数的顶点是抛物线的最值点,当a大于零时顶点是最小值点,当a小于零时顶点是最大值点。
现在,让我们将二次函数与三角形面积问题联系起来。
假设我们有一个给定的二次函数f(x) = ax^2 + bx + c,我们希望求解该二次函数图像与x轴交点的横坐标,并计算出通过这些交点确定的三角形的面积。
首先,我们需要求解方程f(x) = 0,也就是求解ax^2 + bx + c = 0。
这可以通过使用求根公式来进行计算。
根据求根公式,对于一个二次方程ax^2 + bx + c = 0,它的解为x = (-b ± √(b^2 - 4ac)) / (2a)。
根据这个公式,我们可以求解出具体的x值。
假设我们求解得到了两个根,x1和x2。
接下来,我们可以通过计算这两个根之间的距离来确定三角形的底边的长度。
根据数学知识,我们知道两个点(x1, 0)和(x2, 0)之间的距离等于|x2 - x1|。
因此,通过计算|x2 - x1|,我们可以得到底边的长度。
接下来,我们需要确定三角形的高。
为了做到这一点,我们需要找到二次函数的顶点。
二次函数的顶点的横坐标可以通过使用公式x = -b / (2a)来计算。
通过计算出的顶点横坐标,我们可以计算出顶点在x轴上的纵坐标。
中考数学二次函数专题复习超强整理初三——二次函数归类复习一、二次函数与面积面积的求法:①公式法:S=1/2*底*高 ②分割法/拼凑法 1、说出如何表示各图中阴影部分的面积?2、抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积.(2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程)x yO M E NA 图五O xy DC 图四xy ODCEB图六PxyOAB D 图二Exy OA BC 图一xyOAB图三3、已知抛物线4212--=x x y 与x 轴交与A 、C 两点,与y 轴交与点B , (1)求抛物线的顶点M 的坐标和对称轴; (2)求四边形ABMC 的面积.4、已二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为P.(1)结合图形,提出几个面积问题,并思考解法;(2)求A 、B 、C 、P 的坐标,并求出一个刚刚提出的图形面积; (3)在抛物线上(除点C 外),是否存在点N ,使得ABC NAB S S ∆∆=,若存在,请写出点N变式一:在抛物线的对称轴上是否存点N ,使得ABC NAB S S ∆∆=,若存在直接写出N 的坐标;若不存在,请说明理由.变式二:在双曲线3y x=上是否存在点N ,使得ABC NAB S S ∆∆=,若存在直接写出N 的坐标;若不存在,请说明理由.5、抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C ,若点E 为第二象限抛物线上一动点, 点E 运动到什么位置时,△EBC 的面积最大,并求出此时点E 的坐标和△EBC 的最大面积.A x yB OC 变式一图 A x y OBC 变式二图C P x O A B y【模拟题训练】1.(2015•三亚三模)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.二、二次函数与相似【相似知识梳理】二次函数为背景即在平面直角坐标系中,通常是用待定系数法求二次函数的解析式,在求点的坐标过程中需要用到相似三角形的一些性质,如何利用条件找到合适相似三角形是需要重点突破的难点。
中考数学二次函数与三角形面积专项复习训练测试题(附答案解析)1、(12分)已知抛物线y=ax2+bx-3经过(-1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为3102若存在,求出k的值;若不存在,请说明理由.第1题图2、如图所示,已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由;(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.第2题图3、如图所示,已知抛物线y =-12x 2+bx +c 与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动.(1)直接写出抛物线的解析式:____________________;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积,若存在,求出P 点的坐标;若不存在,请说明理由.第3题图4、(10分)如图所示,在平面直角坐标系xOy 中,一次函数y =x 与二次函数y =x 2+bx 的图象相交于O 、A 两点,点A (3,3),点M 为抛物线的顶点. (1)求二次函数的表达式;(2)长度为22的线段PQ 在线段OA (不包括端点)上滑动,分别过点P 、Q 作x 轴的垂线交抛物线于点P 1、Q 1,求四边形PQQ 1P 1面积的最大值;(3)直线OA 上是否存在点E ,使得点E 关于直线MA 的对称点F 满足S △AOF =S △AOM ?若存在,求出点E 的坐标;若不存在,请说明理由.第4题图中考数学二次函数与三角形面积专项复习训练测试题(附答案解析) 1.