二阶模拟带通滤波器的仿真和实现
- 格式:pdf
- 大小:441.76 KB
- 文档页数:3
基于multisim的二阶滤波器仿真设计实验报
告
本报告主要就基于multisim的二阶滤波器的仿真设计进行介绍
和说明,目的是为了解决模拟信号中的信号干扰以及抑制或突出某些
频率分量的问题。
仿真设计是基于Multisim软件来实现的,Multisim是一款由National Instruments 公司开发的电子工程专业虚拟仿真软件,用于
模拟数字电子系统、模拟电子系统及系统仿真,主要有以下步骤:第一步,选择芯片,我们选择的芯片是OP-07,这款芯片是带有
两个引脚的运算放大器,并且可以构成有效带通滤波器场景;
第二步,接下来我们可以将这些芯片组合起来,来组成不同类型
的二阶滤波器;
第三步,最后通过计算来设计滤波器各个参数,比如滤波器阶跃
响应函数,模拟电路来进行计算,利用电路原理来实现参数的计算;
最后,在仿真的环节,我们可以通过Multisim来完成仿真,最
后输出仿真结果:仿真设计的滤波器响应以及滤波器的波形形状。
从以上实验可以得出的结论是,使用Multisim可以非常轻松的
设计模拟电路,设计二阶滤波器,并用它来仿真,了解滤波器的性能。
基于MATLAB的IIR数字滤波器设计与仿真一、概述在现代数字信号处理领域中,数字滤波器扮演着至关重要的角色。
其通过对输入信号的特定频率成分进行增强或抑制,实现对信号的有效处理。
无限脉冲响应(IIR)数字滤波器因其设计灵活、实现简单且性能优良等特点,得到了广泛的应用。
本文旨在基于MATLAB平台,对IIR数字滤波器的设计与仿真进行深入研究,以期为相关领域的研究与应用提供有益的参考。
IIR数字滤波器具有无限长的单位脉冲响应,这使得其在处理信号时能够展现出优秀的性能。
与有限脉冲响应(FIR)滤波器相比,IIR滤波器在实现相同性能时所需的阶数更低,从而减少了计算复杂度和存储空间。
在需要对信号进行高效处理的场合,IIR滤波器具有显著的优势。
MATLAB作为一款功能强大的数学软件,提供了丰富的函数和工具箱,使得数字滤波器的设计与仿真变得简单而高效。
通过MATLAB,我们可以方便地实现IIR滤波器的设计、分析和优化,从而满足不同应用场景的需求。
本文将首先介绍IIR数字滤波器的基本原理和特性,然后详细阐述基于MATLAB的IIR数字滤波器的设计方法和步骤。
接着,我们将通过仿真实验验证所设计滤波器的性能,并对其结果进行分析和讨论。
本文将总结IIR数字滤波器设计与仿真的关键技术和注意事项,为相关领域的研究人员和工程师提供有益的参考和启示。
1. IIR数字滤波器概述IIR(Infinite Impulse Response)数字滤波器是数字信号处理中常用的一类滤波器,它基于差分方程实现信号的滤波处理。
与FIR (Finite Impulse Response)滤波器不同,IIR滤波器具有无限长的单位脉冲响应,这意味着其输出不仅与当前和过去的输入信号有关,还与过去的输出信号有关。
这种特性使得IIR滤波器在实现相同的滤波效果时,通常具有更低的计算复杂度,从而提高了处理效率。
IIR滤波器的设计灵活多样,可以根据不同的需求实现低通、高通、带通和带阻等多种滤波功能。
二阶有源带通滤波电路二阶有源带通滤波电路是一种常见的电子电路,它能够在一定频率范围内通过信号,同时阻隔其他频率的信号,常用于音频处理、通信系统等方面。
本文将从以下几个方面详细阐述二阶有源带通滤波电路的原理、设计和应用。
第一步,阐述有源滤波器的基本原理。
有源滤波器是利用运算放大器的放大作用来实现滤波的电路,因此其具有较高的增益和稳定性,能够在较宽的频率范围内实现滤波,同时还能够通过调整电路参数来实现所需的滤波特性。
基本的有源滤波器包括有源低通滤波器、有源高通滤波器、有源带通滤波器和有源带阻滤波器。
第二步,讲解二阶有源带通滤波电路的设计。
在二阶有源带通滤波电路中,通常采用两个运算放大器进行级联,构成一个二阶电路结构。
在电路的输入端和输出端之间,通过一个带通滤波器来实现所需的频率范围内的有源增益,同时阻隔其他频率范围的信号。
该电路的设计主要包括电路参数的选择和运算放大器的配置等方面。
在参数设计时需要确保所选参数能够滤除杂波和噪声的同时保持信号的快速响应,同时在运算放大器的配置中要考虑放大器的增益和带宽等特性。
第三步,介绍有源带通滤波器的应用。
有源带通滤波器广泛应用于音频处理、无线通信系统、雷达信号处理等方面。
在音频处理中,可以通过有源带通滤波器来实现音乐合成、均衡器、调音台等功能,使得音频效果更加优美;在无线通信系统中,有源带通滤波器不仅能够滤除杂波和噪声,还能够增强所需频段的信号强度,提高系统的信号传输质量;在雷达信号处理中,有源带通滤波器能够滤除多普勒杂波和敌我干扰等干扰信号,提高雷达探测和目标识别的准确性。
通过以上三个方面的介绍,我们可以基本了解二阶有源带通滤波电路的原理、设计和应用。
二阶有源带通滤波电路在电子技术领域中有着广泛的应用,可以有效地滤除杂波、噪声和干扰信号,保持所需信号的清晰度和稳定性。
课程设计任务书学生姓名:XXX 专业班级:电信XX指导教师:曾刚工作单位:信息工程学院题目:有源带通滤波器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、设计一个有源带通滤波器。
2、通带范围为50HZ-20KHZ,带内电压变化小于。
3、自制直流电源。
4、安装调试并完成符合学校要求的设计说明书时间安排:十八周一周,其中3天硬件设计,2天硬件调试指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)1 有源带通滤波器理论设计 (1)简介 (1)工作原理 (1)二阶有源滤波器设计方案 (2)1.3.1原理图 (2)1.3.2低通滤波电路 (2)1.3.3高通滤波电路 (3)1.3.4原件参数选取 (4)2 二阶有源滤波器实际仿真与测试 (5)3 误差分析 (7)元器件误差 (7)运放的性能 (7)仪器误差 (7)直流稳压电源供电误差 (7)4 直流稳压电源设计 (8)5 心得体会 (9)参考文献 (10)致谢 (11)摘要在《模拟电子技术基础》的学习基础上,针对课设要求,设计有源带通滤波器,计算出符合条件要求的原件参数,通过Multisim仿真和焊接完电路后的实际测量数据,验证参数的取值。
关键词:有源带通滤波器参数Multisim仿真1 有源带通滤波器理论设计简介带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。
一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。
这些滤波器也可以用低通滤波器同高通滤波器组合来产生.工作原理一个理想的滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。
二阶带通滤波器的设计二阶带通滤波器是一种滤波器,可以使特定频率范围内的信号通过,而将其他频率的信号抑制。
它通常由一个高通滤波器和一个低通滤波器级联组成。
在设计二阶带通滤波器时,需要确定滤波器的通带范围、通带增益、截止频率以及滤波器的类型等参数。
首先,我们需要确定滤波器的通带范围。
带通滤波器可以通过选择适当的通带上下限来实现。
通带上限和下限确定了滤波器在哪个频率范围内起作用。
例如,我们可以选择通带范围为500Hz到2kHz。
然后,确定滤波器的通带增益。
通带增益指的是滤波器在通带范围内的增益情况。
通常,滤波器的通带增益为0dB,表示不对信号进行增益或衰减。
但也可以根据实际需求,设置通带增益为正值或负值。
接下来,我们需要确定滤波器的截止频率。
截止频率是指信号衰减到一定程度的频率。
在带通滤波器中,我们需要选择低通滤波器和高通滤波器的截止频率。
低通滤波器的截止频率应高于通带上限,而高通滤波器的截止频率应低于通带下限。
一般来说,截止频率的选择应根据信号频谱分布和带宽要求来确定。
在选择截止频率之后,我们需要确定滤波器的类型。
常用的二阶带通滤波器类型包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。
它们在滤波器的通频带宽、衰减特性和相位响应等方面有不同的性能。
根据具体情况选择最适合的滤波器类型。
一旦确定了以上参数,我们可以开始设计二阶带通滤波器。
设计的主要步骤包括:1.设计低通滤波器:利用所选的滤波器类型,设计一个低通滤波器,其截止频率为所选的通带下限。
2.设计高通滤波器:同样地,利用所选的滤波器类型,设计一个高通滤波器,其截止频率为所选的通带上限。