解:(1)令x =0,得y =-3, ∴C (0,-3),把(-1,0)和(3,0)代入y =ax 2+bx -3中,得309330a b a b --=⎧⎨+-=⎩,解得12a b =⎧⎨=-⎩,∴抛物线的解析式为y =x 2-2x -3;…………………………(3分)(2)联立方程组223y x x y kx⎧=--⎪⎨=⎪⎩,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∵O 是AB 的中点,∴x 1+x 2=0,即22022k k +++-+= 解得k =-2,∴11x y ⎧=⎪⎨=-⎪⎩或22x y ⎧=⎪⎨=⎪⎩, ∴A (-3,23),B (3,-23);…………………………(7分); (3)不存在实数k 使得△ABC 的面积为3102.理由如下: 假设存在实数k 使得△ABC 的面积为3102,联立方程组223y x x y kx⎧=--⎪⎨=⎪⎩,解得1212222k x k k y ⎧++=⎪⎪⎨++⎪=⎪⎩,2222222k x k k y ⎧+-=⎪⎪⎨+-⎪=⎪⎩,则A(222,22k k k +-+-), B(222,22k k k ++++), ∴S △ABC =12OC (x B -x A )=3102, ∴12×3×=3102, ∴k 2+4k +16=10,即k 2+4k +6=0, ∵b 2-4ac =16-24<0, ∴此方程无解,∴不存在实数k 使得△ABC 的面积为3102.………………(12分)2.解:(1)把点A (-1,0),B (3,0)代入y =-x 2+bx +c ,得10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩,∴y =-x 2+2x +3;【一题多解】由题意可知点A (-1,0),点B (3,0)是抛物线与x 轴的两个交点,∴抛物线解析式为y =-(x +1)(x -3)=-x 2+2x +3. (2)存在点D ,使得△BCD 的面积最大.设D (t ,-t 2+2t +3),如解图①,作DH ⊥x 轴于点H ,C 点坐标为(0,3),第2题解图①则S △BCD =S 四边形DCOH +S △BDH -S △BOC =12t (-t 2+2t +3+3)+12(3-t )(-t 2+2t +3)-12×3×3=-32t 2+92t ,∵-32<0,即抛物线开口向下,在对称轴处取得最大值, ∴当t =-922×(-32)=32时,S △BCD =-32×(32)2+92×32=278,即点D 的坐标为(32,154)时,S △BCD 有最大值,且最大面积为278; (3)存在点Q ,使得△QMB 与△PMB 的面积相等.如解图②,∵P (1,4),过点P 且与BC 平行的直线与抛物线的交点即为所求Q 点之一,第2题解图②∵直线BC 为y =-x +3,∴过点P 作BC 的平行直线l 1,设l 1为y =-x +b ,将P (1,4)代入即可得到直线l 1的解析式为y =-x +5,联立方程组2523y x y x x =-+⎧⎪⎨=-++⎪⎩,解得1123x y =⎧⎨=⎩, 2214x y =⎧⎨=⎩, ∴Q 1(2,3);∵直线PM 为x =1,直线BC 为y =-x +3, ∴M (1,2),设PM 与x 轴交于点E , ∵PM =EM =2,∴过点E 作BC 的平行直线l 2,则过点E 且与BC 平行的直线l 2与抛物线的交点也为所求Q 点之一,即将直线BC 向下平移2个单位得到直线l 2,解析式为y =-x +1,联立方程组2123y x y x x =-+⎧⎪⎨=-++⎪⎩,解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∴Q 2(3122++-),Q 3(3122---), ∴满足条件的Q 点为Q 1(2,3),Q 2(),Q 3(). 3.解:(1)y =-12x 2+3x +8;【解法提示】把点A (0,8)、B (8,0)代入y =-12x 2+bx +c 可得,83280c b c =⎧⎨-++=⎩,解得38b c =⎧⎨=⎩,∴抛物线解析式为y =-12x 2+3x +8.(2)在y =-12x 2+3x +8中,当y =0时,-12x 2+3x +8=0, 解得x 1=-2,x 2=8, ∴E (-2,0),∴BE =10,∵S △CED =12DE ·OC , ∴S =12t (10-t )=-12t 2+5t ,∴S 与t 的函数关系式为:S =-12t 2+5t , ∵S =-12t 2+5t =-12(t -5)2+252,∴当t =5时,△CED 的面积最大,最大面积为252;(3)存在,当△CED 的面积最大时,t =5,即BD =DE =5,此时,要使S △PCD =S △CED ,CD 为公共边,故只需求出过点B 、E 且平行于CD 的直线即可,如解图.第3题解图设直线CD 的解析式为y =kx +b , 由(2)可知OC =5,OD =3, ∴C (0,5),D (3,0),把C (0,5)、D (3,0)代入y =kx +b ,得530b k b =⎧⎨+=⎩,解得535k b ⎧=-⎪⎨⎪=⎩,∴直线CD 的解析式为y =-53x +5, ∵DE =DB =5,∴过点B 且平行于CD 的直线解析式为y =-53(x -5)+5, 过点E 且平行于CD 的直线解析式为y =-53(x +5)+5, 分别与抛物线解析式联立得:方程①:-12x 2+3x +8=-53(x -5)+5, 解得x 1=8,x 2=43,方程②:-12x 2+3x +8=-53(x +5)+5, 解得x 3=343,x 4=-2(舍去),分别将x 值代入抛物线解析式,得y 1=0,y 2=1009,y 3=-2009, 又∵P 点不与E 点重合,∴满足题意的P 点坐标有3个,分别是P 1(8,0),P 2(43,1009),P 3(343,-2009). 