3.级联滤波器:将低通滤波器和高通滤波器按级联方式连接,形成二阶带通滤波器。
4.调整参数:根据实际应用需求,调整滤波器的参数,如增益、截止频率等。
5.仿真和测试:利用计算机软件或硬件进行滤波器的仿真和测试,检查其频率响应和相位响应等性能是否满足要求。
总结起来,设计二阶带通滤波器需要确定滤波器的通带范围、通带增益、截止频率和滤波器类型等参数。
电容耦合二阶LTCC带通滤波器的分析与设计摘要:提出了一种谐振腔间通过电容耦合和基于LTC C技术的集总带通滤波器(带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对)结构。
该方法在输入输出端引入反馈电容来改善阻带性能,同时利用等效集总电路并采用图解和数学方法来解释传输零点的变化,最后给出了设计此类滤波器的一般步骤。
0 引言近年来,无论是军用电子整机、通信设备还是民用消费类的电子产品都迅速向小型化、复杂化、轻量化、多功能化和高可靠性的方向发展。
而以LTCC (低温共烧陶瓷, Low Temperature CofiredCeramic) 为基础的结构设计可有效减小器件体积,是实现元器件向小型化、片式化、高可靠性和低成本方向发展的有效途径。
滤波器是决定通信系统性能的重要元器件。
为此,许多论文都提出通过在阻带内加入传输零点来提高滤波器的阻带衰减性能,从而获得陡峭过渡带。
本文给出的设计方法涉及三个方面:第一是通过设计一种滤波器结构来提高阻带性能。
该滤波器采用谐振单元耦合,并在输入输出端引入并联反馈电容来在阻带内引入传输零点。
传输零点的个数与位置可以通过耦合电容和电感控制。
第二是通过滤波器结构等效集总电路来写出导纳矩阵,再用图解和数学方法解释传输零点情况。
这对快速设计这类滤波器具有指引作用。
第三是通过仿真滤波器来证明理论的正确性。
1 LTCC滤波器的物理布局本设计给出的滤波器的空间拓扑结构如图1所示,其中图1 (a)、(b) 分别为不同角度观察的滤波器三维图,其中介质为Rogers RT/duroid5880,介电常数为εr=2.2,损耗角正切为0.0009,介质为4层,每层为500μm,水平面积为3mm×18mm,导体材料采用银。
金属层从下至上分别为1至5层,其中最下层和最上层为接地金属层(为使结构图更清楚,图1中隐藏了最上层金属层),中间三层为电路拓扑,其端口馈电在第三层上,为电容馈电方式,可与第二层和第四层电容板形成接入电容C3和C4,调节馈电板的边长C_w1,可以改变电容C3与C4。
二阶带通滤波器的设计报告一、引言带通滤波器是一种能够通过特定频率范围内的信号,而抑制其他频率信号的电子滤波器。
二阶带通滤波器是一种常用的滤波器类型,具有较好的滤波效果和相对简单的电路结构。
本文将介绍二阶带通滤波器的设计方法与实现过程。
二、二阶带通滤波器的原理三、二阶带通滤波器的设计步骤1.确定滤波器的通带中心频率:根据具体应用需求,确定滤波器需要通过的频率范围,并取其中心频率为设计目标。
2.确定通带增益:根据应用需求,确定滤波器在通带范围内需要增益的大小。
3.计算滤波器的品质因子:品质因子(Q值)是评价滤波器带宽与衰减特性的重要参数。
根据设计要求和公式,计算出所需的Q值。
4.确定滤波器的截止频率:根据所需的通带带宽和中心频率,计算出滤波器的上下截止频率。
5.设计滤波器的电路结构:根据已知的截止频率、Q值和增益,选择适合的电路结构实现二阶带通滤波器。
6.计算滤波器的元件数值:根据所选电路结构和设计参数,计算出各个元件的数值。
7.绘制滤波器的电路原理图:将计算出的元件数值和电路结构绘制为电路原理图。
8.仿真与验证:使用电子仿真软件对滤波器的性能进行仿真与验证。
9.实际实现:根据电路原理图,选择适合的元器件进行实际的电路实现。
10.测试与调整:使用测试仪器对实际实现的滤波器进行测试,并根据测试结果进行调整,以达到设计要求。
四、实例以设计一个中心频率为1kHz,通带增益为10dB,通带带宽为500Hz的二阶带通滤波器为例进行说明。
1.确定滤波器的通带中心频率为1kHz。
2.确定通带增益为10dB。
3. 计算滤波器的品质因子。
根据公式Q=fc/BW,其中fc为中心频率,BW为通带带宽,计算得到Q=24.确定滤波器的截止频率。
根据中心频率和通带带宽,可以计算出滤波器的上下截止频率为900Hz和1100Hz。
5. 选择适合的电路结构。
本例选择经典的Sallen-Key滤波器结构进行设计。
6.计算滤波器的元件数值。
2014-2015电子电路设计课程说明书学院实验学院专业电子信息工程题目二阶带通滤波器姓名黄玉欢学号 13521230 日期2015年7 月21日指导教师摘要此次电子技术课程设计包括数电课设和模电课设两部分,需要自己独立地完成设计、Multisim仿真和硬件连接三个环节。
模拟电路设计:二阶有源带通滤波器,二阶有源带通滤波器采用经典的RC 有源滤波器设计,该设计又称为巴特沃斯滤波器。
电路为双电源供电,可完成对于规定中心频率的选择,并保证信号在3db带宽内平稳不失真,且有良好的矩形系数。
两个实验均通过了仿真测试和硬件连接测试,基本符合课设的要求。
以下是我对两个实验的基本方案、设计原理、元器件的选择、优缺点的比较和仿真结果的介绍。
关键词带通滤波器、Multisim仿真IAbstractThe course design by the digital circuit design and analog circuit design composed of,Complete independence to complete the design,Multisim simulation and the experiment three links。
Analog circuit design part, second-order active bandpass filter,and through Multisim software and oscilloscope simulation and performance testing,The output resistor, the center frequency coefficient matrix circuit conditions and performance up to requirements. Two experiments were tested by simulation and laboratory simulation tests, the basic compliance testing requirements. This article describes the Responder and the second-order active band-pass filter and the basic program design principles,component selection,compare the advantages and disadvantages and simulation test results, more comprehensive about the design of this course the content of electronic technology.KeywordsBandpass filter、Multisim SimulationII目录1.概述 (1)2.二阶有源带通滤波器的设计、仿真与性能实测 (2)1设计内容与要求 (2)2方案比较 (3)3总体方案 (4)3.1 总体方案介绍 (4)3.2 电路设计原理 (5)3.3 软件仿真与测试分析 (8)3.4 硬件仿真与测试分析 (11)3.5问题解决与讨论 (13)4.结论 (13)5.参考文献 (13)6.附录 (14)6.1 元器件明细表 (14)III6.2设计环境与设备清单 (14)6.3附表 (14)IV1.概述本次电子课程设计分为数字电路和模拟电路两部分。
《模拟电子技术基础》课程设计-二阶有源带通滤波器设计
一、背景介绍
滤波器是电子电路中比较常用的部件,它可以起到限制电路中某些频率信号的作用,从而达到指定频率及消隐其它频率信号的目的。
由于其可以灵活控制输出信号,因此将滤波器应用到各种电子元件设计中,尤其是各种传感器应用中,使其输出精确明确。
二、二阶有源带通滤波器
二阶有源带通滤波器是电子电路中最常用的滤波器。
它具有极高的非线性斜率,与各种多种模拟电路应用密切相关,如多调制,编解码,数字信号的发生和接收等。
它包括两个一阶有源元件,一个是放大器,一个是滤波器,他们两个相互耦合,形成了一个较大的滤波限制电路。