4.解:(1)由题意知,A (3,3)在二次函数y =x 2+bx 的图象上, 将x =3,y =3代入得9+3b =3, 解得b =-2,∴二次函数表达式为y =x 2-2x ;……………………………(2分) (2)如解图①所示,过点P 作PB ⊥QQ 1于点B ,第4题解图①∵PQ =22,且在直线y =x 上,∴PB =QB =2 ,………………………………………………(3分) 设P (a ,a ),则Q (a +2,a +2),P 1(a ,a 2-2a ),Q 1(a +2,(a +2)2-2(a +2)), 即Q 1(a +2,a 2+2a ), ∴四边形PQQ 1P 1的面积为:22(2)(22)22a a a a a a S -+++--=⨯=-2a 2+2a +2=-2(a -12)2+52,…………………………(4分) 当Q 运动到点A 时,OP =OQ -PQ =2,a =1, ∴a 的取值范围为0<a <1,∴当a =12时,四边形PQQ 1P 1的面积最大,最大值为52;…(5分) (3)存在,点E 的坐标为E 1(43,43),E 2(143,143), 如解图②所示,连接OM ,第4题解图②∵点M 为抛物线顶点, ∴M (1,-1),又∵OA 所在直线为y =x , ∴OM ⊥OA ,即∠AOM =90°,在△AOF 和△AOM 中,以OA 为底,当面积相等时,则两三角形OA 边上的高相等, 又∵OM ⊥OA ,且OM =2,∴可作两条与OA 互相平行且距离为2的直线,…………(6分)如解图②所示,在直线HD 、MC 上的点F 均满足S △AOF =S △AOM ,∴只需满足E 点的对称点F 在这两条直线上即可.如解图②,过点A 作AC ⊥MC 于点C ,易得四边形OACM 为矩形,AM 为该矩形的一条对角线,取AM 中点O ′,过O ′作AM 垂线,交OA 于点E 1,交MC 于点F 1,OA =32,∴AM ===,∴AO ′=5,∵△AO′E 1∽△AOM ,…………………………………………(7分)∴11AE AO OE AO AO AM AM '-==,∴=, 解得OE 1=423, ∵点E 1在y =x 上,∴E 1(43,43),……………………………………………………(8分) 同理可得HF 2=GE 2=423, 又∵OG =2OA =62,∴OE 2=62-423=1423,∴E 2(143,143).综上所述,符合条件的E 点的坐标为:E 1(43,43)、 E 2(143,143).…(10分)。
初中二次函数三角形面积问题研究引言在初中数学学习中,我们学习过二次函数和三角形的面积计算。
我们是否想过将这两个知识点结合起来,在实际问题中进行研究和应用呢?本文将结合二次函数和三角形面积问题进行深入探讨,通过具体的数学计算和实际案例,探索二次函数在三角形面积问题中的应用和意义,希望能够给初中生带来启发和帮助。
一、二次函数的基本概念我们先来回顾一下二次函数的基本概念。
二次函数是指一个关于自变量的二次方程,一般的二次函数可以写成 f(x) = ax^2 + bx + c的形式,在数学中,一般认为a≠0。
二次函数的图像是一个抛物线,当a>0时,抛物线开口向上,称为正向抛物线;当a<0时,抛物线开口向下,称为负向抛物线。
二次函数的图像对应了三种经典的情况,即抛物线与x轴相交成两个实根;抛物线与x轴相切成一个实根;抛物线与x轴无交点,没有实根。
二、三角形面积计算方法三角形是初中数学教学的重要内容之一,面积计算是三角形的基本技能。
三角形的面积计算有多种方法,最常用的是利用底和高的乘积再除以2,即S=1/2 * 底 * 高。
也可以通过三边长求解半周长再利用海伦公式进行计算。
对于直角三角形,我们还可以利用勾股定理进行计算。
这些方法都是计算三角形面积的有效手段,灵活运用可以更好地解决实际问题。
三、二次函数在三角形面积问题中的应用在实际问题中,我们可以通过二次函数来解决三角形面积问题。
给定一个顶点坐标为(0,0),三角形的另外两个顶点分别为(a, 0)和(b, f(b)),其中f(x)是一个已知的二次函数。
我们需要求解这个三角形的面积。
根据三角形面积计算方法,我们知道需要求解这个三角形的底和高,即底为|b-a|,高为f(b)。
三角形的面积可以表示为S=1/2 *|b-a| * f(b)。
接下来,我们以一个具体的案例来说明二次函数在三角形面积问题中的应用。
假设已知二次函数f(x)=2x^2+3x-2,在直角坐标系中,三角形的顶点A(0,0),B(1,0),C (3,f(3))。
2016中考数学复习-二次函数与三角形的面积问题
二次函数与三角形的面积问题
1.运用
2铅垂高
水平宽⨯
=
s;
2.运用y;
3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。
类型一:三角形的某一条边在坐标轴上或者与坐标轴平行