三、设计步骤
(1)确定滤波器的有效频率范围:在设计带通滤波器过程中,首先要确定滤波器的有效频率范围,以确保能够带通这个频率范围中的希望被处理的信号;
(2)确定滤波器的输入阻抗:滤波器的输入阻抗可以从外部而来,也可以从电路的内部而来;
(4)确定滤波器的放大器增益:由于放大器如何影响滤波器,因此需要确定放大器的增益,以使滤波器能够有效运行;
(5)确定滤波器的电源:需要确定滤波器的电源电压,以便让电路正常工作;
(6)完成实际布线:按照设计及电路原理图完成实际的布线,并完成滤波器的测试工作。
四、结论
本文简要介绍了二阶有源带通滤波器的相关内容,将滤波器实际应用到电子元件设计中,改善信号质量及抗干扰性能,是有效提高其性能的重要部件。
在实际设计过程中,需要充分考虑滤波器的各种参数,以便最终获得性能最佳的设计方案。
巴特沃斯二阶带通滤波器simulink实现巴特沃斯二阶带通滤波器的设计和实现在信号处理领域中是非常常见的。
本文将一步一步地回答如何使用Simulink工具来实现巴特沃斯二阶带通滤波器。
第一步:理解巴特沃斯二阶带通滤波器的原理巴特沃斯二阶带通滤波器是一种常用的滤波器类型,可以通过选择适当的截止频率来过滤出特定频率范围内的信号。
它的传递函数表达式为:H(s) = K/[(s^2 + s/Q + 1)]其中,K是增益系数,s是复频域变量,Q是品质因数。
巴特沃斯二阶带通滤波器的特点是通过选择合适的Q值和截止频率来实现带通滤波的效果。
第二步:创建Simulink模型打开MATLAB软件并启动Simulink工具。
然后,创建一个新模型。
第三步:添加输入信号源在模型中添加一个信号源,用于提供待滤波的输入信号。
可以选择Sin波形作为输入信号。
在Simulink库浏览器中,找到"Sources"文件夹,在其中选择"Sine Wave"模块并拖动到模型中。
第四步:添加巴特沃斯二阶带通滤波器在模型中添加一个巴特沃斯二阶带通滤波器。
在Simulink库浏览器中,找到"Continuous"文件夹,在其中选择"Transfer Fcn"模块并拖动到模型中。
双击该模块,打开其参数设置窗口。
在参数设置窗口中,将传递函数的表达式输入框中的表达式设置为H(s) =K/[(s^2 + s/Q + 1)]。
设置增益系数K和品质因数Q的值。
这些值可以根据实际需求进行调整。
第五步:连接信号源和滤波器将信号源模块的输出端口连接到巴特沃斯二阶带通滤波器的输入端口。
在模型中拖动一个连接线,从信号源的输出端口连接到滤波器的输入端口。
第六步:添加输出显示在模型中添加一个显示模块,用于显示滤波器输出的信号。
在Simulink库浏览器中,找到"Sinks"文件夹,在其中选择"Scope"模块并拖动到模型中。
二阶带通滤波器二阶带通滤波器(Second Order Bandpass Filter)概述:二阶带通滤波器是一种常用的电子滤波器,用于从信号中提取特定频率范围的信号。
它具有一定的带宽,在该带宽范围内的信号将会被放大,而在带外的信号将会被抑制。
这种滤波器常用于音频处理、通信系统、地震测量等领域。
工作原理:二阶带通滤波器由一个一阶低通滤波器和一个一阶高通滤波器串联而成。
这两个滤波器的输出经过级联后形成一个带通滤波器。
一阶低通滤波器通过允许低频信号通过并抑制高频信号来实现对频率的限制,而一阶高通滤波器则相反。
当两者级联时,就可以实现对指定频率范围内的信号进行放大。
参数设计:设计二阶带通滤波器时,需要确定一些重要参数,包括中心频率、带宽、阻带衰减、通带增益等。
中心频率指的是要通过的信号的频率,在这个频率附近的信号将会被放大。
带宽是指在中心频率附近的一定范围内的频率,该范围内的信号将被放大。
阻带衰减是指在带外频率范围内的信号被滤波器抑制的程度。
通带增益是指在通过的频率范围内,信号在滤波器输出上的放大倍数。
滤波器类型:二阶带通滤波器有多种类型,包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。
它们有着不同的频率响应特性和阻带衰减性能。
选择适合的滤波器类型取决于应用的具体要求,例如需要更好的通带纹波特性还是更高的阻带衰减。
性能评估:二阶带通滤波器的性能可以通过多种指标来评估,如通带纹波、阻带衰减、相移等。
通带纹波描述了在通带范围内信号增益的不均匀性,通常以分贝为单位来表示。
阻带衰减是指在带外范围内信号被滤波器抑制的程度,也是以分贝为单位来表示。
相移是指信号在滤波器中传输过程中的延迟,通常以角度来表示。
应用领域:二阶带通滤波器在许多领域都有广泛的应用。
在音频处理中,它可以用来消除低频噪声或强化音频信号的特定频段。
在通信系统中,它可以用来滤除噪声或选择特定频率的信号。
在地震测量中,它可以用来提取地震信号的特定频带,以进行地震活动监测。
二阶IIR滤波器在信号处理领域,滤波器是一种用来去除或增强信号特定频率成分的重要工具。
其中,IIR滤波器是一种常用的数字滤波器,其特点是具有无限长的单位脉冲响应(Infinite Impulse Response)。
本文将重点介绍二阶IIR滤波器的原理和应用。
二阶IIR滤波器概述二阶IIR滤波器是一种常见的数字滤波器类型,由两个级联的一阶IIR滤波器组成。
每个一阶IIR滤波器由两个系数和一个延迟器构成,其中系数用于调节滤波器的响应特性,延迟器则用于存储过去的输入和输出值。
通过多个级联的一阶滤波器,可以构建出高阶的IIR滤波器,但二阶IIR滤波器通常已经能够满足大多数信号处理的需求。
二阶IIR滤波器的实现二阶IIR滤波器的实现可以通过直接形式(Direct Form)或级联形式(Cascade Form)来完成。
在直接形式中,每个一阶IIR滤波器都有自己的状态变量,计算复杂度相对较高。
而在级联形式中,多个一阶滤波器共享状态变量,计算效率更高。
通常情况下,级联形式更为常用。
二阶IIR滤波器的性能二阶IIR滤波器相比一阶滤波器具有更加灵活的频率响应特性,能够实现更为复杂的滤波效果。
通过适当选择系数,二阶IIR滤波器可以实现低通、高通、带通和带阻等各种滤波功能。
同时,由于其具有无限长的单位脉冲响应,可以实现更长的滤波器长度和更陡的滤波特性。
二阶IIR滤波器在实际应用中的示例二阶IIR滤波器在实际应用中具有广泛的用途。
例如,音频信号处理中常用的音频均衡器就是基于IIR滤波器实现的,通过调节滤波器参数可以实现对声音频率特性的调整。
另外,在生物医学信号处理领域,二阶IIR滤波器也被广泛用于心电图(ECG)信号的滤波和分析。
总结二阶IIR滤波器作为一种常见的数字滤波器类型,在信号处理领域具有重要的地位。
通过合理选择滤波器参数和结构,可以实现多种滤波效果,满足不同应用场景的需求。
在实际应用中,二阶IIR滤波器的高效性和灵活性为信号处理工程师提供了有力的工具,帮助他们处理和分析各种类型的信号。
摘要在学习《模拟电子技术基础》的基础上,针对课程设计要求,设计一个通带为0.833KHz、中心频率为5KHz、品质因素为6、最大增益为2的带通滤波器,选择有源滤波器的快速设计法为设计方案,计算出该方案需要的电阻、电容、运算放大器参数,通过Multisim软件仿真和电路板的制作,对所选的方案进行调试,验证方案的正确性,并将实际设计的滤波器与仿真得到的滤波器进行比较,分析误差产生的原因。
关键字:带通;滤波器;快速设计法;Multisim仿真;调试;分析误差目录引言·31.设计任务及要求·32.方案选择·33. 二阶有源带通滤波器理论设计·4 3.1 简介··43.2 工作原理··43.3 传递函数及性能参数··53.4 器件参数的选取··63.5 Multisim仿真及仿真数据处理··64. 电路板的制作·84.1 原理图和PCB图的绘制··84.2 电路板制作过程··95. 电路板的调试·105.1 调试的仪器··105.2 调试过程及结果··105.3 调试所遇到的问题··135.4 调试误差分析··136. 结论·13谢辞·15参考文献·16附录·17引言本论文主要讨论信号的处理电路,其中一种电路称为模拟滤波器,模拟滤波器的主要功能是传送输入信号中有用的频率成分,衰减或抑制无用的频率成分,本文主要研究由电阻、电容和运算放大器组成的有源带通滤波电路,其原理是通过对电容、电阻参数的配置,使得模拟滤波器对频率在通带内的频率分量呈现很小的阻抗,而对频带外的频率分量呈现很大的阻抗,这样当负载电流信号通过该模拟带通滤波器的时候就可以把通带内的信号提取出来,把通带外的信号去除。
湖南人文科技学院毕业设计二阶RC有源滤波器的设计报告滤波器是一种能够使有用频率信号通过,而同时抑制(或衰减)无用频率信号的电子电路或装置,在工程上常用它来进行信号处理、数据传送或抑制干扰等。