例1.已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求:
(1)抛物线解析式;
(2)抛物线与x轴的交点A、B,与y轴交点C;
(3)求下列图形的面积△ABD、△ABC、△
ABE、△OCD、△OCE。
一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适方法
求出图形的面积。
训练1.如图所示,已知抛物线()
02
≠++=a c bx ax y 与x 轴相交于
两点A ()0,1
x , B ()0,2
x ()2
1
x x
<,与y 轴负半轴相交于点C ,若抛物线
顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。
(1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。
类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。
(歪歪三角形拦腰来一刀)
关于2
铅垂高
水平宽⨯=
∆
S
的知识点:如图1,过△ABC 的
三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.
x A B O C
y B
铅垂高
水平宽
h
a
图1
我们可得出一种计算三角形面积的新方法:ah S
ABC
2
1=
∆,即
三角形面积等于水平宽与铅垂高乘积的一半.
想一想:在直角坐标系中,水平宽如何求?铅垂高如何求?
例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB
S
∆;(3)是否存在一点P ,使S
△PAB =8
9
S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.
解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D
y ;
铅垂高D
C
y y CD -=,注意线段的长度非负性;分析P 点在直线AB
的上方还是下方?
图-2
x
C O y A
B
D
1
1
训练2.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.
C
B
A
O
y
x
D
B
A
O
y
x
P
(3)
x
y
A B
C
P
E O
x
y A B C
Q O
训练 3.如图,抛物线
c
bx x y ++-=2与x 轴交于
A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在()中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.
一般地,①所谓的铅垂高度,实际上就是横坐标相同的两个点的纵坐标差的绝对值,数学表达式为
D
C y y C
D -=。
为了保证这个差值是正数,同学们可以用在铅垂线上靠上点的纵坐标减去靠下点的纵坐标.
因此,求出点D 的坐标,是求铅垂高度CD 的关键;
②所谓的水平宽,实际上就是,两个点的横坐标差的绝对值,数学表达式为
B
A x x A
B -=.为了保证这个
差值是正数,同学们可以用这两个靠右点的横坐标减去靠左点的横坐标.因此,求出点A 、B 的坐标,是求水平宽的关键.
③在解这类存在性问题时,通常先假设所要的点是存在的,然后利用给出的条件,认真加以推理求解.
练习
1.已知如图,矩形OABC 的长3,宽OC=1,将△AOC 沿AC 翻折得△APC 。
(1)填空:∠PCB=____度,P 点坐标为( , );
(2)若P ,A 两点在抛物线y=-43
x 2+bx+c 上,求b ,c 的值,并说明点C 在此抛物线上; (3)在(2)中的抛物线CP 段(不包括C ,P 点)上,是否存在一点M ,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由。
第1题图
2.如图①,已知抛物线3
2+
y(a≠0)与x轴交于点
=bx
ax
+
A(1,0)和点B(-3,0),与y轴交于点C.(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
图①图②
3.如图,在平面直角坐标系中,二次函数c
+
=2的图
x
y+
bx
象与x轴交于A、B
两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,
点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP/C,那么是否存在点P,使四边形POP/C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四
边形ABPC的面积最大并求出此时
P点的坐标和四边形ABPC的最大
面积.
4.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .
(1)求抛物线的函数解析式,并写出顶点D 的坐标;
(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;
(3)若点K 在x 轴上方的抛物线上运动,
当K 运动到什么位置时,△EFK 的面积
最大?并求出最大面积.
K N C E D G A x y O B F。