有源滤波器是由集成运放、R、C组成,其开环电压增益和输入阻抗都很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用,但因受运算放大器频率限制,这种滤波器主要用于低频范围。
设计几种典型的二阶有源滤波电路:二阶有源低通滤波器、二阶有源高通滤波器、二阶有源带通滤波器,研究和设计其电路结构、传递函数,并对有关参数进行计算,再利用multisim 软件进行仿真,组装和调试各种有源滤波器,探究其幅频特性。
经过仿真和调试,本次设计的二阶RC有源滤波器各测量参数均与理论计算值相符,通频带的频率响应曲线平坦,没有起伏,而在阻频带则逐渐下降为零,衰减率可达到|-40Db/10oct|,滤波效果很理想。
1965年单片集成运算放大器的问世,为有源滤波器开辟了广阔的前景;70年代初期,有源滤波器发展引人注目,1978年单片RC有源滤波器问世,为滤波器集成迈进了可喜的一步。
由于运放的增益和相移均为频率的函数,这就限制了RC有源滤波器的频率范围,一般工作频率为20kHz左右,经过补偿后,工作频率也限制在100kHz以内。
1974年产生了更高频的RC有源滤波器,使工作频率可达GB/4(GB为运放增益与带宽之积)。
由于R的存在,给集成工艺造成困难,于是又出现了有源C滤波器:就是滤波器由C和运放组成。
这样容易集成,更重要的是提高了滤波器的精度,因为有源C滤波器的性能只取决于电容之比,与电容绝对值无关。
由RC有源滤波器为原型的各类变种有源滤波器去掉了电感器,体积小,Q值可达1000,克服了RLC无源滤波器体积大,Q值小的缺点。
但它仍有许多课题有待进一步研究:理想运放与实际特性的偏差的研究;由于有源滤波器混合集成工艺的不断改进,单片集成有待进一步研究;应用线性变换方法探索最少有源元件的滤波器需要继续探索;元件的绝对值容差的存在,影响滤波器精度和性能等问题仍未解决;由于R存在,集成占芯片面积大,电阻误差大(20%~30%),线性度差等缺点,使大规模集成仍然有困难。
设计任务书一、设计目的掌握二阶压控电压源有源滤波器的设计与测试方法二、设计要求和技术指标带通滤波器:通带增益 up A 2;中心频率:0f =1kHz ;品质因数Q=0.707.要求设计电路具有元件少、增益稳定、幅频响应好等特点。
2、设计内容及步骤(1)写出电路的传递函数,正确计算电路元件参数,选择器件,根据所选器件画出电路原理图,并用multisim 进行仿真。
(2)安装、调试有源滤波电路。
(3)设计实验方案,完成滤波器的滤波性能测试。
(4)画出完整电路图,写出设计总结报告。
三、实验报告要求1、写出设计报告,包括设计原理、设计电路、选择电路元器件参数、multisim 仿真结论。
2、组装和调试设计的电路检验该电路是否满足设计指标。
若不满足,改变电路参数值,使其满足设计题目要求。
3、测量电路的幅频特性曲线。
4、写出实验总结报告。
前言随着计算机技术的发展,模拟电子技术已经成为一门应用范围极广,具有较强实践性的技术基础课程。
电子电路分析与设计的方法也发生了重大的变革,为了培养学生的动手能力,更好的将理论与实践结合起来,以适应电子技术飞速的发展形势,我们必须通过对本次课程设计的理解,从而进一步提高我们的实际动手能力。
滤波器在日常生活中非常重要,运用非常广泛,在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的滤波器。
随着集成电路的迅速发展,用集成电路可很方便地构成各种滤波器。
用集成电路实现的滤波器与其他滤波器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。
滤波器在电路实验和设备检测中具有十分广泛的用途。
现在我们通过对滤波器器的原理以及结构设计一个带通滤波器。
我们通过对电路的分析,参数的确定选择出一种最合适本课题的方案。
在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。
RC有源滤波器设计1.1总方案设计1.1.1方案框图图1.1.1 RC有源滤波总框图1.1.2子框图的作用1 RC网络的作用在电路中RC网络起着滤波的作用,滤掉不需要的信号,这样在对波形的选取上起着至关重要的作用,通常主要由电阻和电容组成。